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A fosmid library representing 10-fold coverage of the Histoplasma capsulatum G217B genome was used to construct a
restriction-based physical map. The data obtained from three restriction endonuclease fingerprints, generated from
each clone using BamHI, HindIII, and PstI endonucleases, were combined and used in FPC for automatic and manual
contig assembly builds. Concomitantly, a whole-genome shotgun (WGS) sequencing of paired-end reads from
plasmids and fosmids were assembled with PCAP, providing a predicted genome size of up to 43.5 Mbp and 17%
repetitive DNA. Fosmid paired-end sequences in the WGS assembly provide anchoring information to the physical
map and result in joining of existing physical map contigs into 84 clusters containing 9551 fosmid clones. Here, we
detail mapping the Histoplasma capsulatum genome comprehensively in fosmids, resulting in an efficient paradigm for
de novo sequencing that uses a map-assisted whole genome shotgun approach.

The dimorphic fungus, Histoplasma capsulatum, is the causative
agent of histoplasmosis. In the United States, the Ohio and Mis-
sissippi river valleys are endemic regions for histoplasmosis; geo-
graphically, Histoplasma is not confined within the U.S. and can
be isolated globally (Rippon 1982; Bradsher 1996). H. capsulatum
grows in nitrogen-rich environments in a filamentous form (my-
celia). Acquired Histoplasma infections occur when mycelia, com-
posed of hyphae and conidia, become aerosolized by physical
perturbation and are inhaled. Within the lung, hyphal fragments
and conidia differentiate into yeasts that survive and proliferate
within alveolar macrophages (Eissenberg et al. 1993; Newman
1999). The transition between the saprophytic mycelial phase
and the parasitic yeast phase is thermally regulated and com-
pletely reversible, and blocking the phase transition prevents dis-
ease progression (Maresca and Kobayashi 1989; Woods et al
2001). Most infections remain localized in the respiratory tract
and are self-limiting, and the occurrence of systemic histoplas-
mosis is rare and most often associated with immuno-
compromised patients (Sorensen et al. 1999).

Genetic elements required for morphogenesis and patho-
genesis are poorly defined. CBP1, a yeast phase-specific gene that
encodes a secreted calcium-binding protein essential for intracel-
lular parasitism and pulmonary colonization, is the only genetic
element defined for virulence (Kügler et al. 2000; Sebghati et al.
2000). Genomic variations between H. capsulatum environmen-
tal and clinical isolates use several molecular techniques to group
isolates into classes that are unique to geographically distinct
regions (Kersulyte 1992; Kasuga et al. 1999; Carter et al. 2001).
Flow cytometry and reassociation kinetics estimate genome size
ranges between 24 (for G186A-S) and 32 Mbp (for Downs) and
repetitive DNA content ranges between 0.5% and 8.0%, respec-
tively (Carr and Shearer Jr. 1998). Pulsed-field gel electrophoresis
has resolved as many as seven chromosomes (Steele et al. 1989).

Currently, sequencing of the Histoplasma genome is underway at
the Washington University Genome Sequencing Center, and the
resulting genome sequences of two geographically distinct
strains will provide a reference for ongoing Histoplasma studies.

Our sequencing strategy requires a physical map of this rela-
tively small eukaryotic genome. We opted to construct a fosmid
library in lieu of the commonly used Bacterial Artificial Chromo-
some (BAC) library-based approaches (Marra et al. 1997; McPherson
et al. 2001; Gregory et al. 2002). The long-range linking informa-
tion provided by fosmids allows for iterative anchoring and ori-
enting between the Histoplasma physical map and WGS assembly
contigs. In this study, we detail our use of fosmids in a map-
assisted whole-genome shotgun approach. This fosmid-based
physical mapping approach fits readily into our physical map
data generation pipeline, providing a ready source of DNA for
end-sequencing analysis and using many of our established map-
building informatics tools, such as Image and FPC. Taken to-
gether, the use of fosmids for physical map construction of
smaller genomes (5 Mbp up to 1 Gb, for example) can provide an
efficient and effective method of generating critical genomic re-
sources.

RESULTS

Characterization of the H. capsulatum G217B
Fosmid Library
Fosmid clones of the H. capsulatum G217B library were initially
sized by restriction with HindIII. The average insert size was 35.9
kbp (�4.3 kbp) and ranged from 22.0 to 49.9 kbp (n = 130; data
not shown). A total of 9551 fosmid clones were analyzed for the
physical map, and based on the published genome size of H.
capsulatum isolate G186A-S (Carr and Shearer Jr. 1998), we pre-
dict an ∼10-fold genome representation in the map.

