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Abstract Possible effects of clothianidin seed-treated oil-
seed rape on honey bee colonies were investigated in a
large-scale monitoring project in Northern Germany, where
oilseed rape usually comprises 25–33% of the arable land.
For both reference and test sites, six study locations were
selected and eight honey bee hives were placed at each
location. At each site, three locations were directly adjacent
to oilseed rape fields and three locations were situated
400 m away from the nearest oilseed rape field. Thus,
96 hives were exposed to fully flowering oilseed rape crops.
Colony sizes and weights, the amount of honey harvested,
and infection with parasites and diseases were monitored
between April and September 2014. The percentage of
oilseed rape pollen was determined in pollen and honey
samples. After oilseed rape flowering, the hives were
transferred to an extensive isolated area for post-exposure
monitoring. Total numbers of adult bees and brood cells
showed seasonal fluctuations, and there were no significant
differences between the sites. The honey, which was
extracted at the end of the exposure phase, contained
62.0–83.5 % oilseed rape pollen. Varroa destructor infes-
tation was low during most of the course of the study but

increased at the end of the study due to flumethrin resistance
in the mite populations. In summary, honey bee colonies
foraging in clothianidin seed-treated oilseed rape did not
show any detrimental symptoms as compared to colonies
foraging in clothianidin-free oilseed rape. Development of
colony strength, brood success as well as honey yield and
pathogen infection were not significantly affected by clo-
thianidin seed-treatment during this study.
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Introduction

The Western honey bee, Apis mellifera, is economically the
most valuable pollinator of crop monocultures worldwide
and yields of some fruit, seed and nut crops are estimated to
decrease by more than 90 % without these pollinators (Klein
et al. 2007). As abundance of wild bees in agricultural fields
is often insufficient, managed honey bee hives are indis-
pensable to ensure sufficient crop pollination. Furthermore,
the global stock of domesticated honey bees is growing
more slowly than agricultural demand for pollination (Aizen
and Harder 2009). In recent years, honey bees have suffered
from high colony mortality, including colony collapse dis-
order, overwinter or seasonal colony losses (vanEngelsdorp
et al. 2008; Neumann and Carreck 2010; Smith et al. 2013).
Honey bee colonies are exposed to multiple and varying
stressors (Potts et al. 2010) including habitat loss, mal-
nutrition, parasites and pathogens, and plant protection
products (PPPs). In particular, systemically acting PPPs of
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the neonicotinoid class of compounds are often held
responsible for honey bee colony losses (Sánchez-Bayo
2014; Goulson et al. 2015; Pisa et al. 2015). Like the
botanical insecticide nicotine, neonicotinoids act as agonists
at nicotinic acetylcholine receptors in the insect central
nervous system (for reviews, see, Tomizawa and Casida
2005; Jeschke et al. 2013). Neuroactive neonicotinoids are
commonly used as seed dressings in a variety of crops
including oilseed rape (OSR) and are taken up systemically
by the growing plant and distributed to all tissues (Elbert
et al. 2008). The systemic activity of neonicotinoids makes
them effective as a seed dressing, providing protection to
crops in their more vulnerable early stages of growth. This
reduces the number of foliar insecticide applications
required, which are often applied at much higher application
rates and generally result in an increased exposure of non-
target organisms (Cutler et al. 2014; Pisa et al. 2015).

Due to the concerns about the impact of neonicotinoids
on honey bees and other pollinators, the use of the three
neonicotinoids imidacloprid, clothianidin, and thia-
methoxam has been temporarily suspended in the European
Union as seed treatment, soil application, and foliar treat-
ment in crops attractive to bees (European Commission
2013). Various laboratory and semi-field studies that link
poor overall condition of bee colonies to widespread use of
neonicotinoid PPPs have been criticized (Cresswell and
Thompson 2012; Guez 2012; Carreck and Ratnieks 2014;
Godfray et al. 2014) for not using field realistic doses or for
subjecting bees in the laboratory exclusively to food spiked
with neonicotinoids. Thus, a key question is how neonico-
tinoids influence bees in real-world agricultural landscapes
(Schmuck and Lewis 2016, this issue).

To examine potential effects of clothianidin seed dres-
sing on pollinators under common agricultural practice we
initiated a comprehensive monitoring project in 2013. This
large-scale field study aimed to investigate possible side
effects of clothianidin-dressed OSR seeds at the landscape
level on various pollinators under actual agricultural con-
ditions (Heimbach et al. 2016, this issue). Monitoring stu-
dies at the landscape level (Cutler and Scott-Dupree 2007;
Pilling et al. 2013; Cutler and Scott-Dupree 2014; Cutler
et al. 2014; Rundlöf et al. 2015) have not been widely
performed within the registration procedure of PPPs in the
European Union. Their use has been proposed for some
time as a valuable tool to improve risk assessment by
increasing realism (e.g., Liess et al. 2005). This project
consisted of four different pollinator studies performed in
the project area at the same time: a honey bee monitoring
study (this paper), a mason bee (Osmia bicornis) monitoring
study (Peters et al. 2016, this issue), a bumble bee (Bombus
terrestris) monitoring study (Sterk et al. 2016, this issue),
and a residue analysis of pollen and nectar from foraging
honey bees in tunnel tents as well as of pollen, nectar, and

honey of free-flying honey bees, bumble bees, and mason
bees (Rolke et al. 2016, this issue).

For the honey bee study described here, eight honey bee
hives were installed at each of twelve study locations, six in
the reference (R) site and six in the test (T) site, and thus a
total of 96 colonies was monitored. The objectives of the
study were to investigate (1) the short-term effects of the
OSR seed dressing on honey bee colonies exposed at the R
and T site (e.g., population development, honey production,
Varroa infestation levels etc.) to OSR at flowering and (2)
post-exposure effects of the OSR seed dressing on honey
bee colonies after transfer to four locations in a post-
exposure monitoring area, where they were observed until
autumn.

