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Abstract

The food frequency questionnaire (FFQ) is known to be prone to measurement error. Researchers 

have suggested excluding implausible energy reporters (IERs) of FFQ total energy when 

examining the relationship between a health outcome and FFQ-reported intake to obtain less 

biased estimates of the effect of the error-prone measure of exposure; however, the statistical 

properties of stratifying by IER status have not been studied. Under certain assumptions, including 

nondifferential error, we show that when stratifying by IER status, the attenuation of the estimated 

relative risk in the stratified models will be either greater or less in both strata (implausible and 

plausible reporters) than for the nonstratified model, contrary to the common belief that the 

attenuation will be less among plausible reporters and greater among IERs. Whether there is more 

or less attenuation depends on the pairwise correlations between true exposure, observed exposure, 

and the stratification variable. Thus exclusion of IERs is inadvisable but stratification by IER 

status can sometimes help. We also address the case of differential error. Examples from the 

Observing Protein and Energy Nutrition Study and simulations illustrate these results.
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1 Introduction

It is well established that self-report dietary assessments, such as the food frequency 

questionnaire (FFQ), and 24-hour recall are prone to both random and systematic 

measurement error (Thompson and Subar, 2013; Freedman et al., 2014). Researchers who 

study diet and health outcomes have developed statistical methods to describe and quantify 

the error in self-report instruments. One early and widely used method of identifying 

individuals who report their diets with error is the Goldberg method (Goldberg et al., 1991; 

Black et al., 1991). This method uses the ratio of reported energy intake to predicted energy 

needs from an equation to classify “implausible energy reporters” (IER), that is those 

persons that report energy intake that is either too high, termed over-reporters (OR), or too 

low, termed underreporters (UR), based on their predicted energy needs. Studies that have 

used this method and extensions thereof (Huang et al., 2004; Huang et al., 2005) have 

demonstrated that a large proportion of adults and children report implausible energy intake 

on self-report assessments, predominantly in the direction of UR (Macdiarmid and Blundell, 

1998; Hill and Davies, 2001; Forrestal, 2011).

Some authors have suggested excluding IERs (Drummond et al., 1998; McCrory et al., 

2002; Huang et al., 2004; Huang et al., 2005) from studies of diet and health to obtain more 

valid conclusions. This work has been motivated by the observation that when IERs are 

excluded from regression analyses of body mass index (BMI) on dietary intake, regression 

coefficients of the dietary intakes in the sample of plausible or acceptable reporters (AR) 

have been found stronger than the estimates from the total sample, and in some cases the 

regression coefficients change direction in the AR sample (Drummond et al., 1998; Huang et 

al., 2004; Howarth et al., 2005; Savage et al., 2008; Mendez et al., 2011; Noel et al., 2011). 

Recently, Rhee et al. (2015) have challenged the use of weight-based definition of IER status 

for this purpose, and recommend using plausible fixed limits for energy intake, such as 

whether the reported energy intake falls within plausible fixed limits regardless of the 

individual’s body weight, such as a lower limit of 500 kcal/d and an upper limit of 3500 

kcal/d (Willet, 1998). Although, our enquiry in this paper does not focus on the question of 

excluding IERs from the analysis, the material we will present does have implications for 

this question, which we will mention in the Discussion section.

Rather than excluding IERs from analyses, other authors have recommended stratification of 

diet-health analyses by IER status (Börnhorst et al., 2013) or using indicator variables to 

identify misreporters (Nielsen and Adair, 2007; Mendez et al., 2011). In this paper, we focus 

on the strategy of stratification by IER status using the Goldberg method, and examine the 

statistical properties of such stratification. We treat the cases of nondifferential error, where 

the outcome variable is independent of the error in the dietary report (Flegal et al., 1991; 

Carroll et al., 2006), and differential error separately. The nondifferential error assumption is 

often reasonable in nutritional cohort studies where the outcome is a future disease event and 

individuals do not report dietary intake differently based in a manner that is associated with 

a health outcome. In such studies, nondifferential error usually attenuates the estimate of the 

risk parameter (Freedman et al., 2011); the attenuation factor is a multiplicative factor that 

quantifies this underestimation. We show here that under nondifferential error, when 

stratifying by IER status, the attenuation factors within the UR stratum and the AR stratum 
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will both be either larger or smaller than for the nonstratified model. Whether there is an 

increase or decrease in the attenuation factor depends on a simple function of the pairwise 

correlations between true exposure (an estimate that is obtained through use of an unbiased 

biomarker), observed exposure, and the stratification variable. Since larger attenuation 

factors lead to less bias in the estimated risk parameter, this simple function provides a guide 

as to when risk estimates will be improved by stratification by IER status, and when they 

will not.

