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Abstract

The food frequency questionnaire (FFQ) is known to be prone to measurement error. Researchers
have suggested excluding implausible energy reporters (IERs) of FFQ total energy when
examining the relationship between a health outcome and FFQ-reported intake to obtain less
biased estimates of the effect of the error-prone measure of exposure; however, the statistical
properties of stratifying by IER status have not been studied. Under certain assumptions, including
nondifferential error, we show that when stratifying by IER status, the attenuation of the estimated
relative risk in the stratified models will be either greater or less in both strata (implausible and
plausible reporters) than for the nonstratified model, contrary to the common belief that the
attenuation will be less among plausible reporters and greater among IERs. Whether there is more
or less attenuation depends on the pairwise correlations between true exposure, observed exposure,
and the stratification variable. Thus exclusion of IERs is inadvisable but stratification by IER
status can sometimes help. We also address the case of differential error. Examples from the
Observing Protein and Energy Nutrition Study and simulations illustrate these results.
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1 Introduction

It is well established that self-report dietary assessments, such as the food frequency
questionnaire (FFQ), and 24-hour recall are prone to both random and systematic
measurement error (Thompson and Subar, 2013; Freedman et al., 2014). Researchers who
study diet and health outcomes have developed statistical methods to describe and quantify
the error in self-report instruments. One early and widely used method of identifying
individuals who report their diets with error is the Goldberg method (Goldberg et al., 1991;
Black et al., 1991). This method uses the ratio of reported energy intake to predicted energy
needs from an equation to classify “implausible energy reporters” (IER), that is those
persons that report energy intake that is either too high, termed over-reporters (OR), or too
low, termed underreporters (UR), based on their predicted energy needs. Studies that have
used this method and extensions thereof (Huang et al., 2004; Huang et al., 2005) have
demonstrated that a large proportion of adults and children report implausible energy intake
on self-report assessments, predominantly in the direction of UR (Macdiarmid and Blundell,
1998; Hill and Davies, 2001; Forrestal, 2011).

Some authors have suggested excluding IERs (Drummond et al., 1998; McCrory et al.,

2002; Huang et al., 2004; Huang et al., 2005) from studies of diet and health to obtain more
valid conclusions. This work has been motivated by the observation that when IERs are
excluded from regression analyses of body mass index (BMI) on dietary intake, regression
coefficients of the dietary intakes in the sample of plausible or acceptable reporters (AR)
have been found stronger than the estimates from the total sample, and in some cases the
regression coefficients change direction in the AR sample (Drummond et al., 1998; Huang et
al., 2004; Howarth et al., 2005; Savage et al., 2008; Mendez et al., 2011; Noel et al., 2011).
Recently, Rhee et al. (2015) have challenged the use of weight-based definition of IER status
for this purpose, and recommend using plausible fixed limits for energy intake, such as
whether the reported energy intake falls within plausible fixed limits regardless of the
individual’s body weight, such as a lower limit of 500 kcal/d and an upper limit of 3500
kcal/d (Willet, 1998). Although, our enquiry in this paper does not focus on the question of
excluding IERs from the analysis, the material we will present does have implications for
this question, which we will mention in the Discussion section.

Rather than excluding IERs from analyses, other authors have recommended stratification of
diet-health analyses by IER status (Bornhorst et al., 2013) or using indicator variables to
identify misreporters (Nielsen and Adair, 2007; Mendez et al., 2011). In this paper, we focus
on the strategy of stratification by IER status using the Goldberg method, and examine the
statistical properties of such stratification. We treat the cases of nondifferential error, where
the outcome variable is independent of the error in the dietary report (Flegal et al., 1991;
Carroll et al., 2006), and differential error separately. The nondifferential error assumption is
often reasonable in nutritional cohort studies where the outcome is a future disease event and
individuals do not report dietary intake differently based in a manner that is associated with
a health outcome. In such studies, nondifferential error usually attenuates the estimate of the
risk parameter (Freedman et al., 2011); the attenuation factor is a multiplicative factor that
quantifies this underestimation. We show here that under nondifferential error, when
stratifying by IER status, the attenuation factors within the UR stratum and the AR stratum
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will both be either larger or smaller than for the nonstratified model. Whether there is an
increase or decrease in the attenuation factor depends on a simple function of the pairwise
correlations between true exposure (an estimate that is obtained through use of an unbiased
biomarker), observed exposure, and the stratification variable. Since larger attenuation
factors lead to less bias in the estimated risk parameter, this simple function provides a guide
as to when risk estimates will be improved by stratification by IER status, and when they
will not.