Materials and methods

Study locations

The study was conducted at two neighboring study sites in
the vicinity of Sternberg, Northern Germany during OSR
flowering (exposure phase). Each study site covered an area
of approximately 65 km2 with a diameter of 9 km. In
autumn 2013, Elado®-dressed OSR seeds (10 g clothianidin
and 2 g β-cyfluthrin/kg seed) were drilled in all study fields
at the test (T) site, whereas Elado®-free OSR seeds were
drilled at the reference (R) site. For a detailed description of
seed treatment, OSR fields, and planting, see Heimbach
et al. 2016 (this issue). Six study locations were selected at
the R site (Fig. 1a) and another six at the T site (Fig. 1b).
Study locations were located in the center of each study site
at least 3 km away from the outer edge to exclude a
potential movement of foraging honey bees outside the
study sites. The requirements for separation of reference and
test conditions limit the possibility for true statistical
replication which would be desirable under ideal conditions
(Hurlbert 1984) but is hardly feasible for large-scale honey
bee monitoring studies (Pilling et al. 2013). Since a possible
treatment effect could be confounded with site differences,
the study sites were cautiously selected to be as similar as
possible (Heimbach et al. 2016, this issue). In addition, the
applied mixed effects models (see “Data analysis”) are a
common tool to address non-independence of data (Zuur
et al. 2009). Three out of the six study locations per study
site were established at the edge of an OSR field and the
other three were situated in 400 m distance to the nearest
OSR field (Figs. 1a and b). During the post-exposure phase,
the study was continued at four locations in Erlensee, west-
central Germany in an area without any agricultural or
horticultural activities (Fig. S1A). These locations were
chosen to be as close and similar to each other as possible.
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Honey bee colony handling and management

Honey bee (Apis mellifera carnica) colonies maintained
according to normal beekeeping practice, disease-free, and
queen-right were used. On 23–24 May 2013, test colonies
were produced, each consisting of two brood combs, two
food combs, and six empty combs and comb foundations.
All combs were marked with numbers. Queen cells were
added to the newly formed test colonies. All queens were
offspring (F1) from the same mother queen. Newly emerged
queens were allowed to perform mating flights and were
individually marked. Developing colonies were inspected
every 2–3 weeks and, when necessary, the hives were
expanded or food was added. The colonies were over-
wintered in one box (brood chamber) each. When delivered
to the study sites at the beginning of OSR full flowering on
day after placement (DAP) -1 (21 April 2014), the hives
consisted of the brood chamber including ten bee-covered
combs. The setup of the hives took place on two con-
secutive days, at study locations RA, RB, RC, RE, RF, TA,
TB, TC, and TF on DAP 0 and at study locations CD, TD,
and TE on DAP 1 (Figs. 1a and 1b). Eight honey bee hives
were placed at each location (Fig. 1c). In front view, the
three hives on the left (1–3) were placed together on a metal
frame followed by a single hive (4) on an individual metal
frame, which was equipped with a hive scale. To the right,
the same arrangement was repeated for hives 5–8. An
anemometer was placed between hives 4 and 5. After set-
up, all hives were marked with a colony code. The colony
code consisted of the location designation (RA to RF and
TA to TF for reference and test locations, respectively) and

the position of the hive at the location (1–8). The exposure
phase lasted 28 days. Honey bee hives were expanded
during OSR blossom by adding honey supers, as necessary.
Whenever honey supers were added during the study, a
queen excluder was placed on top of the brood chamber.
The exposure phase ended on 20 May 2014 (DAP 28) when
40–90 % of pods have reached final size.

At the end of OSR flowering, hives were loaded on a
truck and transported to the four post-exposure study
locations in Erlensee, west-central Germany (Fig. S1A).
Every post-exposure location received two colonies from
each exposure location resulting in 24 hives (including six
hives on hive scales) at each post-exposure location, 12
from the R site and 12 from the T site (Fig. S1B). The
selection and order of placement was randomized (Table
S1). For the post-exposure phase, the data comparison of
experimental groups was continued according to their
grouping during the exposure phase, although colonies were
re-grouped during the post-exposure phase. The post-
exposure phase started on 26 May 2014 (DAP 34) and
lasted for 123 days until 26 September 2014 (DAP 157). On
DAP 36, each colony was fed with 2.5 kg of sucrose paste
(Apifonda, Südzucker AG, Germany). On DAP 84, each
colony was fed with 5 l of sucrose fructose glucose syrup
(ApiInvert, Südzucker AG, Germany) and on DAP 108 and
DAP 115 each colony was fed with 7 l ApiInvert. Treatment
of honey bee colonies to control Varroa mites started on
DAP 101 with the application of four Bayvarol® strips
(Bayer AnimalHealth, Leverkusen, Germany; active sub-
stance: flumethrin), which were left inside the hives until
the end of the study.

Fig. 1 Study locations and
arrangement of honey bee hives
during the exposure phase. In a
and b, yellow polygons indicate
OSR fields. a Study locations at
the reference site. Locations RA,
RB, and RC were established at
the edge of an OSR field and
locations RD, RE, and RF were
situated in 400 m distance to the
nearest OSR field. b Study
locations at the test site.
Locations TA, TB, and TC were
established at the edge of an
OSR field and locations TD, TE,
and TF were situated in 400 m
distance to the nearest OSR
field. c Arrangement of honey
bee hives at the study locations
during the exposure phase.
a= honey bee hive, b= honey
bee hive on a hive scale,
c= honey bee hive on a hive
scale connected to a rain gauge,
d= anemometer
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Colony endpoint measures

Each colony was continuously monitored with four
assessments during the exposure phase and three assess-
ments during the post-exposure phase. For individual
assessment dates, see Table S2 (exposure phase) and Table
S3 (post-exposure phase). During each assessment, the
following parameters were recorded based on the Liebefeld
method (Imdorf et al. 1987): estimated number of adult
bees, estimated area covered with capped brood, and esti-
mated area covered with open brood. All estimations were
performed by one beekeeper. For the second assessment,
bee number and brood area estimates were validated by
weighing three combs per hive with and without bees and
automatic photo evaluation of combs (software Honeybee-
Complete, WSC Scientific, Heidelberg, Germany), respec-
tively, showing high correlation and no bias in relation to
experimental groups (data not shown). At every study
location, two hives were placed on hive scales (CAPAZ
GSM 200, CAPAZ, Oberkirch, Germany). These hive
scales continuously measured the weight of the hive and
recorded local weather data (temperature, humidity). One
hive scale per study location was connected to a rain gauge.
Recordings were taken in an interval of 1 h. From these
data, a daily mean was calculated. The daily mean value of
DAP 3 was used as the starting point for weight gain ana-
lysis because all colonies were provided with their first
honey super at this time point.