Constructing the H. capsulatum G217B Physical Map
The fragment size distribution from independent HindIII, PstI,
and BamHI digestion of the fosmid clones resulted in a moderate
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number of restriction fragments (bands) averaging 10.0 (�3.4),
12.4 (�3.9), and 8.9 (�4.3) fragments, respectively (data not
shown). The restriction digest fragment pattern obtained for each

clone is considered a fingerprint and is
collectively used to identify clone over-
laps and assemble physical maps (Marra
et al. 1997). Fingerprint data from the
Image software fragment mobility (or
bands) files of each independent restric-
tion digest were combined for each
clone, as described in Methods. Figure 1
shows a representation of the combined
fingerprints in the FPC contig assembly
software. The combined fingerprints
from clones with data from all three re-
striction digests averaged 25.6 (�9.4)
fragments per fosmid clone and were
used to assemble contigs at high strin-
gency (see Methods). Several automated
contig assemblies were carried out using
data sets in which the order of stacking
the fingerprints was varied. No differ-
ences were seen in the contigs as-
sembled, regardless of the order in
which fingerprint data were offset (data
not shown).

Assessment of the H. capsulatum
G217B Physical Map
Starting with only clones for which
three combined digests were available,
an automated assembly cutoff of 3e-10
and a band tolerance of 7 produced an
initial 852 contigs. We followed this ini-
tial build with an incremental addition
of clones having two usable restriction
digests in their derived fingerprint at
cutoff of 3e-06, resulting in 1096 con-
tigs. The manual pathfinding process,
described in Methods, ultimately re-
sulted in reducing this contig number to
113. Joining of map contigs using the
linkage information of paired-fosmid
end sequences present in the WGS as-
sembly contigs results in the formation
of map clusters. Therefore, by using the
WGS assembly contigs to inform the
map, make joins, and confirm finger-
print contigs, the final physical map is
comprised of 84 contiguous clusters of
ordered fosmid clones. The distribution
of the 9551 clones used in generating
the clusters ranged from 3 to 575, with
305 buried clones and 708 singletons
(Table 1).

Statistics of the H. capsulatum G217B
WGS Sequence Assembly
Over 1.3 million end sequence reads de-
rived from both plasmids (2–4 kbp insert
size fraction) and fosmids were as-
sembled with the PCAP program (Huang
et al. 2003). PCAP generates compatible
output files that can be viewed with the
graphical sequence finishing program
Consed (Gordon et al. 1998). Of the to-

tal reads produced, ∼75% were included in the assembly; whereas
the majority of reads excluded from the assembly contained ho-
mopolymeric and heteropolymeric runs composed of di- and tri-

Figure 1 Stacked fingerprints were generated by offsetting the mobility rates within each bands file.
Here, we incorporate up to three fingerprints for each clone as the combined bands file, and the
mobility rates of each HindIII, BamHI, and PstI fingerprint were changed to 1–4000, 4001–8000, and
8001–12000, respectively. During manual editing, FPC builds added bands file of clones missing either
one fingerprint (blank lanes in the BamHI digest) or two fingerprints (blank lanes in both HindIII and
BamHI digests).
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nucleotide repeats. The excluded reads were assembled using
phrap (P. Green, unpubl.), generating an excluded reads assem-
bly. This assembly and the PCAP assembly were converged by
using phrap. The current WGS assembly statistics after merging
of the PCAP and excluded phrap assemblies result in 1243 WGS
sequence assembly contigs >2 kb (average 35 kb size) and 687 >8
kb (average 60 kb size), representing total calculated genome
sizes of 43.5 and 41.4 Mbp, respectively. Presently, the composite
WGS assembly is being finished.

DISCUSSION
The goal of this study was to create a fosmid-based physical map
of the H. capsulatum G217B genome. An iterative process of
anchoring and orienting physical map clusters to the WGS
assembly contigs was employed using fosmid end-sequence
information. In this project, the fosmid-based physical map
supplies a genomic scaffold that both guides the genome finish-
ing efforts and aids in resolving the differences observed be-
tween the predicted G186A-S (24 Mb) and the assembled G217B
genome size. The genome size discrepancy is in conflict
with preliminary flow cytometry data for H. capsulatum
isolates G186A-B and G217B, which indicates that they
have the same DNA mass per cell as G186A-S (Carr and Shearer Jr.
1998). In fact, a difference of >17 Mbp is predicted from
the G217B WGS assembly, with an assembled genome size
>41 Mbp.

