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Abstract

Purpose—Patients initiating warfarin therapy generally experience a dose-titration period of 

weeks to months, during which time they are at higher risk of both thromboembolic and bleeding 

events. Accurate prediction of prolonged dose titration could help clinicians determine which 

patients might be better treated by alternative anticoagulants that, while more costly, do not require 

dose titration.

Methods—A prediction model was derived in a prospective cohort of patients starting warfarin 

(N = 390), using Cox regression, and validated in an external cohort (N = 663) from a later time 

period. Prolonged dose titration was defined as a dose-titration period >12 weeks. Predictor 

variables were selected using a modified best subsets algorithm, using leave-one-out cross-

validation (LOOCV) to reduce overfitting.

Results—The final model had five variables: warfarin indication, insurance status, number of 

doctor’s visits in the previous year, smoking status, and heart failure. The area under the ROC 

curve (AUC) in the derivation cohort was 0.66 (95% CI 0.60, 0.74) using LOOCV, but only 0.59 
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(95% CI 0.54, 0.64) in the external validation cohort, and varied across clinics. Including genetic 

factors in the model did not improve the AUC (0.59; 95% CI 0.54, 0.65). Relative utility curves 

indicated that the model was unlikely to provide a clinically meaningful benefit compared to no 

prediction.

Conclusions—Our results suggest that prolonged dose titration cannot be accurately predicted 

in warfarin patients using traditional clinical, social, and genetic predictors, and that accurate 

prediction will need to accommodate heterogeneities across clinical sites and over time.
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Introduction

Because of the substantial population variability in warfarin dose requirements, patients 

starting warfarin therapy often experience a lengthy dose-titration period of weeks to 

months. During this period, patients are at particularly high risk of both bleeding and 

thromboembolic complications from improper anticoagulation levels.1,2 Prolonged dose 

titration also increases patient burden by adding more frequent monitoring of the 

international normalized ratio (INR), which can lead to a reduced quality of life and higher 

rates of discontinuation of a highly efficacious therapy.3–5 Given the availability of less 

burdensome but more expensive alternative oral anticoagulants,6 accurate identification of 

patients most likely to experience a prolonged dose-titration period on warfarin could 

potentially help clinicians decide when to use warfarin versus one of the alternative agents.

In this study, we derived a prediction model for whether patients initiating warfarin 

experienced a prolonged dose-titration period using a prospective cohort of patients starting 

warfarin therapy at specialty anticoagulation clinics (N = 390). We then validated this model 

in a similar, but independent, external cohort of patients initiating warfarin (N = 663). 

Finally, we tested whether inclusion of genetic factors—specifically, CYP2C9 and VKORC1 
variants—improved model accuracy.

Methods

Derivation cohort

We derived the model using the IN-RANGE cohort, a large prospective cohort of warfarin 

initiation that has been used to study the clinical and genetic predictors of warfarin 

maintenance dose and adherence.7–15 Participants were from specialty anticoagulation 

clinics at the Hospital of the University of Pennsylvania (HUP), the Corporal Michael J. 

Crescenz Veterans Affairs Medical Center (CMCVAMC), and Hershey Medical Center. 

Institutional review board (IRB) approval was obtained at all three sites, and all study 

participants provided written informed consent. Exclusion criteria were: age <21 years; 

being unwilling or unable to provide consent; having an abnormal INR prior to starting 

anticoagulation therapy; and having antiphospholipid antibodies. All participants in the 
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original IN-RANGE cohort (N = 390), enrolled between April 2002 and February 2006, 

were included in the derivation cohort for the current study.

Validation cohort

The cohort used for model validation was the IN-RANGE2 cohort, which was designed as a 

follow-up cohort to the original IN-RANGE cohort, with similar data-collection methods. 