Harvest of spring honey took place immediately after the
exposure phase (DAP 33). Honey from each colony was
extracted separately and weighed. Samples were taken for
residue analysis (see Rolke et al. 2016, this issue) and for
palynological analysis. Summer honey was harvested on
DAP 84. Pollen collected by bees was sampled in order to
study foraging activities of bees and to identify and classify
pollen sources. Pollen samples were taken twice from all
experimental colonies at two different sampling days during
OSR flowering (DAP 15 and DAP 19/23). Bottom mount
pollen traps including collection grids were added to the
hives the day before sampling. On the following day, pollen
traps were removed and the entire pollen yield was trans-
ferred to plastic bottles. Samples were stored at −20 °C until
analysis. Palynological analysis of spring honey and bee-
collected pollen grains was performed by the Bee Research
Institute Celle (Germany) as described by von der Ohe et al.
(2004).

To assess honey bee mortality and infestation with
Varroa mites, the naturally occurring fall of dead bees and
mites was recorded using flat plastic trays (340 mm ×
340 mm × 55 mm) covered with metal grids which were
placed onto the bottom board of the hives. First introduction
of the plastic trays was during the 1st assessment
(Table S2). Numbers of dead bees on the grids and dead

mites on the trays were counted during each of the fol-
lowing assessments (Table S2). Flumethrin-induced mite
fall was assessed continuously every 7 days. After each
counting, plastic trays and grids were cleaned and imme-
diately reintroduced. On DAP 100 (immediately before
flumethrin treatment) and on DAP 147/148 (after 6 weeks
of flumethrin treatment) infestation of worker bees with
phoretic mites was recorded using the icing sugar method
according to Dietemann et al. (2013). For the investigation
of bee diseases, adult bees were taken from the honey
supers at two different time points during the exposure
phase (DAP 4–7, DAP 24–28) and once at the end of the
post-exposure phase (DAP 153–155). For Nosema diag-
nosis, a semi-quantitative microscopic examination of a
bulk sample of about 20 bees was carried out as described in
detail by Topolska and Hartwig (2005). Samples for virus
diagnostics were transferred to the Institute for Bee
Research Hohen Neuendorf e.V. (Germany) for analysis.
Total RNA of 10 bee heads per sample was extracted using
standard methods following the manufacturer’s protocol
(RNeasy Mini Kit, Qiagen, Hilden, Germany). Qualitative
one-step RT-PCR for the detection of deformed wing virus
(DWV), sacbrood virus (SBV), acute bee paralysis virus
(ABPV), chronic bee paralysis virus (CBPV), and Kashmir
bee virus (KBV) was performed according to standard
protocols (One-step-RT-PCR Kit, Qiagen). Primer details
and the length of the resulting amplicon as well as the
temperature schemes used for each virus are given in Tables
S4 and S5. Primer sequences for the detection of DWV,
SBV, KBV, and ABPV were obtained from the literature
(Stoltz et al. 1995; Benjeddou et al. 2001; Bakonyi et al.
2002; Genersch 2005; Yue et al. 2006; Maori et al. 2007).

Local weather recordings

Local weather recordings were made as described in detail
by Heimbach et al. 2016 (this issue). Briefly, temperature,
humidity, quantity of rainfall, and wind (speed and direc-
tion) were measured over the entire study period (except
between exposure and post-exposure phase) including the
days of assessment. For temperature, humidity, and rainfall,
one data point was generated per hour, whereas wind data
were saved every 10 min. For each parameter, a daily mean
was calculated. These daily means were then added up to
achieve sums for each parameter.

Data analysis

LASSO (Least Absolute Shrinkage and Selection Operator;
Hastie et al. 2009) were implemented to perform an auto-
matic feature selection to find out the variables and their
interactions that are important for the reproduction end-
points and various metrics for bee pests and diseases,
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accounting for co-linearity at the same time. The LASSO
procedure resulted in a parsimonious model with few
parameters which served as a basis for the final model. The
final model presented in this paper is based on expert
judgment because it is always important to consider the
identity of variables that are being removed, and whether
certain variables are more biologically meaningful, or
whether certain variables are better representations of
underlying processes. The study site is always included in
the final model regardless of the measure of significance
because this is what we were interested in. Some interaction
terms selected by the automatic LASSO procedure, like the
interaction between DAP and wind sum, were considered
not biologically relevant and were replaced by their main
fixed effects. Co-linearity still exists in the final model, but
not for the study site factor (variance inflation factor
approximately 1), which means the standard error estimates
are not inflated for the treatment effect. For other weather
variables, chunk tests of correlated variables are powerful
because co-linear variables join forces in the overall mul-
tiple degree of freedom association test, instead of com-
peting against each other as when variables were tested
individually. However, we were not interested in the
strength of meteorological effects and, therefore, further
chunk tests were not performed. The standard errors of
meteorological coefficient estimates should be interpreted
with caution though.

A linear mixed model (LMM) was constructed using the
log of the ratio between the number of bees and the number
of bees at 1st assessment as the response variable, and study
site, distance to OSR, DAP, DAP^2, and meteorological
conditions (temperature sum, wind sum) as the explanatory
variables. The ratio between the number of bees and the
number of bees at 1st assessment was used to adjust for
slight initial differences. The intercept in the result table is
the estimated mean value of the dependent variable (e.g.,
“log (Number of bees/Number of bees at 1st assessment)”),
in case all continuous variables are held at 0 (“DAP”= 0,
“Temperature sum”= 0, etc., if the predictor “Temperature
sum” is centered, then at the mean temperature sum) and all
categorical variables are held at their reference levels. For
the covariate “Study site” the reference level is “reference
site”. For the covariate “Distance to OSR” the reference
level is “edge”. The polynomial term “DAP^2” describes
curvature in the data and is included because exploratory
data analysis revealed a clear quadratic relationship between
“DAP” and “Number of bees” (parabolic curve). Nested
random effect terms were included in the model to address
the random effects due to specific locations and individual
hives. The same was done for numbers of capped and open
worker brood cells.