To elucidate differences in the predicted and assembled
genome sizes, we are in the process of anchoring physical
map clusters to WGS assembly contigs. These anchors provide
long-range linking information to make joins of physical
map clusters and WGS assembly contigs. Graphically, Figure 2
shows map cluster 2501 from MapLink (J. Xu and J.I. Gordon,
in prep.) anchored to a Consed assembly view of WGS assem-
bly Supercontig Merge 57. After flipping the orientation of
Supercontig Merge 57, these two data sets show good con-
cordance, with two sequence gaps between contigs 26–22 and
22–19. These gaps are spanned by fosmid clones (dark lines) and
can be addressed by a variety of means, including producing
and sequencing shotgun libraries of the gap-spanning fosmids.
Additionally, fosmid clone L_AAZ036H02 resides in contig 26 of
Supercontig Merge 57 and anchors map cluster 2501 to Super-
contig Merge 20 (dashed line). Using fosmid end sequences as
long-range linking information, WGS assembly contigs anchored
to physical map clusters allow us to evaluate and address po-
tential joins between Supercontigs (e.g., joining Merge 20 to
Merge 57)

Reciprocally, the WGS assembly aids the physical map. In
Figure 2, contig 19 contains end sequence of two fosmids (dashed
lines) anchoring Supercontig Merge 57 to map cluster 5901,
which in turn, is anchored to Supercontig Merge 81. In
this iterative process, we can use the WGS assembly to inform

the physical map of potential joins (i.e., linking physical map
cluster 2501 to cluster 5901 and also joining Merge 57 and Merge
81). Using both data sets in a map-assisted whole-genome
shotgun approach, we can resolve the difference between
the predicted and assembled genome size of H. capsulatum
G217B.

In this study, successive modifications of the PCAP WGS
assembly were used to incorporate more of the shotgun reads.
The initial PCAP WGS assembly includes 75% of the end se-
quence data. To incorporate the missing data, we used phrap to
assemble the excluded reads and combine the assembly of the
excluded reads with the PCAP assembly. The current WGS assem-
bly represents over 3100 contigs and contains up to 17% repeti-
tive DNA. Although a comprehensive repeat analysis has not yet
been performed, the theoretical repetitive nature (based on reas-
sociation kinetics) is greater than expected with observed homo-
polymeric runs and small repeat units. Additionally, A:G and T:C
transitions present in small repeat regions, 50–250 bp in length
(data not shown) contribute to misassembled regions and may
increase the repeat bias within the WGS assembly. Thus, using
MapLink, discordant linking information observed between the
physical map and WGS assembly targets problematic genomic
regions for resolution during finishing.

Fosmid cloning is straightforward and practical for physical
mapping. However, physical maps generated from BAC clones
are advantageous, needing far fewer clones (when compared with
fosmids) to provide the necessary depth of coverage and the few-
est gaps (Schmitt et al. 1996; Marra et al. 1997; Soderlund et al.
2000). The difficulty is consistently producing BAC clones with
inserts that average �150 kbp (desirable for the fragment pattern
produced upon digestion and agarose gel separation). Routine
isolation of 30–50 kbp DNA fragments produces high titer fosmid
libraries (>105 CFUs/mL), and our tight insert size (35.9 �4.3
kbp) contributes positively to whole-genome shotgun assembly
algorithms, which typically perform best with end reads from
insert sizes having as low a variation in length as possible (Bat-
zoglou et al. 2002).

