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Abstract

Objective

Comparison of a fully-automated segmentation method that uses compartmental volume

information to a semi-automatic user-guided and FDA-approved segmentation technique.

Methods

Nineteen patients with a recently diagnosed and histologically confirmed glioblastoma

(GBM) were included and MR images were acquired with a 1.5 T MR scanner. Manual seg-

mentation for volumetric analyses was performed using the open source software 3D Slicer

version 4.2.2.3 (www.slicer.org). Semi-automatic segmentation was done by four indepen-

dent neurosurgeons and neuroradiologists using the computer-assisted segmentation tool

SmartBrush® (referred to as SB), a semi-automatic user-guided and FDA-approved tumor-

outlining program that uses contour expansion. Fully automatic segmentations were per-

formed with the Brain Tumor Image Analysis (BraTumIA, referred to as BT) software. We

compared manual (ground truth, referred to as GT), computer-assisted (SB) and fully-auto-

mated (BT) segmentations with regard to: (1) products of two maximum diameters for 2D

measurements, (2) the Dice coefficient, (3) the positive predictive value, (4) the sensitivity

and (5) the volume error.

Results

Segmentations by the four expert raters resulted in a mean Dice coefficient between 0.72

and 0.77 using SB. BT achieved a mean Dice coefficient of 0.68. Significant differences

were found for intermodal (BT vs. SB) and for intramodal (four SB expert raters) perfor-

mances. The BT and SB segmentations of the contrast-enhancing volumes achieved a

PLOS ONE | DOI:10.1371/journal.pone.0165302 November 2, 2016 1 / 16

a11111

OPENACCESS

Citation: Porz N, Habegger S, Meier R, Verma R,

Jilch A, Fichtner J, et al. (2016) Fully Automated

Enhanced Tumor Compartmentalization: Man vs.

Machine Reloaded. PLoS ONE 11(11): e0165302.

doi:10.1371/journal.pone.0165302

Editor: Han-Chiao Isaac Chen, University of

Pennsylvania, UNITED STATES

Received: April 12, 2016

Accepted: October 10, 2016

Published: November 2, 2016

Copyright: © 2016 Porz et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper.

Funding: This study was supported by the Swiss

National Science Foundation (SNF Grant No.

320030_140958), the Bernese Cancer League, the

Swiss Cancer League and the European Unions

Seventh Framework Programme for research,

technological development and demonstration

under grant agreement No. 600841. Brainlab AG

provided support in the form of salary for author

CR, but did not have any additional role in the study

design, data collection and analysis, decision to

publish, or preparation of the manuscript. The

http://www.slicer.org/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0165302&domain=pdf
http://creativecommons.org/licenses/by/4.0/


high correlation with the GT. Pearson correlation was 0.8 for BT; however, there were a few

discrepancies between raters (BT and SB 1 only). Additional non-enhancing tumor tissue

extending the SB volumes was found with BT in 16/19 cases. The clinically motivated sum

of products of diameters measure (SPD) revealed neither significant intermodal nor intra-

modal variations. The analysis time for the four expert raters was faster (1 minute and 47

seconds to 3 minutes and 39 seconds) than with BT (5 minutes).

Conclusion

BT and SB provide comparable segmentation results in a clinical setting. SB provided simi-

lar SPD measures to BT and GT, but differed in the volume analysis in one of the four clini-

cal raters. A major strength of BT may its independence from human interactions, it can

thus be employed to handle large datasets and to associate tumor volumes with clinical

and/or molecular datasets ("-omics") as well as for clinical analyses of brain tumor compart-

ment volumes as baseline outcome parameters. Due to its multi-compartment segmenta-

tion it may provide information about GBM subcompartment compositions that may be

subjected to clinical studies to investigate the delineation of the target volumes for adjuvant

therapies in the future.