Linear mixed effect models were fitted to the data of
honey yield. The amount of spring honey was related to

study site, distance to OSR, and meteorological conditions
(temperature sum, humidity sum, rain sum, and wind sum).
Random intercepts for locations were included to account
for the study design. The amount of summer honey was
related to study site and distance to OSR with location
random effects.

For the pollen composition data, a beta regression model
was fitted to the relative amount of OSR pollen with study
site, distance to OSR, and meteorological conditions (tem-
perature sum, humidity sum, rain sum, and wind sum) as
explanatory variables. Because beta regression requires data
to be strictly greater than 0 and smaller than 1, values of
100 % were corrected to 99.9999 % before fitting the model.

For metrics regarding parasites and diseases, a general-
ized linear mixed model (GLMM) with Poisson error dis-
tribution and log link function was constructed using the
Varroa infestation level as the response variable and DAP,
study site, distance to OSR, and meteorological conditions
(temperature sum, humidity sum, rain sum, and wind sum)
as explanatory variables. Location was included as random
factor. GLMMs with binomial error distribution and logit
link function were fitted to Nosema, DWV, SBV, and
ABPV in relation to DAP, study site, distance to OSR, and
meteorological conditions.

Statistical evaluation was conducted with the statistical
software package “R” (version 3.0.1; R Development Core
Team 2011). Feature selections were conducted using the
package “glmnet” (Friedman et al. 2010). The predictor
variables were centered and scaled before entering into
analysis whenever necessary. GLMMs and LMMs were
fitted to the data using the packages “lme4” (Bates et al.
2014) and “nlme” (Pinheiro et al. 2015). Residual plots,
random effects plots, and augmented predictions plots were
examined to validate model assumptions.

A minimum detectable difference (MDD) concept has
been developed as an indicator of the power of a test a
posteriori for aquatic mesocosm/microcosm studies (Brock
et al. 2015). However, the MDD-calculation depends on the
statistical analyses (or tests) applied to analyze the data. The
calculation of the MDD for this monitoring study general-
ized (or extended) the MDD concept to suit the mixed
model analysis. Augmented prediction confidence intervals
were used as the basis for the derivation of the MDD and
MDD%. Detailed information can be found in the Supple-
mentary Material (Extension of the MDD concept).

Results

Number of adult bees, capped, and open brood cells

The same pattern of development, which is characterized by
an increase followed by a decrease in numbers of adult
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honey bees, could be observed in all colonies during the
study period (Fig. 2a). Data from assessment 1 (DAP 4–7)
indicated that colonies had similar starting conditions at the
beginning of the study. Until assessment 2 at DAP 11–13,
the number of adult bees increased by approximately one-
third. The increase continued for all colonies until the
number of adult honey bees peaked between assessments 4
(DAP 24–28) and 5 (DAP 50–52) (Fig. 2a and Table S6).
The variability between study locations was similar
throughout the study. The increase in the number of adult
bees was similar between the R and T sites (Table 1).
Furthermore, no statistically significant differences occurred
between study locations situated at the edge of OSR fields
and located in 400 m distance to OSR fields (Table 1).

At assessment 1, mean numbers of capped worker brood
cells were comparable for R-site and T-site colonies. During
the exposure phase, numbers of capped worker brood cells
decreased slightly toward the assessment 2 and reached
their maximum at assessment 4 (Fig. 2b). During the post-
exposure phase, the number of capped worker brood cells
decreased in the majority of colonies from both study sites.
The variability between study locations was similar
throughout the study. Marginal differences in the number of
capped worker brood cells between the R and T sites were
not statistically significant (Table 1). At most time points,
study locations situated at the edge of OSR fields did not
differ distinctively from those located at 400 m distance
from the OSR fields. Simple Wald t-test showed the coef-
ficient estimate for distance to the OSR fields was not sig-
nificantly different from zero (Table 1).

Most colonies (49 colonies) showed an increase in the
number of open worker brood cells during the first part of
the exposure phase followed by a decrease toward the end
of the exposure phase. This pattern was similar in all study
locations and, hence, also for R and T site colonies
(Fig. 2c). At the peak of open brood cells, numbers aver-
aged 12,710 ± 3816 (mean± SD; median: 13,300) at the R
site and 12,115± 4685 (mean± SD; median: 12,250) at the
T site. The variability in the number of open worker brood
cells was high at certain study locations (e.g., CC and TE)
but overall similar (Fig. 2c). No statistically significant
differences could be identified between the R site and T site
locations or between study locations situated at the edge of
OSR fields and located in 400 m distance to OSR fields
(Table 1).

The %MDDs for the three reproduction-related end-
points were 15.2–21.4 % for the number of adult worker
bees, 30.8–40.8 % for the number of capped worker brood
cells, and 34.9–49.3 % for the number of open worker
brood cells (Table 5). This indicates that in this monitoring
study even relatively small effects on the number of bees as
well as on numbers of capped and open worker brood cells
could have been detected by the applied statistical analyses.

Colony weight gain

In general, all measured colonies showed the same pattern
of weight gain during the exposure phase (Fig. 3). From
DAP 3 to DAP 9 a continuous increase of 23.18± 2.93 % in
colony weight (R site, Figs. 3a and 3b) and 22.91± 3.41 %
(T site, Figs. 3c and 3d) took place. Due to unfavorable
weather conditions, the weight of the measured colonies
changed only marginally from DAP 10 until DAP 21.
Thereafter, colony weight increased again until DAP 27.
Weight gain was very similar in R and T site colonies.
During the post-exposure phase, the same 24 colonies were
weighed continuously. Various apiarist operations influ-
enced the colony weight during this period (feeding, add-
ing/removing of honey supers, and bee escapes). However,
as during the exposure phase, all measured colonies showed
the same pattern of weight development during the post-
exposure phase (data not shown). Weight development was
similar in former R and T site colonies.