In studies where the outcome is body mass index (BMI), which is commonly associated with 

misreporting (Macdiarmid and Blundell, 1998), or whenever the study has a retrospective 

case-control design, a design prone to recall bias, the measurement error is likely to be 

differential. We address the case of differential error and show that stratification by IER 

status may increase or decrease the bias in the estimated risk parameter dependent on the 

correlations between the outcome, observed exposure, and the stratification variable.

We illustrate our results using data on protein and protein density (protein divided by 

energy) intakes from the Observing Protein and Energy Nutrition (OPEN) Study, which 

measured urinary nitrogen as a biomarker for protein intake and doubly labeled water for 

energy intake, and collected self-reported protein and energy intakes from a food frequency 

questionnaire. We also provide simulations to illustrate the cases of nondifferential and 

differential error.

2 Methods

2.1 Nondifferential error

We denote by Y the health status outcome. After transformation to a suitable scale (see 

below), true dietary intake of a nutrient of interest is denoted by X; the error-prone reported 

intake of this nutrient by W; and the ratio of reported energy intake from an instrument such 

as an FFQ to estimated basal metabolic rate is denoted by G. This represents the use of the 

Goldberg method to determine IER status, by which we stratify.

We assume that we can find suitable transformations (such as power or logarithmic) so that 

(X, W, G) are multivariate normal with means (μX, μW, μG), standard deviations (σX, σW, 

σG), and correlations (ρXW, ρXG, ρWG). Note that by assuming the multivariate normal 

distribution, we postulate that there is no interaction between G and W in the regression of X 
on these two variables. We assume a generalized linear model for the relationship between Y 
and X, where Y may be expressed in terms of a binary, continuous, or time to event variable:

(1)

Results apply to any model with a linear predictor. The primary parameter of interest in this 

model is αX, which describes the relationship between Y and the true dietary intake, X. 

However, because X is unknown, W is substituted for X. For the overall (nonstratified) 

model, it has been shown that, under the nondifferential error assumption, the regression 

coefficient for this model is approximately equal to the regression coefficient for X 
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multiplied by an attenuation factor, which we call λXW (Kipnis et al., 2001). As in other 

studies (Kipnis et al., 2001; Kipnis et al., 2003), we assume the model for W for an 

individual i is related to X by:

(2)

where the FFQ is assumed to have systematic error (BW0 and BW1, respectively) as well as 

random error, δi with mean 0 and variance . We can estimate  as the between subject 

variance of the unbiased biomarker of the nutrient M measured on individual i at time j on a 

transformed scale assuming the mixed model:

(3)

where uij is the within-person random error with variance . The attenuation factor λXW is 

given by:

(4)

We now consider the stratified model. We consider two strata (ARs and URs), excluding 

ORs who comprise usually a very small group. The strata are defined according to whether 

or not G ∈ A, A = (gl, gu). We assume that the error in W is also nondifferential within the 

strata defined by G. This occurs as long as the distribution of Y on X and G is the same as 

that of Y on X, that is G conveys no information about Y over and above that in X. This 

seems reasonable, since G is a variable that measures underreporting, and the assumption 

dovetails with the assumption of nondifferential error in W. In the Appendix, under these 

assumptions, we derive that the attenuation factor within any stratum A is:

(5)

where ρXG, ρWG, and ρXW are the correlations between X and G, W and G, and X and W, 

respectively, and fA is a factor dependent on the set A, but always lying between 0 and 1. 

The ratio in the brackets in Eq. (5) will therefore be greater than 1 and the attenuation factors 

for the stratified model will be greater than the attenuation factor for the full model if and 

only if

(6)
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The correlation between W and G may be determined empirically. Correlations with X may 

be calculated when an unbiased, or recovery biomarker, for X is available; they may also 

sometimes be estimated from calibration studies that employ a concentration biomarker that 

has been previously validated in a feeding study (see e.g. Freedman et al., 2010).