In studies where the outcome is body mass index (BMI), which is commonly associated with
misreporting (Macdiarmid and Blundell, 1998), or whenever the study has a retrospective
case-control design, a design prone to recall bias, the measurement error is likely to be
differential. We address the case of differential error and show that stratification by IER
status may increase or decrease the bias in the estimated risk parameter dependent on the
correlations between the outcome, observed exposure, and the stratification variable.

We illustrate our results using data on protein and protein density (protein divided by
energy) intakes from the Observing Protein and Energy Nutrition (OPEN) Study, which
measured urinary nitrogen as a biomarker for protein intake and doubly labeled water for
energy intake, and collected self-reported protein and energy intakes from a food frequency
questionnaire. We also provide simulations to illustrate the cases of nondifferential and
differential error.

2.1 Nondifferential error

We denote by Y'the health status outcome. After transformation to a suitable scale (see
below), true dietary intake of a nutrient of interest is denoted by X the error-prone reported
intake of this nutrient by W/ and the ratio of reported energy intake from an instrument such
as an FFQ to estimated basal metabolic rate is denoted by G. This represents the use of the
Goldberg method to determine IER status, by which we stratify.

We assume that we can find suitable transformations (such as power or logarithmic) so that
(X, W, G) are multivariate normal with means ((x, 4w lg), standard deviations (ox, o
o), and correlations (oxus pxG Pwe)- Note that by assuming the multivariate normal
distribution, we postulate that there is no interaction between G and Win the regression of X
on these two variables. We assume a generalized linear model for the relationship between Y
and X; where Y'may be expressed in terms of a binary, continuous, or time to event variable:

EY]X)=H (ao+a,X) (1)

Results apply to any model with a linear predictor. The primary parameter of interest in this
model is a x, which describes the relationship between Y and the true dietary intake, X
However, because X'is unknown, Wis substituted for X. For the overall (nonstratified)
model, it has been shown that, under the nondifferential error assumption, the regression
coefficient for this model is approximately equal to the regression coefficient for X
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multiplied by an attenuation factor, which we call A x4,/ (Kipnis et al., 2001). As in other
studies (Kipnis et al., 2001; Kipnis et al., 2003), we assume the model for W for an
individual 7is related to Xby:

Wi:ﬂwn +BW1X’L'+6’U (2)

where the FFQ is assumed to have systematic error (B0 and By, respectively) as well as

random error, &;with mean 0 and variance 2. We can estimate ai as the between subject
variance of the unbiased biomarker of the nutrient M measured on individual 7at time jon a
transformed scale assuming the mixed model:

]\/[ij:XrH.Lij (3)

where u;is the within-person random error with variance 2. The attenuation factor A yyyis
given by:

N _cov (Xi,Wi): B _ Bws .
xw a2, ook Bitoilol T ()

We now consider the stratified model. We consider two strata (ARs and URs), excluding
ORs who comprise usually a very small group. The strata are defined according to whether
ornot GE A, A= (g; g,)- We assume that the error in Wis also nondifferential within the
strata defined by G. This occurs as long as the distribution of Yon Xand Gis the same as
that of Yon X that is G conveys no information about Y over and above that in X. This
seems reasonable, since Gis a variable that measures underreporting, and the assumption
dovetails with the assumption of nondifferential error in W. In the Appendix, under these
assumptions, we derive that the attenuation factor within any stratum A is:

_ Pxw
/\XW\GEA 7)\XVV |:

1 — PxcPwa fa
1- p%y(; fA ] (5)

where pxa, pwe and pxyare the correlations between Xand G, Wand G, and Xand W,
respectively, and 74 is a factor dependent on the set A, but always lying between 0 and 1.
The ratio in the brackets in Eq. (5) will therefore be greater than 1 and the attenuation factors
for the stratified model will be greater than the attenuation factor for the full model if and
only if

PxacPwea 2
M<pwc

(6)

pXVV
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The correlation between Wand G may be determined empirically. Correlations with X' may
be calculated when an unbiased, or recovery biomarker, for Xis available; they may also
sometimes be estimated from calibration studies that employ a concentration biomarker that
has been previously validated in a feeding study (see e.g. Freedman et al., 2010).

2.2 Differential error

Relating dietary intakes to outcomes when the dietary measurement error is differential is
problematic. Unlike in the case of nondifferential error where the estimated risk parameter is
(nearly) always attenuated, with the differential error there can be underestimation or
overestimation of the risk parameter. (Sometimes, when the measurement error is well
understood, the direction of bias in the estimated risk parameter can be predicted. See for
example, our comments in the Discussion section regarding the case where body mass index
(BMI) is the outcome measure.) Likewise, the effect of stratification by IER status is
difficult to predict. Firstly, if the direction of the bias cannot be anticipated, it is unknown
whether it is better to attenuate or de-attenuate the estimated risk parameter. Secondly, in the
case of differential error, Eq. (5) does not hold, and consequently condition (6) does not
guarantee an increase in the attenuation factor. One can show for the linear regression of Y
on Wand of Yon Wand G, that if the coefficient of Win the model with Wand G and the
coefficient in the model with just W/ have the same sign, then the absolute value of the
coefficient in the model with Wand G will be larger than that in the model with W, only if

PyaPwe <p‘2}VG
Pyw (7)

(see Appendix for proof). This condition looks similar to that in (6), but ¥ now takes the
place of X; making it difficult to predict in advance the effect of stratification by IER status.
Also, unlike condition (6), condition (7) only applies when there is no change of sign in the
coefficient; however, such a condition cannot be guaranteed. In the Results section, we
present simulations of differential error, in a case where there is no true association between
diet and outcome, so that any nonnull estimate is biased, and it will be advantageous if we
can induce further attenuation of the risk estimate by stratification. We will show that
stratification by IER status can sometimes increase and sometimes decrease the bias in the
estimate of the coefficient. Note that for nondifferential error, Eq. (7) also holds, in addition
to Eq. (6).

2.3 OPEN study methods

The OPEN Study was conducted to estimate the measurement error properties of self-report
dietary assessment including the Diet History Questionnaire, a food frequency questionnaire
(FFQ) for dietary assessment (Subar et al., 2003). Participants were recruited from a random
sample of 5000 households in the Washington, DC, metro area with a household member
aged 40-69 years; the final sample size was 484. Participants completed the FFQ twice,
approximately 3 months apart. In the interim, doubly labeled water was used to estimate
total energy expenditure (and hence energy intake under stable weight conditions) over a
two-week period, and urinary nitrogen, a recovery biomarker for protein intake, was
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estimated twice from two 24-hour urine collections. The within-person variation in doubly
labeled water was estimated by dosing 25 participants a second time approximately 2 weeks
after the first data collection. Weight was measured under standard conditions at all visits,
and height was measured at visit 1. Basal metabolic rate was calculated from height, weight,
and age at visit 1 using the equation developed by Schofield (1985). The Goldberg method
(Black et al., 1991; Goldberg et al., 1991) was used to classify participants as UR, OR, or
AR. We used values for the coefficient of variation suggested by Black (2000) to classify
IER status. All analyses were done in SAS (version 9.4, Cary, NC).