Participants were recruited from specialty anticoagulation clinics at HUP, CPCVAMC, and 

Johns Hopkins University (JHU). IRB approval was obtained at all three sites, and all study 

participants provided written informed consent. Exclusion criteria were the same as the 

original IN-RANGE cohort, except individuals who were neither Caucasian nor African 

American (about 3% of the original cohort) were excluded, and individuals with 

antiphospholipid antibodies were no longer excluded from the IN-RANGE2 study. 

Participants were enrolled between October 2009 and August 2013. All participants with 

available follow-up data (N = 663) were included in the validation cohort for the current 

study.

Primary outcome

The primary outcome was a prolonged dose-titration phase, which was defined as achieving 

maintenance dose in >12 weeks of attempted warfarin therapy. Twelve weeks is a clinically 

meaningful cut-off because the first 3 months of warfarin therapy have been shown to be 

especially high risk for patients,1 and some warfarin indications, such as venous 

thromboembolism with transient risk factors, often only require a 3-month course of 

therapy.16 Additionally, we chose a dichotomous outcome to make it easier for clinicians to 

incorporate model predictions into their decision-making process. Maintenance dose 

achievement was defined as having two consecutive INRs within the therapeutic range, at 

the same warfarin dose, at least one week apart. Using this definition allowed the outcome to 

be defined the same across both the derivation and validation cohorts. The time of 

maintenance dose achievement was taken as the number of days from warfarin initiation to 

the first maintenance dose-defining visit in days. Achieving maintenance dose within 4 and 

8 weeks were also considered as outcomes in secondary analyses. Note that, because the 

derivation and validation cohorts were both observational, warfarin dose titration was 

performed at the discretion of each patient’s individual practitioner; however, dosing within 

clinics was standardized and reflects typical practice at anticoagulation clinics.

Candidate predictors

A total of 28 baseline social and clinical factors were considered for inclusion in the 

prediction model, shown in Supplementary Table 1. Some of these candidate predictors have 

been previously associated with time to maintenance dose,17 and most have been associated 

with other warfarin-related outcomes, such as warfarin maintenance dose requirement,18,19 

poor warfarin adherence,4,11,15 discontinuation of warfarin,5,20,21 percent time in therapeutic 

range,10,22,23 and risk of bleeding events.24–27 Additionally, we were interested in whether 

inclusion of genetic factors could improve model accuracy. For this analysis, we added 

genetic variants in CYP2C9 (rs1799853 and rs1057910) and VKORC1 (rs9923231), 

specified in a binary fashion as having at least one variant in the given gene, to the model. 

These variants were chosen because they have most consistently demonstrated a large 
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association with warfarin maintenance dose, are used in the major pharmacogenetic dosing 

algorithms, and were available in both derivation and validation cohort.18,19,28

Model-building strategy

Because approximately 11% of the derivation cohort was censored prior to 12 weeks of 

attempted warfarin therapy, we used a Cox regression model with time from initiation of 

warfarin to the achievement of maintenance dose or censoring as the outcome. Variable 

selection was conducted using a modified best subsets algorithm. This algorithm, described 

in detail in the Supplementary Methods section, was designed to optimize model 

discrimination, or how well the model distinguished between those with a prolonged versus 

non-prolonged dose-titration phase. We used the area under the time-dependent ROC curve 

(AUC) to measure model discrimination.29 Leave-one-out cross-validation (LOOCV)—in 

which the model is derived in all individuals in the dataset except one, who is then used to 

test the model, repeated over all individuals in the dataset—was used when estimating the 

AUC, in order to avoid selecting a model because of overfitting. Thus, our algorithm 

selected the combination of candidate variables with the best AUC, as estimated by LOOCV. 