2.2 Differential error

Relating dietary intakes to outcomes when the dietary measurement error is differential is 

problematic. Unlike in the case of nondifferential error where the estimated risk parameter is 

(nearly) always attenuated, with the differential error there can be underestimation or 

overestimation of the risk parameter. (Sometimes, when the measurement error is well 

understood, the direction of bias in the estimated risk parameter can be predicted. See for 

example, our comments in the Discussion section regarding the case where body mass index 

(BMI) is the outcome measure.) Likewise, the effect of stratification by IER status is 

difficult to predict. Firstly, if the direction of the bias cannot be anticipated, it is unknown 

whether it is better to attenuate or de-attenuate the estimated risk parameter. Secondly, in the 

case of differential error, Eq. (5) does not hold, and consequently condition (6) does not 

guarantee an increase in the attenuation factor. One can show for the linear regression of Y 
on W and of Y on W and G, that if the coefficient of W in the model with W and G and the 

coefficient in the model with just W have the same sign, then the absolute value of the 

coefficient in the model with W and G will be larger than that in the model with W, only if

(7)

(see Appendix for proof). This condition looks similar to that in (6), but Y now takes the 

place of X, making it difficult to predict in advance the effect of stratification by IER status. 

Also, unlike condition (6), condition (7) only applies when there is no change of sign in the 

coefficient; however, such a condition cannot be guaranteed. In the Results section, we 

present simulations of differential error, in a case where there is no true association between 

diet and outcome, so that any nonnull estimate is biased, and it will be advantageous if we 

can induce further attenuation of the risk estimate by stratification. We will show that 

stratification by IER status can sometimes increase and sometimes decrease the bias in the 

estimate of the coefficient. Note that for nondifferential error, Eq. (7) also holds, in addition 

to Eq. (6).

2.3 OPEN study methods

The OPEN Study was conducted to estimate the measurement error properties of self-report 

dietary assessment including the Diet History Questionnaire, a food frequency questionnaire 

(FFQ) for dietary assessment (Subar et al., 2003). Participants were recruited from a random 

sample of 5000 households in the Washington, DC, metro area with a household member 

aged 40–69 years; the final sample size was 484. Participants completed the FFQ twice, 

approximately 3 months apart. In the interim, doubly labeled water was used to estimate 

total energy expenditure (and hence energy intake under stable weight conditions) over a 

two-week period, and urinary nitrogen, a recovery biomarker for protein intake, was 
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estimated twice from two 24-hour urine collections. The within-person variation in doubly 

labeled water was estimated by dosing 25 participants a second time approximately 2 weeks 

after the first data collection. Weight was measured under standard conditions at all visits, 

and height was measured at visit 1. Basal metabolic rate was calculated from height, weight, 

and age at visit 1 using the equation developed by Schofield (1985). The Goldberg method 

(Black et al., 1991; Goldberg et al., 1991) was used to classify participants as UR, OR, or 

AR. We used values for the coefficient of variation suggested by Black (2000) to classify 

IER status. All analyses were done in SAS (version 9.4, Cary, NC).

3 Results

3.1 Example: OPEN Study

The final sample size of participants with valid doubly labeled water measurements, at least 

1 valid urinary nitrogen measure, and the food frequency questionnaire in the OPEN Study 

was 388. Using the cutpoints suggested by Black (2000; 1.10 and 2.19), 51% of women and 

52% of men were classified as UR on the food frequency questionnaire; only 1.9% of 

women and 2.5% of men were classified as OR. ORs were excluded from the analysis (N = 

13, resulting in a final analytic sample of N = 375 comprising 200 men and 175 women). 

The estimated means, variances, and pairwise correlations of log FFQ reported intake (W), 

the log recovery biomarker (M), the latent variable log true intake (X) (inferred from M), 

and the log ratio of reported energy intake to estimated basal metabolic rate (G) for men are 

presented in Table 1, both for absolute protein intake and for protein density intake. We used 

Eq. (4) to estimate the attenuation factor, overall and within the AR and UR strata for 

absolute protein and for protein density as assessed by the FFQ; the standard error was 

estimated using the delta method.

Results (Table 2) indicated a substantial improvement in the attenuation factor in the models 

stratified by AR and UR status for the absolute protein model (from 0.168 in the overall 

model to 0.381 for ARs and 0.288 for URs), consistent with the ratio predicted from Eq. (5). 

However, for protein density, the attenuation factors were comparable between the overall 

model and the stratified models, a result that was also consistent with the Eq. (5) prediction. 