3.1 Example: OPEN Study

The final sample size of participants with valid doubly labeled water measurements, at least
1 valid urinary nitrogen measure, and the food frequency questionnaire in the OPEN Study
was 388. Using the cutpoints suggested by Black (2000; 1.10 and 2.19), 51% of women and
52% of men were classified as UR on the food frequency questionnaire; only 1.9% of
women and 2.5% of men were classified as OR. ORs were excluded from the analysis (V=
13, resulting in a final analytic sample of /=375 comprising 200 men and 175 women).
The estimated means, variances, and pairwise correlations of log FFQ reported intake (),
the log recovery biomarker (M), the latent variable log true intake (X) (inferred from M),
and the log ratio of reported energy intake to estimated basal metabolic rate (G) for men are
presented in Table 1, both for absolute protein intake and for protein density intake. We used
Eqg. (4) to estimate the attenuation factor, overall and within the AR and UR strata for
absolute protein and for protein density as assessed by the FFQ); the standard error was
estimated using the delta method.

Results (Table 2) indicated a substantial improvement in the attenuation factor in the models
stratified by AR and UR status for the absolute protein model (from 0.168 in the overall
model to 0.381 for ARs and 0.288 for URs), consistent with the ratio predicted from Eq. (5).
However, for protein density, the attenuation factors were comparable between the overall
model and the stratified models, a result that was also consistent with the Eq. (5) prediction.
As seen in Table 1, although estimated correlations between Xand W were quite similar for
protein and protein density and correlations between Xand G were both small, correlations
between Wand G differed greatly for absolute protein and protein density, leading to these
disparate results.

3.2 Validation of the method: Simulation studies

To check our methods, we performed a simulation study to examine the impact of stratifying
by underreporting status in epidemiologic studies under the assumption of nondifferential
error. First, we generated a multivariate normal distribution of height, weight, age, log FFQ
energy (from first FFQ), log FFQ protein intake (from first FFQ), log true energy intake, and
log true protein intake for men, using parameters estimated from the data of the OPEN
Study. We then simulated 1200 datasets from this distribution for a hypothetical nested case-
control study with 1000 cases and 1000 controls. We classified participants by IER status
using the standard Goldberg cutoffs (Black, 2000), and excluded ORs, leaving URs and

Biom J. Author manuscript; available in PMC 2017 November 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Tooze et al.

Page 7

ARs. We simulated the outcome Y'as a function of true protein intake X or true protein
density Xpp:

logit (P (Y=1))=— 7.852+1.30X ,,

and

logit (P (Y=1))=3.8516+2.0X,,

We regressed true protein (protein density) on the FFQ value to estimate attenuation and
correlation between truth and the FFQ, and used logistic regression to estimate @, and
@, overall and in stratified models. Results (Table 3) confirmed that for absolute protein
the estimated log odds ratios were higher within the AR and UR strata than overall, whereas
for protein density they were similar. Also note that for absolute protein, the proportion of
bootstrap samples in which the null hypothesis was rejected is similar for the overall model
to each of the strata, but in a stratified model (including an indicator variable for the strata),
this proportion is increased. For protein density, there is a power loss by restricting the
analysis to just one strata, and little change in the stratified model.

We conducted a simulation study to investigate the impact of differential error on
stratification by underreporting status when the true relationship with the outcome and true
intake was null. Our particular interest was whether spurious relationships between dietary
intake and outcome would be produced by such stratification. We generated a multivariate
normal distribution of log BMI (Y), height, age, log FFQ energy intake, log FFQ protein
intake (W, from first FFQ), and log protein (X) (estimated from urinary nitrogen), using
parameters estimated from the data of the OPEN Study (see Table 1). We then set the
correlation between Yand Xto zero to simulate a null relationship, that is ¥'= ag + ey, and
we also varied cov(Y; W) in the simulations. We simulated 1200 datasets from this
distribution for a hypothetical study with 2000 participants. We classified participants by
misreporting status using the standard Goldberg cutoffs (Black, 2000) (grouping OR with
AR) and then regressed Yon W. Results are shown in Table 4. It can be seen that, as
expected, the differential error in the measurement of dietary intake W/, creates a spuriously
nonzero estimate of the overall slope. Stratification by IER status sometimes decreases this
bias and sometimes increases it, depending on the correlation structure, and according to the
criterion given in Eq. (7).

