Table 4.
MLE | Traditional model | Our model | ||
Data stimulated from [aaa] [ooo] × [aaa] [ooo] | ||||
Correct gene order | Correct | Incorrect | Incorrect | |
Estimated best gene order (%a) | 100 | 0 | 0 | |
0.2047 ± 0.0422 | 0.2048 ± 0.0422 | |||
0.1980 ± 0.0436 | 0.1985 ± 0.0434 | |||
0.3245 ± 0.0619 | 0.3235 ± 0.0618 | |||
0.9860 ± 0.0105 | ||||
0.0060 ± 0.0071 | ||||
0.0080 ± 0.0079 | ||||
Data simulated from [aao] [ooa] × [aao] [ooa] | ||||
Correct gene order | Correct | Incorrect | Incorrect | |
Estimated best gene order (%a) | 80 | 11 | 9 | |
0.1991 ± 0.0456 | 0.8165 ± 0.1003 | 0.9284 ± 0.0724 | 0.2104 ± 0.0447 | |
0.1697 ± 0.0907 | 0.8220 ± 0.0338 | 0.1636 ± 0.0608 | 0.2073 ± 0.0754 | |
0.3218 ± 0.0755 | 0.2703 ± 0.0586 | 0.7821 ± 0.0459 | 0.2944 ± 0.0929 | |
0.9952 ± 0.0058 | ||||
0.0045 ± 0.0058 | ||||
0.0003 ± 0.0015 |
aThe percents of a total of 200 simulations that have a largest likelihood for a given gene order estimated from the traditional approach. In this example used to examine the advantage of implementing gene orders, known linkage phases are assumed.