The fosmid-based mapping approach fits into our existing
pipeline. DNA fragments from HindIII, PstI, and BamHI-digested
fosmid clones were separated by agarose gel electrophoresis,
stained, and scanned for interpretation by the Image software
package (http://www.sanger.ac.uk/Software/Image) producing
fragment mobility bands files. A combined bands file used in the
initial FPC contig build (Fig. 1) was generated by offsetting the
mobility values for the independent digest of each clone by a
fixed amount. Advantages of combining multiple restriction pat-
terns in the bands file, include a decreased false-negative fre-
quency associated with the use of smaller clone sizes, as shown in
Table 4 of Soderlund et al. (2000), and increased sensitivity for
identifying clone overlap (Olson et al. 1986; Riles et al. 1993;
Wong et al. 1997). In multiple-complete-digest restriction-
fragment mapping, MCD, confirmed cosmids cloned from YACs
used three independent digestions, and redundant clone cover-
age of from 15 to 30X was necessary for mapping accuracy
(Wong et al. 1997). Our data set contained over 28,000 restriction
digests encompassing the entire H. capsulatum G217B genome. In
lieu of the MCD algorithm, we tested FPC and generated identi-
cal map builds when the stacking order of the fingerprints was
varied. In future small mapping projects, an increase in clone
coverage will most likely aid map contiguity. Future fosmid-
based mapping projects will be aided by our use of libraries gen-
erated with the vector, pCC-Fos1 (EpiCentre Technologies). This
inducible vector system produces sufficient fosmid DNA required
for physical mapping and WGS sequencing, as well as for down-
stream use in genome finishing processes as a template for cus-
tom oligonucleotide-primed sequencing reactions (to extend

Table 1. Fosmid Distribution Within Physical Map Clusters

Clusters Fosmids within clusters Total fosmids

1 575 575
10 >300 3407

5 >200 1142
14 >100 2168
24 >20 1281
12 >10 153
18 >3 97

Singletons 708
Total 84 9531
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Figure 2 MapLink provides anchoring information between the WGS assembly contigs (represented as dotted lines) and the physical map clusters (solid bars). Physical map cluster 2501, represented
by 67 overlapping fosmid clones built in FPC, anchors to WGS assembly Supercontig Merge 57. This Supercontig is composed of three contigs, that is, 26, 22, and 19 with sizes of 107.8, 136.2, and
15.0 kb, respectively. Contigs 26 and 22 are anchored by gap-spanning fosmid clones L_AAZ090H07, L_AAZ088E04, and L_AAZ059B11 (solid lines), and contigs 22 and 19 are anchored by
L_AAZ081F09 and L_AAZ089B12 (solid lines). In contig 26, L_AAZ036H02 (dashed line) anchors position 80,390 and links to Supercontig Merge 20. Contig 19 contains end sequence of L_AAZ091F01
and L_AAZ080C03 (dashed lines) and anchors map cluster 5901 at positions 460 and 7700 in Supercontig Merge 57. Map cluster 5901 also anchors Supercontig Merge 81, and this anchor provides
long-range linking information between WGS assembly Supercontigs Merge 57 and Merge 81. This figure is not drawn to scale, and linkage information does not indicate sequence overlap.
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into gaps or improve sequence quality) from a single microtiter
plate well prep.

Our results detailed mapping the Histoplasma capsulatum
G217B genome exclusively using fosmid clones with existing
software (Image and FPC). The map-assisted whole genome shot-
gun approach provides an efficient means for de novo sequenc-
ing, in which the WGS assembly and physical map are produced
by different processes. The MapLink software performs auto-
mated integration between physical map clusters and WGS se-
quence-assembly contigs, and provides a graphical interface to
view both data sets. This resulting genomic organization supplies
essential linking information used in finishing, and ultimately
will create an accurate genomic sequence of this unique, dimor-
phic fungus.

METHODS

Strains, Growth Conditions, and Vectors
Histoplasma capsulatum isolate G217B (ATCC MYA-2455) was re-
covered from 4°C stocks on HMM agar plates and grown as yeast
at 37°C (Worsham and Goldman 1988). Colony-purified yeast
isolates were confirmed to be fully virulent using a mouse model
of infection (data not shown; Sebghati et al. 2000). Yeast were
grown to early stationary phase.

The EpiFOS Fosmid Library Production Kit (EpiCentre Tech-
nologies) was used with vector pEpiFOS-5. Transductants were
isolated on LB agar plates (Sambrook 1989) supplemented with
25 µg/mL chloramphenicol (Cm25) and S-GAL (Sigma). Clones
were picked into shallow growth plates with 240 µL of TB, Cm25,
supplemented with 8% glycerol and grown at 37°C overnight
while shaking. Overnight growth was subcultured into 1.2 mL of
LB, Cm25 and incubated overnight at 37°C. Glycerol stocks were
stored at �80°C.