To further reduce the chance of overfitting, we limited the models examined to no more than 

10 variables. The variables selected for the prediction model were then inspected graphically 

to ensure proper functional form, and all coefficients were examined to ensure that the 

direction of effect reported by the model was consistent with the available literature. A linear 

shrinkage factor, estimated as the mean slope of the observed outcome regressed on the 

linear predictors from models fit in 1,000 bootstrap samples, was then applied to all 

coefficients in this final model to improve model calibration without sacrificing model 

discrimination.30

Model assessment and validation

The performance of the final prediction model was assessed in a separate validation cohort, 

described above. The primary metric of model performance was the AUC. We also tested 

whether adding genetic predictors improved model accuracy, based on the AUC and the 

integrated discrimination improvement (IDI).31 We also assessed the calibration of the 

prediction model using calibration plots, and we examined the clinical utility of the 

prediction model using plots of the relative utility of the model versus the risk threshold,32,33 

which are described in more detail in the Supplementary Methods. Finally, we conducted 

several post-hoc analyses, including assessing site-specific differences in model 

performance, deriving and validating the model in the two anticoagulation clinics that were 

common across both cohorts (HUP and CMCVAMC), and implementing the above variable 

selection algorithm in the validation cohort. Confidence intervals for all estimates were 

generated using the 2.5th and 97.5th percentiles of estimates in 1,000 bootstrap replications. 

All analyses were completed using R 3.1.0.34

Results

The characteristics of the derivation and validation cohorts are shown in Table 1. The overall 

incidence of prolonged dose-titration was 30% in the derivation cohort and 38% in the 

validation cohort. The variable-selection algorithm found that the model with the best 
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discrimination, as estimated by LOOCV, contained the following five variables: warfarin 

indication, insurance status, number of doctor’s visits in the previous year, current smoking 

status, and history of congestive heart failure. The proportional hazards assumption was not 

violated for this model (P = 0.83), as tested using the method of Grambsch and Therneau.35 

The model had modest accuracy to discriminate between patients who did and did not 

experience prolonged dose titration in the derivation cohort (LOOCV AUC, 0.66; 95% CI 

0.60, 0.74) (Figure 1). A comparison of this model to the other top-performing models with 

different numbers of predictor variables, as measured with and without cross-validation, 

suggested that using cross-validation successfully avoided complex models that were more 

accurate merely because of having extra degrees of freedom (Supplementary Figure 1). 

Furthermore, the variables selected were stable, with the same set of five important variables 

included in all of the best models with five or more variables (Supplementary Table 2). In 

order to account for overfitting, we estimated a shrinkage factor based on 1,000 bootstrap 

replications at 0.82, indicating a moderate degree of overfitting by the original model. 

Coefficients from the final prediction model, after applying the linear shrinkage factor, are 

shown in Table 2.

When evaluated in the validation cohort, the AUC of the prediction model at 12 weeks was 

0.59 (95% CI 0.54, 0.64) (Figure 1). In secondary analyses, the AUC of the model at 8 

weeks was 0.57 (95% CI 0.53, 0.62) and at 4 weeks was 0.57 (95% CI 0.52, 0.62). The 

calibration of the main model was examined by comparing observed to predicted 

probabilities across risk deciles (Supplementary Figure 2); the Hosmer-Lemeshow test for 

goodness of fit did not demonstrate poor model calibration (P = 0.75).

Addition of genetic variants in CYP2C9 and VKORC1 to the model did not improve model 

accuracy (P = 0.98), with the AUC unchanged at 0.59 (95% CI 0.54, 0.65) (Supplementary 

Figure 3). The IDI from adding genetic factors to the model was estimated as 0.010 (95% CI 

0.002, 0.018), which is equivalent to a 7% increase in model discrimination over the model 

without genetic factors.

Table 3 shows the sensitivity, specificity, and positive and negative predictive values for 

various risk thresholds of the prediction model. Similarly, Figure 2 shows the relationship 

between the positive and negative predictive values and the proportion that are classified as 

positive across the full range of risk thresholds. The relative utility of the model across the 

full range of risk thresholds is shown in Figure 3. The relative utility had a maximum value 

of 9.6% and negative values for the risk threshold range of 48% to 62%. Relative utility 

curves for the models with and without genetic factors are shown in Supplementary Figure 

4.