Honey yield

Spring honey yield of each individual colony was weighed
and overall averaged 25.1± 3.6 kg per colony. Values for
spring honey yield were combined for colonies of the three
study locations within each experimental group (R edge, R
distant, T edge, and T distant; Fig. 4a). There was clearly no
effect of the clothianidin dressing on spring honey yield, but
yields did differ according to the distance to the OSR fields
(Fig. 4a, Table 2). Compared to colonies which were
located at the edge of OSR fields, honey yield from colonies
that were located 400 m distant from OSR fields was sig-
nificantly lower (Table 2). This effect is consistent both for
the R and the T site (Fig. 4a). Honey was harvested a
second time (summer honey) approximately 1 month after
placement of the colonies at the locations in Erlensee (DAP
84). Summer honey yield was very low with an average of
8.4± 3.9 kg per colony (Fig. 4b). The amount of harvested
summer honey did not differ for colonies from the former R
and T sites (Fig. 4b, Table 2). As for spring honey yield, the
climatic parameters did not affect summer honey yield. A
comparison of %MDD with the Difference (%) values
(Table 5) indicates that the experimental design allowed for
the determination of even relatively small effects on the
yield of spring and summer honey if present.

Pollen composition

At least 50 % of pollen in spring honey samples from
almost all experimental colonies originated from OSR
(Fig. 5a). For R site colonies, the mean (±SD) percentage of
OSR pollen in spring honey samples was 72.71 %± 10.51%
and 69.96 %± 10.39 % for edge and distant locations,
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Fig. 2 Development of the
numbers of adult honey bees (a),
capped brood cells (b), and open
brood cells (c) in colonies
located at study locations in the
reference site (no clothianidin
seed-dressing) and the test site
(clothianidin seed-dressing). The
box plots contain the 1st and 3rd

quartiles, split by the median;
traditional Tukey whiskers go
1.5 times the interquartile
distance or to the highest or
lowest point, whichever is
shorter. Any data beyond these
whiskers are shown as points.
DAP day after placement
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respectively. For T site colonies, the mean (±SD)
percentage of OSR pollen in spring honey samples was
79.61 %± 7.48 % and 77.88 %± 8.93 % for edge and dis-
tant locations, respectively. Colonies from the T site have
on average a significantly higher proportion of OSR pollen
in the spring honey samples than colonies from the R site
but there was no significant difference between edge and
distant study locations (Table 3). The relative frequency of
pollen grains from other nectar sources was low (Fig. 5a).
Among the pollen types other than OSR pollen, willow
pollen was the most frequent in honey samples. The MDD
results clearly indicate that the experimental design of the
monitoring study allowed for the determination of relatively
small effects on pollen composition in spring honey
(Table 5).

The percentage of OSR pollen in samples of bee-
collected pollen was lower for the first sampling (DAP 15;
34.0%± 17.8%) than for the second sampling (DAP 19/23;
80.2 %± 12.0 %). This pattern was consistent for colonies
from both the R and the T sites (Fig. 5b). For the first
sampling (DAP 15, Fig. 5b), the mean (±SD) percentage of
OSR pollen was 32.3 %± 21.2 % and 35.8 %± 13.5 % for
R site colonies and T site colonies, respectively. For some R
site study locations, the percentage of OSR pollen was
highly variable. At some study locations, relatively high
percentages of maple pollen (Acer) were recorded. For the
second sampling (DAP 19/23, Fig. 5c), the mean (±SD)
percentage of OSR pollen increased to 77.5 %± 14.1 % and
82.8 %± 8.8 % for R site colonies and T site colonies,
respectively. In addition to OSR pollen, pollen of the
Crataegus type was relatively abundant. Thus, for the sec-
ond sampling, OSR became the major pollen source for
honey bees both at the R site and the T site.

Pests and diseases

Honey bee mortality as determined by counting dead bees
on a metal grid within the hive was very low in all colonies
throughout the exposure phase and during most of the post-
exposure phase (Fig. S2). From DAP 122 until the end of
the post-exposure phase, up to 12 dead bees per day were
detected in individual colonies although the median over all
colonies remained low at ≤2 (Fig. S2). Fitting a general
additive mixed model to the data revealed that the number
of dead bees was equal for the R and the T site (data not
shown).

During the exposure phase, naturally occurring daily fall
of dead Varroa mites was low in the R site and in the T site
(Fig. S3). As expected due to the annual population growth,
daily mite fall (although highly variable) steadily increased
during the post-exposure phase (Fig. S3). Flumethrin-
induced mite fall was high with an average of 59.0± 27.1
mites per day at DAP 108 (Fig. S3B). These numbersT
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increased even further during the subsequent assessments
until they reached 64.5± 35.6 mites per day at DAP 129
(Fig. S3B). After the DAP 136 assessment, numbers
decreased only slightly (Fig. S3B). Due to high Varroa
infestation, 11 R-site colonies and 9 T-site colonies col-
lapsed until DAP 155. Overall, the numbers of the Varroa
mites fallen per day showed a high variability between
colonies and study locations but were similar between the
different experimental groups (Fig. S3).

On DAP 100 (immediately before the application of
Bayvarol® strips) and on DAP 147/148, a second inde-
pendent method, the icing sugar method (see “Colony
endpoint measures”), was used to assess Varroa infestation
levels (Fig. 6). At DAP 100, numbers of mites per approx.
500 bees are highly variable between colonies and study
locations and ranged between 4 and 61 (Fig. 6a). There was
no statistically significant difference depending on the study
site (R and T) or the distance to OSR fields on mite load
(Table 4). The Varroa mite load at DAP 147/148 was
considerably higher at all study locations than at DAP 100
despite the continuous presence of Bayvarol® strips. At this
time, the abundance of honey bees in five R-site and five T-
site colonies was already too low to perform the icing sugar
method. For the remaining colonies, mite load per approx.
500 bees ranged from 19 to 126 mites (Fig. 6b). There was
no difference between R site colonies and T site colonies,
nor between edge and distant locations.