Introduction

Volumetry of malignant brain tumors (glioblastomamultiforme (GBM)) is usually performed
semi-automatically or by manual delineation by an expert in a clinical setting. The latter option is
hampered by time and personnel costs, as well as by inter-rater variability [1]. Volumetry is fre-
quently integrated into treatment planning (e.g. to inform the neurosurgeon about tumor location
for operation planning, and radiation oncologists to support therapy planning [2–4]). GBM sub-
compartment volume analysis may aid in biophysical modeling of brain tumor infiltration [5].
Appropriate assessment of the extent of resection plays a role in the prognosis of GBMs, since
maximizing the extent of resection influences survival in glioblastoma patients. A complete resec-
tion of enhancing tumor, defined as the removal of the final 1–2% of the tumor, seems to provide
themost benefit in terms of survival [6–8]. Further, there is increasing evidence that tumor expan-
sion beyond areas of blood–brainbarrier disruption (i.e. the enhancing compartment) impacts
survival of patients with a GBM [9–11] and should be considered in pre-surgical planning [12].
Fully-automated user-independent segmentation tools are currently employed predomi-

nantly for research [13]. Semi-manual image-guided contouring software is routinely used in
many operating theaters and in radiation oncology, but still requires user-dependentmanual
interaction.
We recently devised the fully-automated multimodal segmentation tool BratTumIA (BT) for

pre-surgical and longitudinal tumor segmentation [14, 15]. BT calculates tumor volumes of
healthy and tumor tissue compartmentalizationwith a variability that is comparable to that
achievedwith time-consumingmanual tumor delineation by an expert [13, 14]. In this study, we
aimed to investigate the performance of fully- vs. semi-automatic brain tumor volumetry. For
comparison, we employed SmartBrush1 (SB), which is routinely used for surgical planning and
volumetric quantification of pre- and postoperative tumor volumes [9, 16]. We determined
whether: (i) 2D diameter-based and (ii) 3D volumetric-basedcriteria for brain tumor assessment
can be reliably calculatedwith BT and SB, (iii) whether the (semi-)automatic segmentations are
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comparable with an expert-rater-based ground truth (GT) in terms of the Dice coefficient, and
(iv) whether the subcompartment analysis by BT, which takes into account the infiltrative growth
patterns of GBMs, improves the routine estimations of gross tumor volume.

Materials and Methods

Study population

Patients with a newly diagnosed and histologically confirmedGBM, enrolled preoperatively at
our institution betweenOctober 2012 and July 2013, underwent prospectivemanual segmenta-
tion, semi-automatic and automated volumetry. The manual GT was previously used in part
by Porz et al. [15].
Exclusion criteria were: incomplete image acquisition, Karnofski performance

status< 70%, abnormal hematologic, renal or hepatic function, and previous cranial neurosur-
gery. The study was approved by the Local Research Ethics Commission “Kantonale Ethik-
kommision Bern”. All patients provided written informed consent.

MR imaging protocol

MR images were acquired with similar protocols and field strengths on two 1.5 T MR scanners
from one vendor (Siemens Avanto and Siemens Aera, Siemens, Erlangen, Germany). Every
patient was subject to a standardizedMR imaging protocol including: (1) pre-contrast 3D-
T1w-multiplanar reconstruction (MPR) in sagittal acquisition, 1 mm isotropic resolution; (2)
post-contrast 3D-T1w-MPR in sagittal acquisition, 1 mm isotropic resolution; (3) 3D-T2w
(SPC) in sagittal acquisition, 1 mm isotropic resolution; and (4) fluid-attenuated inversion
recovery (FLAIR) (2D turbo inversion recovery) in axial acquisition. The sequence parameters
were: (1) for pre-contrast 3D-T1wMPR sequences echo time (TE) = 2.67 ms, repetition time
(TR) = 1580 ms, field of view (FOV) = 256 × 256 mm2, flip angle (FA) = 8°, with an isotropic
voxel resolution of 1 × 1 × 1 mm; (2) for post-contrast T1w TE = 4.57 ms, TR = 2070 ms,
FOV = 256 × 256 mm2, FA = 15°, using isotropic 1 × 1 × 1 mm voxels; (3) for 3D-T2w (SPC)
in sagittal acquisition TE = 380 ms, TR = 3000 ms, FOV = 256 × 256 mm2, FA = 120°, using
isotropic 1 × 1 × 1mm voxels; (4) for 2D FLAIR sequence TE = 80 ms, TR = 8000 ms,
FOV = 256 × 256 mm2, FA = 120°, using a non-isotropic voxel size of 1 × 1 × 3 mm.