4 Discussion

Under nondifferential error, we show that when stratifying by IER status, the attenuation

factors within the UR stratum and the AR stratum will both be either greater or smaller than
for the nonstratified model. In the OPEN study stratifying by underreporting status resulted
in larger attenuation factors than in the overall group for protein expressed in kcal/day, with
relative increases in attenuation factors by 128% for men and 83% for women. This was

largely driven by the strong correlation between the protein intake reported on the FFQ and
the ratio of reported energy intake to predicted total energy expenditure (o, 0.80 for men
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and 0.82 for women). However, when protein was expressed as a density (% of energy from
protein), this correlation dropped to —0.09 for men and —0.03 for women, resulting in a ratio
of approximately one, and, therefore, not leading to a change in the attenuation factors with
stratification by misreporting status. The gains in power for analysis of protein and a health
outcome that may be obtained from stratifying by IER status, and the gains in power
obtained by studying protein density rather than protein both appear to derive from the same
source, namely, the correlation between reported protein intake and reported energy intake.
It is principally this correlation that leads to the high value for py, and it is also this
correlation that renders FFQ-reported protein density to have a higher correlation with true
intake than does reported absolute protein intake. Thus, one may speculate that gains from
stratification by IER status will be found more in analyses of absolute intakes than in
analyses of densities.

Our analyses strongly suggest that excluding IERs from the analysis is not an optimal
strategy, contrary to previous suggestions (Drummond et al., 1998; McCrory et al., 2002;
Huang et al., 2004; Huang et al., 2005). When it appears beneficial (i.e., when criterion (6) is
satisfied), to stratify by IER status, then the benefit is found in both groups, so excluding one
of them would unnecessarily lose statistical power relative to a stratified analysis. When
stratification by IER status is not beneficial, then exclusion of IERs is equivalent to
stratification followed by discarding one of the strata, and would be inferior to the
unstratified analysis.

The statistical model from which we derive these results does not include any interaction
between the IER stratification variable and reported intake in the regression of true intake on
these two variables. Indeed, the multivariate normal distribution assumed by us precludes
such an interaction. However, the argument made by those who advocate excluding URs is
that they dilute the relationship between a dietary intake and the outcome of interest, which
implies a considerably lower attenuation factor among URs than among ARs that would
occur only if there were a large interaction between reported intake and IER status. To date,
there is little indication that such large interactions are to be found. There has been some
examination of interactions between reported intake and personal characteristics in
calibration equations that relate reported intake to true intake. For FFQ reports of energy and
protein intake, Neuhouser et al. (2008) reported some interaction with BMI, as did
Freedman et al. (2014) among women but not men, but these were moderate in size. We are
unaware of any investigation of interactions with IER status as defined by the Goldberg
method. We therefore examined this in the OPEN Study data and did not find evidence of
such interaction. We performed, separately for men and women, linear regression of log
urinary protein on log FFQ-reported protein, underreporter status (UR or AR) and their
interaction term. The interaction term was modest and statistically nonsignificant for both
genders.

In all of the papers, we identified on accounting for IERs in studying diet and health
outcome relationships (Drummond et al., 1998; McCrory et al., 2002; Huang et al., 2004;
Howarth et al., 2005; Huang et al., 2005; Fiorito et al., 2006; Nielsen and Adair, 2007;
Savage et al., 2008; Mendez et al., 2011; Noel et al., 2011; Bérnhorst et al., 2013), all of
them modeled BMI or adiposity as the outcome of interest. This is problematic due to the
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nondifferential error expected, since overweight or obese persons are known to underreport
their energy intake on average to a greater extent than other persons. This relationship
between overweight and underreporting will tend to turn a true-positive association into an
estimated one that is even more attenuated than under nondifferential error, or even into an
estimated negative association. Even though one could predict the direction of the bias due
to differential reporting error, stratifying by IER status could either reduce or magnify the
bias in an unpredictable manner. Therefore, when BMI is the outcome of interest, it is not
advised to use directly a FFQ or another instrument prone to nondifferential error to model
associations, but to use an unbiased marker of the nutrient of intake, or the calibration
equation strategy advocated by Prentice et al. (2011). If an error-prone instrument is used,
the analytic assumptions used and their impact on limiting the interpretation of the results
should be clearly addressed. Although we focused on BMI and differential error in this
paper, certainly other variables may also be associated with both measurement error in a
predictor variable and with the outcome and such a possibility should be carefully examined.
When this occurs, the differential aspect of the error can be eliminated or reduced by
including such variables in the disease model. Differential error should also be carefully
considered when dietary data are collected retrospectively.