For naturally occurring (DAP 11–92) and flumethrin-
induced (DAP 108–150) mite fall, %MDD ranged from
73.3 % to 690 % and from 67.9 % to 69.7 %, respectively
(scattering due to DAP and distance to the nearest OSR
field, Table 5). All %MDD greater than 100 % occurred on
DAP ≤63 when the predicted number of mites fallen
per day in both the R and T sites were very close to zero.
For the Varroa infestation level as determined by the icing
sugar method, the %MDD ranged from 23.4 % to 24.5 %
(mean 24.0 %, Table 5) depending on DAP (100 or 147/
148) and distance to the nearest OSR field. Thus, due to the
experimental design of the monitoring study, small differ-
ences could have been identified as statistically significant.

Infestation with Nosema was relatively low. Nosema
spores were detected in 12 of the 96 colonies in which 7 of
the infested colonies showed only the lowest level of
infestation (+, “few spores found”; see Topolska and
Hartwig 2005). All colonies with an infestation with
Nosema were tested positive only once, except colony
RB-2, which was tested positive twice at DAP 7 and DAP
26. Medium (++) and high (+++) levels of infestation
occurred usually at study locations where additional colo-
nies were infested. There were slightly more colonies from
the R site with Nosema infection. However, this difference
between R and T sites was not statistically significant
(Table 4). Likewise, there was no significant effect of the
distance to the nearest OSR field (Table 4). The test power

Fig. 3 Comparison of percentage of increase in weight of colonies in experimental groups located at study locations in the reference site and the
test site. Data are the means± SEM. DAP day after placement
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for Nosema infestation indicated by MDD is relatively low
(Table 5); however, the infestation with Nosema in T site
colonies was in fact slightly lower than in R site colonies.
Thus, no effect of clothianidin seed dressing on Nosema
infestation level could be identified.

The DWV was detected in honey bees from 7 out of
96 colonies (7.3 %) during the first sampling (“start of
exposure”, Fig. 7b1) and from 3 out of 96 colonies (3.1 %)
during the second sampling (“end of exposure”, Fig. 7b2).
At the end of the post-exposure phase, bees from 39 out of
75 colonies (52.0 %) were positive for DWV (Fig. 7b3) and

typical symptoms could be observed. The difference
between R and T site colonies is marginal and not statisti-
cally significant (Table 4). The SBV did not occur in any of
the colonies during the 1st and 3rd sampling, but in 3 out of
96 colonies (3.1 %) during the 2nd sampling at the end of the
exposure phase (Fig. 7c). Despite the positive result in these
three colonies, no symptoms of SBV infection at the colony
level were observed. Due to the very limited numbers of
SBV-infected colonies, a comprehensive statistical analysis
was not possible which is indicated by the high standard
errors of the parameter estimates (Table 4). At the “end of
the post-exposure phase”, ABPV occurred in 34 out of 75
colonies (45.3 %; Fig. 7d3). There were no infections with
CBPV or KBV detected in any of the experimental colo-
nies. The %MDDs for the virus infections were 43.7–71.7
% for DWV, 0–100.0 % for SBV, and 52.3–100.0 % for
ABPV (Table 5).

Discussion

General

In the current study we attempted to use a realistic, worst-
case scenario for honey bee exposure to clothianidin seed-
treated OSR. During the bloom period (exposure phase),
honey bee colonies were placed directly adjacent to OSR
fields or 400 m away from the nearest OSR field, and then
they were moved to a fall apiary for post-exposure mon-
itoring. The honey bee colonies grew very well and showed
a typical development during the exposure phase. During
the post-exposure phase, colonies developed character-
istically in respect to seasonal changes and the extensive
hive locations. The choice of Varroa treatment by flume-
thrin turned out to be inefficient because of resistance, but
this was not linked to exposure of clothianidin seed-treated
OSR during blossom. Since no additional steps were taken
to control Varroa and to avoid colony losses, both R-site
and T-site colonies suffered from heavy infestation in the
second half of September 2014. Thus, possible effects of
clothianidin seed-treated OSR on weakened honey bee
colonies could be evaluated.

Development of honey bee colonies during monitoring

It is widely accepted that foraging honey bees do not die
immediately after visiting flowers in clothianidin-treated
crops because residue levels in nectar and pollen are well
below the acute oral LD50 (for recent reviews, see Godfray
et al. 2014; Pisa et al. 2015). However, prolonged exposure
of honey bees to sublethal doses of neonicotinoids is sus-
pected to potentially lead to colony failure (Henry et al.
2012). In the majority of cases, sublethal effects were

Fig. 4 Amount of spring honey (a) and summer honey (b) harvested
from colonies from different experimental groups. The box plots
contain the 1st and 3rd quartiles, split by the median; traditional Tukey
whiskers go 1.5 times the interquartile distance or to the highest or
lowest point, whichever is shorter. Any data beyond these whiskers are
shown as points. R reference site, T test site
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demonstrated in laboratory experiments and semi-field trials
and are based on relatively high neonicotinoid exposure
levels, e.g., in terms of the concentrations fed to honey bees,
duration of exposure, and lack of choice (for a review, see
Carreck and Ratnieks 2014). Within the context of this
monitoring study, we could demonstrate, at least for clo-
thianidin seed-treated winter OSR, that neonicotinoid con-
centrations in nectar and pollen are clearly lower under
realistic outdoor conditions. Honey bees are exposed to low
residue concentrations not only when freely foraging in the
landscape but also when foraging under confined conditions
in a tent (Rolke et al. 2016, this issue). This is consistent
with earlier findings on clothianidin residues in OSR (Cutler
and Scott-Dupree 2007; Pohorecka et al. 2012; Pilling et al.
2013; Cutler et al. 2014).