As seen in Table 1, although estimated correlations between X and W were quite similar for 

protein and protein density and correlations between X and G were both small, correlations 

between W and G differed greatly for absolute protein and protein density, leading to these 

disparate results.

3.2 Validation of the method: Simulation studies

To check our methods, we performed a simulation study to examine the impact of stratifying 

by underreporting status in epidemiologic studies under the assumption of nondifferential 

error. First, we generated a multivariate normal distribution of height, weight, age, log FFQ 

energy (from first FFQ), log FFQ protein intake (from first FFQ), log true energy intake, and 

log true protein intake for men, using parameters estimated from the data of the OPEN 

Study. We then simulated 1200 datasets from this distribution for a hypothetical nested case-

control study with 1000 cases and 1000 controls. We classified participants by IER status 

using the standard Goldberg cutoffs (Black, 2000), and excluded ORs, leaving URs and 
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ARs. We simulated the outcome Y as a function of true protein intake XP or true protein 

density XPD:

and

We regressed true protein (protein density) on the FFQ value to estimate attenuation and 

correlation between truth and the FFQ, and used logistic regression to estimate  and 

 overall and in stratified models. Results (Table 3) confirmed that for absolute protein 

the estimated log odds ratios were higher within the AR and UR strata than overall, whereas 

for protein density they were similar. Also note that for absolute protein, the proportion of 

bootstrap samples in which the null hypothesis was rejected is similar for the overall model 

to each of the strata, but in a stratified model (including an indicator variable for the strata), 

this proportion is increased. For protein density, there is a power loss by restricting the 

analysis to just one strata, and little change in the stratified model.

We conducted a simulation study to investigate the impact of differential error on 

stratification by underreporting status when the true relationship with the outcome and true 

intake was null. Our particular interest was whether spurious relationships between dietary 

intake and outcome would be produced by such stratification. We generated a multivariate 

normal distribution of log BMI (Y), height, age, log FFQ energy intake, log FFQ protein 

intake (W, from first FFQ), and log protein (X) (estimated from urinary nitrogen), using 

parameters estimated from the data of the OPEN Study (see Table 1). We then set the 

correlation between Y and X to zero to simulate a null relationship, that is Y = α0 + eY, and 

we also varied cov(Y, W) in the simulations. We simulated 1200 datasets from this 

distribution for a hypothetical study with 2000 participants. We classified participants by 

misreporting status using the standard Goldberg cutoffs (Black, 2000) (grouping OR with 

AR) and then regressed Y on W. Results are shown in Table 4. It can be seen that, as 

expected, the differential error in the measurement of dietary intake W, creates a spuriously 

nonzero estimate of the overall slope. Stratification by IER status sometimes decreases this 

bias and sometimes increases it, depending on the correlation structure, and according to the 

criterion given in Eq. (7).

4 Discussion

Under nondifferential error, we show that when stratifying by IER status, the attenuation 

factors within the UR stratum and the AR stratum will both be either greater or smaller than 

for the nonstratified model. In the OPEN study stratifying by underreporting status resulted 

in larger attenuation factors than in the overall group for protein expressed in kcal/day, with 

relative increases in attenuation factors by 128% for men and 83% for women. This was 

largely driven by the strong correlation between the protein intake reported on the FFQ and 

the ratio of reported energy intake to predicted total energy expenditure (ρWG, 0.80 for men 
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and 0.82 for women). However, when protein was expressed as a density (% of energy from 

protein), this correlation dropped to −0.09 for men and −0.03 for women, resulting in a ratio 

of approximately one, and, therefore, not leading to a change in the attenuation factors with 

stratification by misreporting status. The gains in power for analysis of protein and a health 

outcome that may be obtained from stratifying by IER status, and the gains in power 

obtained by studying protein density rather than protein both appear to derive from the same 

source, namely, the correlation between reported protein intake and reported energy intake. 

It is principally this correlation that leads to the high value for ρWG, and it is also this 

correlation that renders FFQ-reported protein density to have a higher correlation with true 

intake than does reported absolute protein intake. Thus, one may speculate that gains from 

stratification by IER status will be found more in analyses of absolute intakes than in 

analyses of densities.