Comparative metrics

Different metrics were employed to assess the segmentation quality of the two methods and of
the four SB raters. The quantitative measures computed included Dice coefficient [17], absolute
and relative volume, sum of products of squared diameters (SPD), sensitivity and positive pre-
dictive value (PPV). The Dice coefficient is a value between zero and one that expresses the
amount of overlap between two segmentations, with one being a perfect overlap. It can be con-
sidered a standard metric in image analysis [17]. Besides the volumes of the individual segmen-
tations, the relative volume, which is the segmented volume subtracted from the GT volume,
was also evaluated. The SPD metric was mainly considered due to its prevalence in clinical
practice, which in turn is due to its capability to provide a fast assessment of the tumor growth
rate. Moreover, theWorld Health Organization recommends use of the SPD for gross tumor
volume [18] and refined response assessment [19]. The segmentation sensitivity states what
proportion of actual tumor was detected by the method and/or rater [20]. Last but not least,
the PPV denotes the correctly segmented tumor divided by segmented tumor [21]. Sensitivity
and PPV again yield values in the range between zero and one. Values closer to one indicate a
better performance.
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Although the objective of this study was to compare a fully-automatic brain tumor segmen-
tation method with a commercially available semi-automatic one, it was decided not to merge
the data from the four SB raters. Segmentation variability is always an issue one has to consider
when dealing with methods that require human interaction and should therefore not be
neglected in a comparative study. Furthermore, the decision was taken on the basis that no
mergingmethod should be applied unless out of necessity with respect to the main objective of
the study, as such merging is always subject to data loss. Finally, the decision is supported by
the results obtained during this study and by [22] where issues with the widely used simulta-
neous truth and performance level estimation (STAPLE) merging algorithm are discussed.

Manual volumetry

Manual segmentation was performed by a neurosurgeon experienced in brain tumor analysis
and supervisedby a neuroradiologist with more than 15 years of experience in brain tumor
imaging. The neurosurgeon employed the open source software 3D Slicer Version 4.2.2.3
(www.slicer.org) [23]. The images from the 19 patients were segmentedmanually slice by slice
(Fig 1(B)). Segmentation was performed on T1w, T1wGd (Fig 1(A)), T2w and FLAIR
sequences according to the VASARI MR feature guide v.1.1 (https://wiki.nci.nih.gov/display/
CIP/VASARI). For intermodal comparisons and analysis, the gross tumor volume (TV)–
encompassing the enhancing part, the non-enhancing part and the necrotic core of the GBM–

Fig 1. Set of MRI sequences used in this study for manual, automatic, and semi-automatic tumor volumetry. Original T1-weighted

post-contrast MRI slice (A), manual subcompartmental segmentation into non-enhancing tumor (green), enhancing tumor (blue), and

necrotic tissue (red) (B). BT subcompartmental segmentation into non-enhancing tumor (green), enhancing tumor (blue) and necrotic

tissue (red) (C). BT core tumor segmentation (dark blue, D), SB1 core tumor segmentation (light red, E), SB2 core tumor segmentation

(green, F), SB3 core tumor segmentation (purple, G) and SB4 core tumor segmentation (yellow, H).

doi:10.1371/journal.pone.0165302.g001
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was selected.Manual segmentation was defined as the GT for further analyses [13]. Note that
in the rest of this article we use GT and manual segmentations interchangeably.

Automated segmentation

The fully automatic segmentations of this study were performed using BT (https://www.nitrc.
org/projects/bratumia/). BT integrates a pipeline of three distinct parts, namely the preprocess-
ing, classification and regularization units. The software takes as its input the widely acquired
structural T1, T1-contrast (T1w), T2 and FLAIRMRI sequences. The preprocessing unit aligns
these sequences to a common position and resolution through registration [24]. Also, a brain
extractionmask computed from the T1w volume is applied to the four sequences. The output
is forwarded to the classification unit. For every voxel in each volume a number of features,
such as the mean intensity in its neighborhood, are computed. A random forest classifier then
decides, based on the features exhibited by a voxel, which tissue type it depicts. The last unit is
necessary to reduce implausible or even impossible tissue constellations between neighboring
voxels. The core of BT evolved from [25] and the methodologywas previously described in
[14]. BT is able to distinguish seven brain tissue types, three healthy (gray matter, white matter
and cerebrospinal fluid) and four tumor (edema, necrosis, non-enhancing tumor and enhanc-
ing tumor) tissues (Fig 1C and 1D; healthy tissues are not shown). Along the segmentations,
BT further outputs the skull-stripped structural sequences and a report file with, among other
information, the individual tissue volumes and the SPD value.
To illustrate the functionality and potential application of BT, we present the example of its