Histoplasma DNA Isolation
After growth in 50 mL of HMM, H. capsulatum, G217B cells were
pelleted, washed three times in 50 mL of SCE-D (1 M Sorbitol,
1 mM EDTA, 10 mM Sodium Citrate at pH 5.8, 10 mM Dithio-
threitol) and suspended in 2 mL of SCE-D. DNA was iso-
lated using the Easy DNA Kit (Invitrogen). Suspended cells
were mixed with 3.5 mL of lysis solution, incubated at 65°C for
30 min, and 1.5 mL of precipitation solution was added to
the lysed cells and mixed by mild inversion, to which 5 mL of
chloroform was added and mixed. The suspension was separated
into organic and aqueous phases by centrifugation at 1800g
for 30 min at 25°C. The aqueous phase was removed, and the
DNA was precipitated with the addition of 2.5 volumes of
95% ethanol. DNA was recovered by spooling on sterile Pasteur
pipettes. Recovered genomic DNA was rinsed in 95% ethanol,
air-dried, and incubated in 500 µL of TE buffer supplemented
with 40 µg/mL RNAse A at 37°C for 1 h. Genomic DNA was
column purified on Qiagen G-100 tips and precipitated with 0.7
vol of 2-propanol. The DNA was suspended in 500 µL of TE
buffer.

Generating Fosmid Libraries
Approximately 20 µg of H. capsulatum G217B genomic DNA
was sheared (Gene Machines Hydroshear, large orifice, speed
code 22, 10 passes, retention time of 20) and end-repaired
according to the manufacturer. End-repaired DNA was resolved
by pulse-field gel electrophoresis using the CHEF Mapper XA
Pulsed Field Electrophoresis System (Bio-Rad). The gel-run pa-
rameters were as follows: 1% GTG agarose/0.5 � TBE buffer, 6
V/cm, included angle, 120°; initial switch time, 0.5 sec.; final
switch time, 1.5 sec.; run time, 11 h; ramping, linear; tempera-
ture, 14°C.

DNA fragments migrating to 30–50 kbp in length were ex-
cised and purified after a second size selection in 1% low-melting

point (LMP) agarose (Bio-Rad). The second size selection gel was
run at 30 V for 16 h and stained with SYBR-Green. DNA frag-
ments were visualized with a blue light, excised, melted at 65°C,
and treated with AgarAce (Promega, 1.5 U per 100 mg agarose) in
0.5� TBE buffer at 42°C for 1 h. AgarAce treatment was followed
by a single phenol extraction, and the DNA solution was mini-
mized using sec-butanol and ethanol precipitated with 0.1 M
NaCl. DNA was suspended in 10 µL of molecular biology grade
H20 (Sigma). DNA was desalted by drop dialysis (MF-Millipore
0.025 µm pore-size membrane filters) and ligated to pEpiFOS-5
DNA. Fosmid clones were packaged using MaxPlax � packaging
extract according to manufacturer’s instructions. Packaged fos-
mid clones were stored at 4°C over chloroform in 1 mL of phage
dilution buffer (10 mM Tris-HCl at pH 8.3, 100 mM NaCl, 10 mM
MgCl2).

Fingerprinting and Physical Map Assembly
of Histoplasma Fosmids
Fosmid clones were grown and fosmid DNA isolated using pre-
viously reported methods (Marra et al. 1999). Isolated fosmid
DNA was digested in three separate restriction enzyme reactions
using HindIII, PstI, and BamHI. Resulting fragments were loaded
and separated on 1% agarose gels as previously described (Marra
et al. 1997). Fragment mobility data were acquired from the
images of SYBR green-stained agarose gel images using Image
software (http://www.sanger.ac.uk/Software/Image), and
processed for contig construction using FPC (http://www.
genome.arizona.edu/software/fpc/) as follows. The fragment
mobility output files from the Image software package were
combined starting with the first digest and then offsetting each
subsequent fragment set by a multiple of an amount (4000 and
8000 in this case) determined to avoid overlap of the fragments
from any one digest with the previous one. These modified
mobility files were entered into the FPC database and used to
build contig assemblies at different stringencies. Initially, all
clones with combined data from all three digests were assem-
bled using the following FPC parameters: tolerance, 7; cutoff,
3e-10; Diffbury, 0.1; MinBands, 3. Next, clones with finger-
print data from only two fingerprints were added to the database
and integrated into the assembly utilizing an incremental build
with FPC parameters as follows: tolerance, 7; cutoff, 3e-06; Diff-
bury, 0.1; MinBands, 3. Finally, clones with data from only a
single restriction digest were added to the database for integra-
tion, where possible, during manual editing of the assembled
contigs.