Differences in the characteristics of the derivation and validation cohorts at HUP and 

CPCVAMC are shown in Supplementary Table 3. In post-hoc analyses, the AUC at 12 

weeks was 0.59 (95% CI 0.51, 0.67) at HUP, 0.55 (95% CI 0.44, 0.62) at CPCVAMC, and 

0.61 (95% CI 0.53, 0.70) at JHU. The observed frequency of prolonged dose titration was 

32%, 34%, and 47% at HUP, CPCVAMC, and JHU, respectively, while the predicted 

probabilities of the outcome at these sites were 37%, 39%, and 38%. Deriving and validating 

the model in the same clinics, HUP and CPCVAMC, showed no improvement in model 
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performance (AUC = 0.58; 95% CI 0.51, 0.64). Finally, implementing the variable selection 

algorithm in the validation cohort led to the selection of different variables (Supplementary 

Table 4) and similar model performance on cross-validation (LOOCV AUC = 0.62; 95% CI 

0.58, 0.69).

Discussion

In this study, we developed a model to predict whether a patient starting warfarin would 

experience a prolonged dose-titration phase, and tested this model in an external validation 

cohort. The final model performed modestly in the derivation cohort, with an LOOCV AUC 

at 12 weeks of 0.66 (95% CI 0.60, 0.74). However, the model performed worse when 

validated externally, with an AUC at 12 weeks of only 0.59 (95% CI 0.54, 0.64), confirming 

the generally recognized importance of external validation for prediction models.36 Model 

performance did not improve for the secondary outcomes of reaching maintenance dose 

within 4 and 8 weeks, indicating that the model’s poor discrimination was not unique to a 

specific cut-off.

The addition of genetic variants in CYP2C9 or VKORC1 did not improve model 

performance, with no improvement in the AUC observed (P = 0.98). Similarly, the IDI was 

also poor at 0.010 (95% CI 0.002, 0.018). Although the IDI was statistically significant, it is 

known to have problems with inflated type I error, especially as it approaches zero;37,38 this 

finding should thus be viewed skeptically in the context of our overall results. Furthermore, 

the lack of improvement from adding genetic factors is consistent with recent clinical trial 

evidence showing that inclusion of genetic factors in dose prediction models did not lead to 

significant improvement in clinical outcomes, such as percent time in therapeutic range, 

compared with purely clinical dosing algorithms.28

Attempts to quantify the clinical impact of the prediction model were consistent with our 

primary results. While the negative predictive value of the model for the lowest range of 

predicted values (<20% probability of prolonged dose titration) was reasonably good at 0.87, 

only 2% of patients in the validation cohort actually fall into this category (Table 3). The 

marked drop-off in performance at more commonly observed cut-offs may result from 

incorrectly ranking individuals in the middle of the probability distribution, which can be 

seen when plotting the observed vs predicted probabilities by risk decile (Supplementary 

Figure 2). As shown in Figure 3, the relative utility of the current model is limited, with a 

maximum value of 9.6% near the prevalence of the outcome and negative values for risk 

thresholds from 48% to 62%.

The failure of the model to validate is likely related to substantial differences between the 

two cohorts, as shown in Table 1. Compared with the derivation cohort, the validation cohort 

was younger, more African American, more obese, more under-insured, and more disabled, 

among other differences. These differences probably contributed to the higher incidence of 

prolonged dose titration in the validation cohort (38%) than the derivation cohort (30%). Part 

of these differences might reflect differing patient populations across sites; for example, the 

anticoagulation clinic at Johns Hopkins draws from a much more urban African American 

population than the clinic at Hershey Medical Center. These site-specific differences may 
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have translated into variable model performance, with the AUC at 12 weeks ranging from 

0.55 to 0.61 across sites.