Our analyses strongly suggest that excluding IERs from the analysis is not an optimal 

strategy, contrary to previous suggestions (Drummond et al., 1998; McCrory et al., 2002; 

Huang et al., 2004; Huang et al., 2005). When it appears beneficial (i.e., when criterion (6) is 

satisfied), to stratify by IER status, then the benefit is found in both groups, so excluding one 

of them would unnecessarily lose statistical power relative to a stratified analysis. When 

stratification by IER status is not beneficial, then exclusion of IERs is equivalent to 

stratification followed by discarding one of the strata, and would be inferior to the 

unstratified analysis.

The statistical model from which we derive these results does not include any interaction 

between the IER stratification variable and reported intake in the regression of true intake on 

these two variables. Indeed, the multivariate normal distribution assumed by us precludes 

such an interaction. However, the argument made by those who advocate excluding URs is 

that they dilute the relationship between a dietary intake and the outcome of interest, which 

implies a considerably lower attenuation factor among URs than among ARs that would 

occur only if there were a large interaction between reported intake and IER status. To date, 

there is little indication that such large interactions are to be found. There has been some 

examination of interactions between reported intake and personal characteristics in 

calibration equations that relate reported intake to true intake. For FFQ reports of energy and 

protein intake, Neuhouser et al. (2008) reported some interaction with BMI, as did 

Freedman et al. (2014) among women but not men, but these were moderate in size. We are 

unaware of any investigation of interactions with IER status as defined by the Goldberg 

method. We therefore examined this in the OPEN Study data and did not find evidence of 

such interaction. We performed, separately for men and women, linear regression of log 

urinary protein on log FFQ-reported protein, underreporter status (UR or AR) and their 

interaction term. The interaction term was modest and statistically nonsignificant for both 

genders.

In all of the papers, we identified on accounting for IERs in studying diet and health 

outcome relationships (Drummond et al., 1998; McCrory et al., 2002; Huang et al., 2004; 

Howarth et al., 2005; Huang et al., 2005; Fiorito et al., 2006; Nielsen and Adair, 2007; 

Savage et al., 2008; Mendez et al., 2011; Noel et al., 2011; Börnhorst et al., 2013), all of 

them modeled BMI or adiposity as the outcome of interest. This is problematic due to the 
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nondifferential error expected, since overweight or obese persons are known to underreport 

their energy intake on average to a greater extent than other persons. This relationship 

between overweight and underreporting will tend to turn a true-positive association into an 

estimated one that is even more attenuated than under nondifferential error, or even into an 

estimated negative association. Even though one could predict the direction of the bias due 

to differential reporting error, stratifying by IER status could either reduce or magnify the 

bias in an unpredictable manner. Therefore, when BMI is the outcome of interest, it is not 

advised to use directly a FFQ or another instrument prone to nondifferential error to model 

associations, but to use an unbiased marker of the nutrient of intake, or the calibration 

equation strategy advocated by Prentice et al. (2011). If an error-prone instrument is used, 

the analytic assumptions used and their impact on limiting the interpretation of the results 

should be clearly addressed. Although we focused on BMI and differential error in this 

paper, certainly other variables may also be associated with both measurement error in a 

predictor variable and with the outcome and such a possibility should be carefully examined. 

When this occurs, the differential aspect of the error can be eliminated or reduced by 

including such variables in the disease model. Differential error should also be carefully 

considered when dietary data are collected retrospectively.

One limitation of this work is that our model assumes that just one dietary exposure is of 

interest. In reality, researchers are often interested in measuring two or more dietary or other 

exposures that may be measured with error. This may lead to residual confounding of the 

estimated effect of the dietary exposures of interest (Freedman et al., 2011), in which case 

these results may not hold. However, for dietary protein, the amount of residual confounding 

has been estimated to be small (Freedman et al., 2011).

In summary, it may sometimes be beneficial to stratify by underreporting status (or include it 

as an indicator variable) when modeling diet and disease relationships, and we present the 

conditions under which incorporating misreporting status into the analysis results in more 

favorable attenuation factors. However, this strategy is safely employed only when 

measurement error is nondifferential, and can lead to further bias when dietary measurement 

error is differential, as in the case when BMI is the outcome variable.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

A.1 Proof that the error in W is nondifferential within the strata defined by G

We assume that W has nondifferential error, that is
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(A1)

and we also assume G provides no information on Y conditional on X. This means that

(A2)

We can show that W has non-differential error within the strata of G, that is f (Y |X, G,W) = 

f (Y |X, G). The proof of this when (Y,X,G,W) are multivariate normal and therefore 

linearly related, then the coefficient for W in the regression of Y on X, G, and W is 

proportional to:

(A3)

From (A1),  and from (A2) . Substituting these into 

(A3) we get that the coefficient of W equals zero. Therefore Y is independent of W 
conditional on X and G.