additional use during biopsy in a GBM case. Biopsy was performedwith the frameless neuro-
navigation system (Brainlab1VarioGuide). BT segmentations were loaded to the iPlan (3.0.2
cranial) software as an overlay to the post-contrast T1 MRI sequence. The results of the sub-
compartment analysis (i.e. of the enhancing part, the non-enhancing T2/FLAIR-hypointense
part, the T2/FLAIR hyperintense vasogenic edema and the necrotic core) were stored in Brain-
lab1 native object format. During surgery, it is possible to add the subcompartment segmenta-
tion objects as an overlay to the originalMRI sequence, according to the surgeon’s
requirements (see Fig 2).

Manual segmentation using SB

The semi-automatic segmentation was performed by four expert raters, three neurosurgeons
(SB1, SB2 and SB4) and one neuroradiologist (SB3) (Fig 1E and 1H). All the neurosurgeons
had more than five years of experience in semi-automatic brain tumor analysis and the neuro-
radiologist had more than five years of experience in MR reading of gliomas. All manual seg-
menters were instructed by an expert neuroradiologist with more than 15 years of experience
in brain tumor imaging. The raters employed the contour-expansion-based, semi-automatic
SB. It utilizes an intelligent region growing algorithm which, guided by the user, extends the
brushed area to neighboring areas with similar intensities. The tumor has to be segmented in
this manner on at least two slices in two different views. This provides sufficient input for the
tool to compute the corresponding 3D tumor volume. The result can be further improved by
extending or erasing the computed segmentation on individual slices.

Statistical methods

For a first overviewwith a one-way analysis of variance, the non-parametric Kruskal-Wallis
test was applied due to the non-normally distributed character of the data. The pairwise signifi-
cance test was performed using the two-sidedWilcoxon signed-rank test [26]. The p-values
were corrected for multiple comparisons with the Bonferronimethod [27]. The chosen
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significance level was α = 0.05%. The interrelationship between the manual, semi- and fully-
automatic segmentations was determinedwith the Pearson correlation coefficient.The statisti-
cal analysis was carried out with RStudio (http://www.rstudio.com).

Results

Study population

The mean age of patients at preoperative MR imaging was 65 years (range 37–76 years) and
the mean pre-operative Karnofski performance status was 85 ± 26% (range 70–90%). Nine
of the 19 patients were female. Five patients underwent stereotactic biopsy, six subtotal resec-
tions and eight complete resections of enhancing tumor. All diagnoses were confirmed by
histopathology.

Fig 2. Stereotactic biopsy with the frameless neuronavigation system (Brainlab® VarioGuide) using BraTumIA segmentation. The

figures indicate the T1w raw image and the BT subcompartment overlays during biopsy. Upper row left column: original T1wGd without tumor

delineation, right column: all automatic segmented tumor subcompartments are visible. Bottom row left column: necrosis and contrast-enhancing

tumor volume, right column: only necrotic tumor volume. Color code for segmentations: red = enhancing tumor, yellow = edema, blue = necrosis

and green = non-enhancing tumor.

doi:10.1371/journal.pone.0165302.g002
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SPD

The differences between the SB/BT segmentations and the GT are depicted in Fig 3. BT
achieved a smaller interquartile range (IQR) than the four SB raters did. The median difference
from the GT was lower for the SB segmentations. The rather large difference betweenmedian
and mean (red asterisk) for SB3 and BT hints at a skewed distribution of the data (SPD differ-
ences) and/or strong outliers. In contrast, the differences in SPD for SB1, SB2 and SB4
appeared to be evenly distributed. No rater or method introduced strong outliers indicating
overestimation, whereas SB2 and BT included underestimation outliers. Only SB2 showed a
tendency to underestimate the SPD value. SB1 showed, in general, no such tendency. SB3 and
SB4 as well as BT were more inclined to overestimate the 2D SPD measure.
Differences between the expert raters and methods were not significant (Fig 4).