One limitation of this work is that our model assumes that just one dietary exposure is of
interest. In reality, researchers are often interested in measuring two or more dietary or other
exposures that may be measured with error. This may lead to residual confounding of the
estimated effect of the dietary exposures of interest (Freedman et al., 2011), in which case
these results may not hold. However, for dietary protein, the amount of residual confounding
has been estimated to be small (Freedman et al., 2011).

In summary, it may sometimes be beneficial to stratify by underreporting status (or include it
as an indicator variable) when modeling diet and disease relationships, and we present the
conditions under which incorporating misreporting status into the analysis results in more
favorable attenuation factors. However, this strategy is safely employed only when
measurement error is nondifferential, and can lead to further bias when dietary measurement
error is differential, as in the case when BMI is the outcome variable.
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A.l1 Proof that the error in W is nondifferential within the strata defined by G

We assume that W has nondifferential error, that is
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fFYIX,W)=f(Y]X) (A1)

and we also assume G provides no information on Y conditional on X. This means that

FYIX,G)=f(Y]X) (A2)

We can show that W has non-differential error within the strata of G, thatis F(Y'|X, G, W) =
f(Y|X, G). The proof of this when (Y,.X, G, W) are multivariate normal and therefore
linearly related, then the coefficient for Win the regression of Yon X, G, and Wis
proportional to:

2 2 2 2 2
Oy x (UXGUGW — Oxw Uc) +UYW (UXUG - ng> +GYG (UXGUXW' - UXUGW) (A3)

From (Al), o, =0, 0, /o> and from (A2) o, =0, , 0 /o> Substituting these into
(A3) we get that the coefficient of Wequals zero. Therefore Y'is independent of W
conditional on X'and G.

A.2 Derivation of attenuation factor for stratified model under assumption

of nondifferential error

Lemmal

Let A= [a,, a4, and suppose that (X, W/ G) are multivariate normal with means (tx, Ly
Ue), standard deviations (ox, ow, o), and correlations (oxus pxG Pw 6)- The attenuation
in the unstratified data is Ay = cov(.X; W)/var(IW). We aim to compute the attenuation for
stratified data when G € A, i.e. A xpygea = cov(X, WG € A)var(W|G € A), and to show
when it is that the attenuation coefficient the full data model is smaller than the attenuation
coefficient for the stratified data.

We have the following result:

The attenuation in the stratified model will be greater than that of the full model if
2
PxaPwal Pxw<Pye

Here is the technical argument.

Define X« = (X — ux)oxand similarly for W4 and G, thus standardizing all three. Also,
define the standardized interval A« ={a; = (a; — Ue)log &= (ay— Ue) og}- 1tis clear
that

cov (X, W|G € A)=0,0,cov (X,, W, G, € Ay);
var (W|G € A) =02 var (W,|G. € A,),
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and hence the attenuation coefficient for the stratified sample when G€ Ais

A

XW|GeA ™ (

o /ow)cov (X, Wi |Gy € Ay) [var (W, |Gy € Ay). (Ad)

The random variable G~ given Gx € A is a standard normal random variable truncated to
the set A=, and consequently its density is ¢(g=)/{P (@) — D (a1)}, where ¢(') is the
standard normal density function and @(:) is the corresponding cumulative distribution
function. Define

b= {¢ (a‘*L) -9 (a*H)} / {¢ (a*H) - (a’*L)}
= {a*LQS (a*L) - a*H¢ (a*H)} / {(I) (a*H) - (a*r‘)} .