Manual Contig Editing
The optimized FPC assembly for H. capsulatum was used as a
starting point to merge contigs in a process called pathfinding.
The pathfinding process is as follows: (1) Each contig is visually
examined by an experienced technician who verifies proper
clone order and searches for possible misassemblies, (2) clone
order is established and misassemblies are addressed, (3) merges
are made by extending contig ends with singletons and by com-
paring the ends of all contigs with all others in the assembly
at a lower stringency than the original build, (4) after all contigs
have been edited and merged at the established parameters,
fosmid end sequences are aligned to the H. capsulatum G217B
sequence assembly using BLAST (Altschul et al. 1990) and
grouped in clusters and, (5) then edited to achieve contiguity and
the ends again searched at a lower stringency to make all possible
merges.

Clusters of fingerprint contigs and individual clones were
created on the basis of the order of the 15,655 H. capsulatum
G217B fosmid-end sequences that are contained within the as-
sembly. The boundaries on the assembly of fingerprint contigs
and clones with two end sequences were determined. Overlap-
ping contigs and clones were positioned in clusters, separated by
gaps for easy viewing and editing in the FPC graphical interface.
The orientations of contigs were flipped as needed. The finger-
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prints within each cluster were manually reviewed and merges
made on the basis of fingerprint matches. Of the 294 merges
suggested by the sequence assembly, 94% were confirmed by
fingerprints. This process was repeated using a later sequence
assembly, resulting in the incorporation of an additional 134
single clones and 38 contig merges.

Fosmid End Sequencing
The fosmid DNA utilized for fingerprinting was of sufficient qual-
ity for DNA sequencing. The protocol used to end sequence fos-
mid clones was as described (http://www.tigr.org/tdb/bac_ends/
mouse/bac_end_intro.html), with minor modifications. The for-
ward sequencing primer sequence used was 5�-GGTGTGTGCAA
GGCGATTAAGTTGG-3�, and the reverse sequencing primer se-
quence was 5�-CTCGTATGTTGTGTGGAATTGTGAGC-3�. Trace
files generated on our ABI sequencing instruments were pro-
cessed using the phred program (Ewing and Green 1998; Ewing et
al. 1998). Once traces are generated, they are checked for quality
and trimmed before being deposited into our internal end-
sequence database. Quality-trimmed fosmid end sequences
(reads >50 bp of sequence and phred score of >20) were coas-
sembled with our whole-genome shotgun sequence assembly us-
ing the PCAP algorithm (Huang et al. 2003) and phrap. Embed-
ded fosmid end reads were used to orient and order FPC contig
assemblies. In addition, our analysis of the initial sequence as-
semblies enabled us to identify putative sequence gaps that could
be spanned by fosmids whose ends were found within assembled
sequence contigs. A set of ∼400 such fosmids were then prepared
by conventional methods and used to make plasmid subclone
libraries. These libraries were sequenced at a light coverage (384
reactions per fosmid) and added to the assembly to pull in small
contigs and gap-filling sequence reads from the initial sequence
data.

Genome Sequencing Strategy
Our sequencing strategy involved a whole-genome shotgun ap-
proach to generate initial 8� coverage of the H. capsulatum
G217B genome. Specifically, DNA was sheared, end-repaired,
linker-ligated, and size-selected. Gel-purified DNA was ligated to
plasmid pOTW13 (Cliften et al. 2003). The resulting subclones
were processed through our production-sequencing pipeline, in-
cluding magnetic bead-based DNA purification, dual-end se-
quencing with Big Dye version 3.1 terminator chemistry (Applied
Biosystems), and analysis on ABI 3700 and 3730xl DNA sequenc-
ers. Each fosmid fingerprinted generated paired-end read se-
quence data, as described.

Data Availability
H. capsulatum G217B fingerprint contigs can be viewed in FPC
format (http://genome.wustl.edu/projects/hcapsulatum/
index.php?fpc=1). The PCAP and phrap WGS assembly contigs
are available for BLAST (http://www.genome.wustl.edu/blast/
histo_client.cgi). Fosmid end sequences have been submitted to
the NCBI trace archive database.
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