Dice coefficient

The analysis of the Dice coefficient indicated a mean GT overlap of the four SB raters between
0.72 and 0.77 and of 0.68 for BT. An overviewof these results is provided in Fig 5. The SB4 seg-
mented similarly to BT. The outliers were similar for the SB1, SB2 and SB3, but differed from
those of SB4 and BT.
The statistical difference or similarity of the raters/methods in terms of Dice coefficient is

depicted in Fig 4(A). One can observe that there was a significant inter-rater variability during
semi-automatic segmentation. The qualitative observation that rater SB4 was closest to BT was
quantitatively confirmedwith the result shown in Fig 4(A) (no connection between BT and
SB4).

Volume

The volume differences to GT are illustrated in Fig 5. For BT we identified no systematic bias
toward over- or underestimation of the volume (mean/median close to zero). SB raters tended
to underestimate the volumes (see Fig 6). The volumes were tested for significant differences
between all ten possible combinations of raters and methods. The result is depicted in Fig 4(B).
A weakly significant difference (p-value rather close to α = 0.05%) could be found only for BT
vs. SB2. As a next step, we analyzed the volumes of additional non-enhancing tumor tissue as
provided by the subcompartment analysis of BT compared to the SB volumes (cf. Fig 7). In 16
out of 19 patients BT detected non-enhancing tumor. The correlation matrix of the segmented
tumor volumes is provided in Table 1. All computed correlations were rather high, with 0.8
being the lowest–for BT vs. GT. The semi-automatic SB method achieved a high inter-rater
and GT correlation, although the latter value was overall slightly inferior.

Sensitivity and PPV

BT achieved a highmedian sensitivity. The IQR was larger for BT than for SB and similar for
all four SB raters (see Fig 5). The PPV of the SB raters showed good agreement, yet differed
from BT. All raters and methods agreed on an even distribution of the PPV among patients.
All four SB raters attained higher median PPV than sensitivity values, whereas BT appeared to
be more consistent between PPV and sensitivity.

Discussion

This study aimed to compare semi-automatic with fully-automatic brain tumor segmentation
methods in terms of more clinically (SPD, volume) vs. technically relevant (Dice coefficient,
PPV, sensitivity) metrics.While SB tended to be superior with respect to the metrics employed,
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Fig 3. Differences between the SPD metric and the GT for the BT and the four SB segmentations. Additionally to the general boxplot

statistics the mean value is shown (red asterisk). Negative values imply an overestimation by the rater/method whereas positive values indicate

an underestimation.

doi:10.1371/journal.pone.0165302.g003
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we observed a discrepancy between technically and clinically applicable measures. The Dice
coefficient, a standard metric in image analysis, reveals statistically significant differences not
only betweenmethods (BT vs. SB) but also between raters (four SB raters) of the same method.
For the clinically relevant measures of the tumor volume, we observedonly minor differences
for one of the four raters, while the SPD calculations were in a comparable range.
SB can be reliably used for gross tumor segmentation as shown in [28]. However, inter-rater