During this monitoring study, the number of dead bees,
colony strength, brood development, and food storage
levels were, on average, similar between R and T colonies.
By monitoring the weight of colonies, it was evident, too,
that there were no substantial losses of foraging bees
exposed to clothianidin seed-treated OSR. So far, only very
few studies have been conducted, in which the performance
of honey bee colonies placed adjacent to fields treated or not
treated with neonicotinoids are compared. In none of these
studies, negative effects on honey bee colonies could be
demonstrated. For example, in the 4-year study conducted
by Pilling et al. (2013), honey bee colonies were placed
beside thiamethoxam-treated or reference fields of maize
(three replicates) or OSR (two replicates) for 5–8 days (first
3 years) or 19–23 days (4th year) to coincide with the crop
flowering period. Pollen and nectar samples from test hives
showed slightly higher concentrations of thiamethoxam
residues compared to reference hives, but no differences in
multiple measures of colony performance or overwintering
survival were observed (Pilling et al. 2013). Two studies
performed in Canada concluded that the potential harm
from exposure to clothianidin in seed-treated OSR was
negligible for honey bees (Cutler and Scott-Dupree 2007;

Cutler et al. 2014). Comparable results were also obtained
in a recent study by Rundlöf et al. (2015) who analyzed
eight spring OSR fields sown with clothianidin-dressed
OSR seeds and eight fields sown with untreated seeds
across southern Sweden. The authors found no significant
difference in honey bee colony growth between treated and
reference fields (Rundlöf et al. 2015). Table S7 provides a
comparison of experimental set-up details and results of
relevant field studies mentioned here.

Attractiveness of OSR to honey bees

We found a significantly higher proportion of OSR pollen
in spring honey samples from T site colonies compared to
samples from R site colonies (Fig. 5a; Table 3). Thus, the
results of our monitoring study may at first glance support
the hypothesis that honey bees prefer nectar that contains
low amounts of neonicotinoids. Evidence for such a pre-
ference was recently provided by Kessler et al. (2015) who
found in choice experiments in the laboratory that bees were
more likely to choose nectar containing imidacloprid or
thiamethoxam (but not clothianidin). We believe, however,
that the differences in pollen composition observed in the
current monitoring study at the landscape level are more
likely due to slight differences in the availability of alter-
native bee plants between the two study sites. In any case,
we found no indications for the alternative hypothesis that
honey bees are able to recognize and learn to avoid
neonicotinoid-treated plants (for reviews, see Godfray et al.
2014; Pisa et al. 2015). Such an avoidance has recently been
shown for pollinating flies and beetles (Easton and Goulson
2013).

In addition, both pollen sampling events confirmed the
attractiveness of OSR pollen as a protein source for honey
bees although the relative amount of OSR pollen in the bee
pollen loads varied considerably depending on the local
availability of alternative forage in the neighborhood of the
study locations. Some plants were clearly highly attractive

Table 2 Summary of statistical
results as obtained from a LMM
fitted to the amount of spring
honey and summer honey,
respectively

Amount of spring honey Amount of summer honey

Intercept 8.35± 63.03 8.34± 1.11***

Study site (test compared to reference) 0.25± 0.85 −1.26± 1.08

Distance to OSR (distant compared to edge) −2.58± 0.89** −1.19± 1.08

Temperature sum 0.08± 0.11

Humidity sum 0.00± 0.02

Rain sum −0.09± 0.13

Wind sum −0.08± 0.06

Effect size ± SD is given for each parameter. Positive values indicate an increase in relation to the respective
reference value whereas negative values indicate a decrease. For the parameter “Study site” the reference
level is “reference site”. For the parameter “Distance to OSR” the reference level is “edge”. ***p< 0.001,
**p< 0.01
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to honey bees, especially maple at certain study locations
during the first sampling. This is not unexpected as honey
bees have complex dietary requirements and are known to
utilize a wide variety of pollen (and nectar) sources (e.g.,
Brodschneider and Crailsheim 2010; Garbuzov et al. 2015).
We found no indications for preference or avoidance of
OSR pollen from T site fields. This finding is in line with
other field studies performed by Cutler et al. (2014) and
Rundlöf et al. (2015), where the pollen extracted from
pollen traps contained on average 88 and 57.8 % OSR

pollen, respectively, with similar proportions for both
reference and test fields. A lower percentage of 14 % OSR
pollen pellets was reported by Garbuzov et al. (2015), who
placed hives in a rural location near Brighton (UK) in 2012.
In the study by Garbuzov et al. (2015), OSR was less than
4 % of the area within 6 km of the rural apiary, whereas
OSR comprised 27 % of the arable land in the current study.
In addition, hives were placed at the edge of OSR fields or
400 m distant from OSR field in the current study, whereas
the closest OSR field was situated 700 m from the hives in
the study performed by Garbuzov et al. (2015).

Residue analysis showed that clothianidin was absent in
pollen and nectar samples from the R site (Rolke et al. 2016,
this issue). This finding confirms that honey bees did not
forage off-site and, thus, argue in favor of the study design.
This is not trivial as, for example, Cutler et al. (2014), who
detected clothianidin in pollen samples from reference
hives, point to “the difficulty of conducting a perfectly
controlled field study with free-ranging honey bees in real-
world agroecosystems”. They argue further that this is
especially true when conducting experiments with neoni-
cotinoids, which are now widely used on a large number of
crops and commodities (Cutler et al. 2014). Average con-
centrations of clothianidin was 0.50–0.97 μg/kg and
0.68–0.77 μg/kg, in pollen and nectar samples from T site
colonies, respectively (Rolke et al. 2016, this issue). This
indicates not only that T site colonies were indeed exposed to
clothianidin but also that the exposure level is low under real
agricultural field conditions.