However, there are also substantial differences within the same sites between the two 

cohorts, including the proportion of individuals who are African American, the prevalence of 

hypertension, the prevalence of different warfarin indications, and the proportion of 

individuals on disability (Supplementary Table 3). These differences could be attributed to 

random fluctuations, changes in alternative anticoagulant use over time, or changes in 

recruitment strategies or participation rates between the two studies. For instance, 

individuals on disability may have had a more difficult time getting to anticoagulation clinics 

to adjust their warfarin dose; thus, an increase in the proportion of these individuals could 

result in an increase in the prevalence of prolonged dose titration that would not be 

accommodated by the prediction model, as the model does not include this predictor 

variable. The importance of these differences within the same sites over time is confirmed by 

the fact that there was no improvement in model performance when the model was derived 

and validated in the same clinical sites (AUC = 0.58; 95% CI 0.51, 0.64).

Taken in total, our post-hoc analyses suggest that important predictors of prolonged dose 

titration might vary across clinical sites and over time. For instance, implementing the same 

variable selection algorithm yielded a different set of important predictors, with different 

model coefficients, in the validation cohort (Supplementary Table 4) than in the derivation 

cohort (Table 2). Furthermore, as the broader differences among sites where patients receive 

warfarin in the clinical community would be expected to be much larger than the differences 

among the anticoagulation clinics in our derivation and validation cohorts, the important 

predictors of prolonged dose titration could be reasonably expected to show greater variation 

in clinical practice than reported here. Thus, to be able to accurately predict prolonged dose 

titration, future models will likely need to be able to accommodate such variation across 

sites and over time, using more advanced methods such as dynamic prediction 

modeling.39–41

There are several strengths of our study. Most importantly, we utilized an external validation 

cohort, which is considered the gold standard for assessing the ability of a prediction model 

to make out-of-sample predictions.42 We also used a rigorous model-building strategy, 

incorporating cross-validation and coefficient shrinkage to help reduce the effects of 

overfitting. Finally, we directly assessed the clinical usefulness of our prediction model 

using positive and negative predictive values, as well as the more recent metric of relative 

utility.

However, there were also limitations to our study. Our prediction model was limited to 

variables that were available in both the derivation and validation cohorts. While the 

candidate variables included most of the traditional clinical and social factors that have been 

previously associated with warfarin-related outcomes, it is possible that other unknown or 

unmeasured factors, especially those related to health behaviors or health care access, might 

better predict prolonged dose titration. For instance, dietary vitamin-K consumption has 

been associated with anticoagulation control;43,44 thus, it is possible that measurement of 

dietary vitamin K could better predict prolonged dose titration among individuals and across 
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different clinical sites. We were also limited in the genotype data available, although the 

variants that were used are standard in warfarin dose prediction models. Because our cohorts 

included patients from specialty anticoagulation clinics, our results may not generalize to 

patients starting warfarin in other clinical settings.

In conclusion, our prediction model for prolonged dose titration in warfarin patients is 

unlikely to be useful in clinical practice. Furthermore, we suspect that prolonged dose 

titration will be difficult to predict using traditional clinical or genetic risk factors because 

the relationships between the predictors and the outcomes are likely to vary substantially 

across clinical sites and over time. Future models for predicting prolonged dose titration will 

need to use methods that can accommodate this variation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Key Points

• Clinical, social, and genetic factors are known to predict warfarin dose; 

however, it is unknown whether such factors predict prolonged dose 

titration for patients initiating warfarin therapy.

• This study aimed to derive a prediction model for prolonged dose 

titration in a prospective cohort of patients starting warfarin therapy 

and then validate the model in an external cohort.

• The prediction model did not perform well upon external validation. 

Accurate prediction of prolonged dose titration in warfarin patients 

remains unlikely with traditional clinical, social, and genetic factors.