variability must be taken into account and is a principal drawback of user-dependentmethods.
Whether these variations primarily arise from selection bias of the perpendicular slices needed
for interpolation, the variability of tumor delineation on these slices or the discrepancies in cor-
rection steps taken subsequently, is beyond the scope of this study. For BT, rater independence
is an unarguable advantage in terms of segmentation consistency. This is of particular impor-
tance if tumor growth has to be addressed, e.g. in the framework of longitudinal clinical studies,
pre-therapeutic tumor growth assessment before radiotherapy planning or for radiomics [29,
30]. Here, the subcompartment analysis of BT allows the integration of diffuse growth patterns
beyond the disrupted blood–brain barrier that encompass the NETV. The automatic segmen-
tation tool enabled visualization not only of the enhancing, but also of the T2/FLAIR-related
GBM expansion within a single analysis. In this study, we observed extendedNETV in 16/19
patients (confirmed by the GT), that were obscured by the SB segmentations. Intraoperative
5-aminolevulinic acid (5-ALA) fluorescence staining indicated that resection of non-enhancing
tumor tissue may be useful in terms of overall survival, and that non-enhancing tumor com-
partments may be indicative of infiltrative and progressive tumor behavior [9, 11, 31, 32].
Non-enhancing tumor compartments were recently correlated with outcome and showed an
impact of non-enhancing tumor on overall survival [16, 33]. As a consequence, the additional
information provided by BT might further impact biopsy and resection planning, therapy
selection [34–36] and monitoring intervals [37].
Tumors may consist of various heterogeneous tissue types that are shown by BT and that

may improve knowledge of the heterogeneous cellular characteristics within the subcompart-
ments of malignant gliomas beyond the areas of contrast uptake. More precise compartmental
sampling may foster the development of strategies that target subtype-specificpatterns of the
tumor microenvironment.

Fig 4. The performances of the different raters (SB1 to 4) and methods (SB vs. BT) were compared with a Bonferroni corrected Wilcoxon

signed-rank test in terms of Dice coefficient (A), absolute volume difference (B) and absolute SPD difference (C). A connection denotes a

significant difference, with the encircled number being the p-value. The arrow points to the superior method with respect to the GT. The line thickness

depicts the p-value in a qualitative manner. The color coding shows to which SB rater BT (white) is significantly different (red) or not (green).

doi:10.1371/journal.pone.0165302.g004
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Processing times were surprisingly variable among the raters. Even with semi-automatic
methods, each rater has to decide when he or she has achieved satisfactory segmentation
results. One may accept the two minimally required perpendicular slices as satisfactory or con-
tinue with slice-by- slice corrections. These choices may result in a considerable time and qual-
ity difference, with the consequence of resembling either computer-assisted segmentation (as

Fig 5. Left to right, top to bottom: Dice coefficient, volume difference, sensitivity and PPV. The results are obtained when BT and the four

SB raters are compared to the GT. The figure depicts the general boxplot statistics with the additional mean value (red asterisk). For the volume

differences, negative values denote overestimation and positive values underestimation compared to the GT.

doi:10.1371/journal.pone.0165302.g005
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intended by the automatization procedures) or of bouncing back to human control (closer to
manual segmentation).We did not control for this effect since we did not provide strict guide-
lines about the number of interactive steps to be taken to reach the final segmentation. How-
ever, this reflects good clinical practice and may in part explain the observed time divergences

Fig 6. Volumes of the BT and the four SB segmentations (y-axis) plotted against the respective GT segmentations (x-axis). Perfect agreement

with respect to tumor volume means that all data points (volumes) would come to lie on the gray dashed 45-degree line starting from the origin (0,0).

doi:10.1371/journal.pone.0165302.g006
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and inter-rater variability. Further, we recruited the raters according to their experience in gli-
oma reading and their oncological expertise,whichmight have led to different strategies in pre-
paring the final segmentation.
Finally, segmentation performance always reflects a mixture of additional non-professional

skills such as self-motivation and ability to focus on the task, as well as the influence of task-
induced fatigue and a multitude of other factors, including external ones. All these potential
confounders can be overcome by automated segmentation.

Conclusions

We conclude that automated tissue compartment analysis of GBMs using fully-automated
analysis tools (BT) is feasible and provides similar results to those obtained with semi-auto-
matic ones (SB) if the clinically relevant volume and SPD measures are primarily addressed.
However the two methods differ considerably in terms of Dice coefficient due to rater-depen-
dency. In addition, BT extends the GTV by adding NETV subcompartments omitted by a sin-
gle-compartment (e.g. 3D T1w contrast-enhanced sequences) analysis, as is usually performed
for therapy planning. Rater independence renders the tool applicable for complex data analysis
(e.g. in radiosurgery planning), for tumor growth modeling and radiomic/radiogenomic analy-
ses. Since both methods have complementary strengths (and limitations) their usage should be
related to the clinical and scientific questions under consideration.
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