It is known from properties of the truncated normal distribution that £(G4{ G+ € A+) = 6and
var(G+4Gx € A«) =1+ 5— 6% This means that E(W4|Gx) = pcG~ and consequently

E(W.|G, € A,)=E{E (W.|G, G\ € A,)|Gs € A} =E (p,y . Gs|Gy € A,) =p,, 0.

Since var (W|Gy) =FE (WflG*) =1-02.
E (W2|G. € A,) =E {E (W2|G.) |G, € A} =var (W.|G.) +p2, B (GG, € A.) =

=var (W,|Gx) +p‘2VGV§.r (G*2|G* €A,) 72p3,m gE (C;*|G* € A=
=1 = PyetPie (1-0-7] —0 ) +pwc;€ :

Consequently, since E(W4|Gx € Ax) = ps6,

2 2 2 2 2
var (WlGy € Av) =1 - p . +py,. <1—|—7] 4 ) =1+p;,q (77 -0 ) " (AB)

Similarly, since cov(Xx, WA|Gx) = pxyw— pxcewe E(XH Gx) = pxgG+and E(Xx| Gx € Ax)
= pxGO.

E(X.W,|G, € A,) =cov (X, W|G.) +pye Pxc E (G3|G* €A,

=Pxw ~ PxcPwaTPwePxcVar (G*|G2* €A+
_pwcpxc{E (G*|G* € Aﬂg)} = )
=Pxw ~ PxcPweTPwePxa (1+77 -0 ) — PwaPxat

so that

cov (X*v W*|G* € As) =Pxw TPwePxc (77 - 92) © (A6)

Combining (A4), (A5), and (A6), and remembering that without stratification the attenuation
is Axy= PXWUX/GW we have
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_Ox Pxw tPwelxe (77 — 92) =\ 1+pwcpx(; (77 — 92) /pxw

Awicena= : TOxw : .
Xwigea™ o 1+p€vc (n—02) xw 1+P%VG (n—02) (A7)

Since var(G«|Gx € A«) =1+ n— €, itis necessarily the case that— 1 < n— 62 <0.
Substitution of 4 = 62 - nyields Eq. (5). Consequently, the attenuation in the stratified

model will be greater than that of the full model if p,.0,¢/0xw <p2WG.

A.3 Derivation of condition (6) for normally distributed outcomes

In the linear regression of Y'on W the coefficient of Wis given by 3, =0, /agv. In the
linear regression of Yon Wand G, the coefficient of Wis given by

_ 2 2 2 2
BW\G* (‘Tyw 0¢ — Oya UWG) / <UW ¢~ gWG)-

Suppose that oy > 0. Then By < B implies that o, 0, 0, <0y, o, ., Which, after

substituting correlation for covariance, oys = pysoy og, and some algebraic manipulation,
leads to condition (6) in the text. Assuming oy, < 0, the condition B, > By also leads to
condition (6). Note that we assume in this proof that Bj,and By have the same sign.
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Distributions of W, X, and G in Men (V= 200) from the Observing Protein and Energy Nutrition Study,

Washington, DC, Metro Area, 1999-2000.

Table 1

Measure (log scale) Mean

Variance

Correlation with X Correlation with W

Absolute protein (log kcal)

Protein, FFQ (W) 5.64
Protein, UN (M) 6.04
Protein, truth (X) 6.04
rEI/BMR (G) 0.05

Protein density
% Energy protein, FFQ (W) 2.70

% Energy protein, UN (M) 2.69
% Energy protein, truth (X) 2.69
rEI/BMR (G) 0.05

Other variables?

BMI (kg/m?, log scale) 3.32
Height (cm) 176.6
Age (y) 54.3

0.156
0.063
0.040
0.128

0.042
0.053
0.030
0.128

0.023
56.3
76.6

0.329
0.800

-0.060

0.401
0.753

-0.025

0.382
0.280
-0.054

0.263
0.329
0.803

0.302
0.401
-0.089

-0.004
0.267
-0.086

FFQ, food frequency questionnaire; UN, urinary nitrogen; rEl, reported energy intake from FFQ; BMR, basal metabolic rate.

a . . . - .
)Correlatlon with W for other variables is with absolute protein.
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