A.2 Derivation of attenuation factor for stratified model under assumption 

of nondifferential error

Let A = [aL, aH], and suppose that (X,W, G) are multivariate normal with means (μX, μW, 
μG), standard deviations (σX, σW, σG), and correlations (ρXW, ρXG, ρW G). The attenuation 

in the unstratified data is λXW = cov(X,W)/var(W). We aim to compute the attenuation for 

stratified data when G ∈ A, i.e. λXW|G∈A = cov(X, W|G ∈ A)/var(W |G ∈ A), and to show 

when it is that the attenuation coefficient the full data model is smaller than the attenuation 

coefficient for the stratified data.

We have the following result:

Lemma 1

The attenuation in the stratified model will be greater than that of the full model if 

.

Here is the technical argument.

Define X* = (X − μX)/σX and similarly for W* and G*, thus standardizing all three. Also, 

define the standardized interval A* = {a*L = (aL − μG)/σG, a*H = (aH − μG)/σG}. It is clear 

that
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and hence the attenuation coefficient for the stratified sample when G ∈ A is

(A4)

The random variable G* given G* ∈ A* is a standard normal random variable truncated to 

the set A*, and consequently its density is ϕ(g*)/{Φ (a*H) − Φ (a*L)}, where ϕ(·) is the 

standard normal density function and Φ(·) is the corresponding cumulative distribution 

function. Define

It is known from properties of the truncated normal distribution that E(G*|G* ∈ A*) = θ and 

var(G*|G* ∈ A*) = 1 + η − θ2. This means that E(W*|G*) = ρWGG*, and consequently

Since ,

Consequently, since E(W*|G* ∈ A*) = ρWGθ,

(A5)

Similarly, since cov(X*, W*|G*) = ρXW − ρXGρWG, E(X*|G*) = ρXGG* and E(X*|G* ∈ A*) 

= ρXGθ,

so that

(A6)

Combining (A4), (A5), and (A6), and remembering that without stratification the attenuation 

is λXW = ρXW σX/σW, we have

Tooze et al. Page 11

Biom J. Author manuscript; available in PMC 2017 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(A7)

Since var(G*|G* ∈ A*) = 1 + η − θ2, it is necessarily the case that – 1 ≤ η − θ2 ≤ 0. 

Substitution of fA = θ2 − η yields Eq. (5). Consequently, the attenuation in the stratified 

model will be greater than that of the full model if .

A.3 Derivation of condition (6) for normally distributed outcomes

In the linear regression of Y on W, the coefficient of W is given by . In the 

linear regression of Y on W and G, the coefficient of W is given by 

.

Suppose that σYW > 0. Then βW < βW |G implies that , which, after 

substituting correlation for covariance, σYG = ρYGσY σG, and some algebraic manipulation, 

leads to condition (6) in the text. Assuming σYW < 0, the condition βW > βW|G also leads to 

condition (6). Note that we assume in this proof that βW and βW|G have the same sign.
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Table 1

Distributions of W, X, and G in Men (N = 200) from the Observing Protein and Energy Nutrition Study, 

Washington, DC, Metro Area, 1999–2000.

Measure (log scale) Mean Variance Correlation with X Correlation with W

Absolute protein (log kcal)

Protein, FFQ (W)     5.64   0.156   0.329

Protein, UN (M)     6.04   0.063   0.800   0.263

Protein, truth (X)     6.04   0.040   0.329

rEI/BMR (G)     0.05   0.128 −0.060   0.803

Protein density

% Energy protein, FFQ (W)     2.70   0.042   0.401

% Energy protein, UN (M)     2.69   0.053   0.753   0.302

% Energy protein, truth (X)     2.69   0.030   0.401

rEI/BMR (G)     0.05   0.128 −0.025 −0.089

Other variablesa)

BMI (kg/m2, log scale)     3.32   0.023   0.382 −0.004

Height (cm) 176.6 56.3   0.280   0.267

Age (y)   54.3 76.6 −0.054 −0.086

FFQ, food frequency questionnaire; UN, urinary nitrogen; rEI, reported energy intake from FFQ; BMR, basal metabolic rate.

a)
Correlation with W for other variables is with absolute protein.
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