• Future models for predicting prolonged dose titration will likely need 

to use methods that can accommodate substantial variation across 

clinics and over time.
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Figure 1. 
ROC curve for the prediction model as tested in the derivation and validation cohorts. 

Curves are shown for the model tested in the derivation cohort, estimated using standard 

methods and leave-one-out cross-validation (LOOCV), as well as in the validation cohort, 

estimated using standard methods.
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Figure 2. 
Positive predictive value, negative predictive value, and proportion of patients classified as 

positive across the range of values for the risk threshold. Individuals with a predicted 

probability of prolonged dose titration are classified as positive. The absence of a curve in a 

given region indicates that the measure is undefined in that region; for instance, positive 

predictive value is undefined when no patients are classified as positive.
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Figure 3. 
Relative utility of the prediction model across the full range of risk thresholds.

Finkelman et al. Page 14

Pharmacoepidemiol Drug Saf. Author manuscript; available in PMC 2017 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Finkelman et al. Page 15

Table 1

Characteristics of the derivation and validation cohorts

Variable Derivation*
(N = 390)

Validation*
(N = 663)

P value†

Age

  < 45 65 (17) 135 (20) < 0.001

  45 – 55 74 (19) 131 (20)

  55 – 65 103 (26) 219 (33)

  65 – 75 83 (21) 116 (18)

  75+ 65 (17) 60 (9)

Female gender 119 (31) 250 (38) 0.02

African American race 174 (45) 466 (71) < 0.001

Employment status

  Working 128 (33) 167 (25) < 0.001

  Unemployed 34 (9) 49 (7)

  Retired 143 (37) 192 (29)

  Disabled 81 (21) 251 (38)

Annual income

  < $15,000 109 (33) 228 (41) < 0.001

  $15,000 – $20,000 99 (30) 45 (8)

  > $20,000 122 (37) 282 (51)

Insurance status

  Private 215 (56) 276 (42) < 0.001

  VA/Medicare/Other 124 (32) 272 (41)

  Medicaid/None 45 (12) 110 (17)

Number MD visits in previous year

  < 4 101 (26) 122 (19) < 0.001

  4 – 12 187 (48) 295 (45)

  > 12 98 (25) 242 (37)

Smoking status

  Never 141 (36) 275 (42) < 0.001

  Past 185 (47) 235 (36)

  Current 64 (16) 148 (22)

Body Mass Index

  < 25 122 (32) 185 (28) 0.11

  25 – 30 125 (32) 189 (29)

  > 30 140 (36) 280 (43)

Warfarin indication

  AFib/AFlutter 188 (48) 214 (32) < 0.001

  DVT/PE 116 (30) 343 (52)

  Other 86 (22) 105 (16)

Previously used warfarin 96 (25) 209 (32) 0.02
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Variable Derivation*
(N = 390)

Validation*
(N = 663)

P value†

History of hypertension 192 (49) 461 (70) < 0.001

History of diabetes 107 (27) 190 (29) 0.71

History of peptic ulcer disease 36 (9) 98 (15) 0.01

History of congestive heart failure 78 (20) 141 (21) 0.65

AFib indicates atrial fibrillation; AFlutter, atrial flutter; DVT, deep vein thrombosis; VA, Veterans Affairs.

*
All values are reported as N (%)

†
P values are based on the chi-square test.
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Table 2

Prediction model coefficients

Predictor variable Shrunk coefficient*

Warfarin indication

  AFib/Aflutter Ref

  DVT/PE −0.47

  Other −0.33

Insurance status

  Private insurance Ref

  VA/Medicare −0.14

  Medicaid/None −0.42

Number MD visits in previous year

  <4 −0.29

  4–12 Ref

  >12 −0.23

Current smoker −0.17

History of heart failure −0.21

*
To improve expected model calibration, coefficients were shrunk using a linear shrinkage factor, equal to 0.82, which was estimated from 1,000 

bootstrap replications. Negative coefficients indicate a higher probability of prolonged dose titration.
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