Table 3 Summary of statistical results as obtained from a beta
regression model fitted to the relative frequency of Brassica napus
pollen grains in spring honey

Relative frequency of
Brassica napus pollen grains

Intercept 15.10± 7.42*

Study site (test compared to
reference)

0.44± 0.10***

Distance to OSR (distant
compared to edge)

−0.13± 0.11

Temperature sum −0.01± 0.01

Humidity sum 0.00± 0.00*

Rain sum 0.01± 0.01

Wind sum 0.00± 0.01

Precision (phi)a 23.68± 3.40***

Effect size± SD is given for each parameter. Positive values indicate
an increase in relation to the respective reference value whereas
negative values indicate a decrease. All other parameters are as
explained in the legend of Table 1. ***p< 0.001, *p< 0.05
a Precision (phi) is the precision component of the beta distribution,
which is related to the variance of the observations. For fixed mean
mu, the larger the phi the smaller the variance of the dependent
variable

Fig. 5 Percentage of various pollen grains in honey extracted from
experimental colonies (a) as well as in pollen samples from experi-
mental colonies at two sampling events (b: DAP +15; c: DAP +19/+23).
DAP day after placement
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Parasites and diseases

Many researchers assume the parasitic mite Varroa
destructor to be the greatest threat to honey bees (for a
review, see Rosenkranz et al. 2010). The mite acts as a
disease vector and spreads RNA viruses such as DWV to
the honey bees (for reviews, see Genersch and Aubert 2010;
Le Conte et al. 2010). In our monitoring study, naturally
occurring mite fall was initially low but increased expo-
nentially during the second half of the post-exposure phase
(Fig. S3A). Treatment with Bayvarol® strips did not show

the expected effect, because of flumethrin resistance in the
mite population as subsequently revealed by various tests
(flumethrin contact test; test for altered voltage-gated
sodium channel according to González-Cabrera et al.
2013). Numbers of Varroa mites in the hives therefore
increased further (Fig. S3B and Fig. 6b). This very severe
infestation with Varroa mites together with the concomitant
incidence of Varroa-associated viruses (see below) con-
siderably damaged the honey bee colonies which resulted in
the loss of 11 R site colonies and 10 T site colonies by DAP
155. In order to evaluate potential differences in infestation
levels between R and T site colonies, no additional treat-
ment was applied to control Varroa infestation and to avoid
colony losses. Despite the extreme conditions that the
colonies were confronted with, no treatment group showed
any advantage over the others which indicates that neither
the exposure to clothianidin seed-treated OSR nor the dis-
tance to OSR fields had any effect on parasitization rate.
This is in contrast to the results of a recent study on the
effects of thiamethoxam-coated corn seeds on honey bee
health (Alburaki et al. 2015), which is, at least to our
knowledge, so far the only study investigating the effects of
neonicotinoids on Varroa infestation levels. The results of
Alburaki et al. (2015) showed significantly higher levels of
Varroa infestation in colonies located in treated cornfields
compared to those of reference fields.

In our monitoring study at the landscape level, the
majority of samples taken during the exposure phase as well
as at the end of the post-exposure phase were free of
Nosema spores. We found no differences between the R and
T site colonies and, thus, could not establish an effect of
clothianidin seed-dressing on Nosema infection level. In
contrast, various laboratory studies have shown that sub-
lethal doses of neonicotinoids can lead to an increase in
parasitic microsporidia (Nosema spp.) which may cause the
death of bees (imidacloprid: Alaux et al. 2010; Pettis et al.
2012; thiacloprid: Vidau et al. 2011; Doublet et al. 2015). In
these laboratory studies, test bees were heavily (experi-
mentally) infected with Nosema spores (105–3.3 × 105

spores/bee) followed by an artificial maintaining of bees in
small cages. In the current study, only naturally occurring
infections were monitored and infected bees could poten-
tially perform self-medication behavior (Gherman et al.
2014) or outside activities to limit contact in the hive with
nest mates (Alaux et al. 2014). In this respect, a detail of the
study of Pettis et al. (2012) is worth mentioning. Here,
honey bee colonies were exposed to sub-lethal doses of
imidacloprid. Subsequently, newly emerged bees from these
colonies were challenged with Nosema spores and caged.
Interestingly, individual caged bees showed a marked
increase in Nosema spore production in the laboratory but
the parent colonies in the field failed to show increased
Nosema levels over time (Pettis et al. 2012).

Fig. 6 Number of Varroa mites per approx. 500 honey bees at DAP
+100 (a) and at DAP +147/148 (b) in colonies belonging to different
experimental groups during the exposure phase as determined by the
icing sugar method. At DAP +147/148, sample sizes differ due to lost
colonies (CA-1, CA-2, CB-3, CB-8, CF-4, TA-6, TC-4, TC-5, TD-6,
TD-8), swarming (TB-4), and queen loss (TC-7). The box plots con-
tain the 1st and 3rd quartiles, split by the median; traditional Tukey
whiskers go 1.5 times the interquartile distance or to the highest or
lowest point, whichever is shorter. Any data beyond these whiskers are
shown as points. DAP day after placement
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Di Prisco et al. (2013) found that sublethal doses
(21 ng/bee) of clothianidin can cause honey bee immune
deficiency. In their study, the reduced immune defense was
proven by an enhanced replication of DWV in honey bees
bearing covert infections (Di Prisco et al. 2013). Interest-
ingly, Di Prisco et al. (2013) also point out that “field stu-
dies are necessary to carefully evaluate their real impact
under different environmental conditions”. In our monitor-
ing study, infection of honey bees by viruses was very low
during the exposure phase (Figs. 7b–d). At the end of the

post-exposure phase, bees from many colonies of both the
former R and T site were infected with DWV and ABPV.
Since these viruses use Varroa mites as vectors (de Miranda
et al. 2010; de Miranda and Genersch 2010), the high
infection rate must be seen as a consequence of the high
mite infestation of the colonies (see above). Thus, we found
no evidence for clothianidin-induced immune deficiency
under field conditions.

We conclude that Varroa mites plus viruses are the most
“probable cause” of colony failure in the course of the
current study. Neonicotinoid PPPs, in contrast, are “unli-
kely” as a factor of reduced survival. Thus, the outcome of
the current study nicely mirrors the outcome of a causal
analysis of observed declines in managed honey bees
(Staveley et al. 2014).

Conclusion

Monitoring studies at the landscape level of this magnitude
are complex and difficult to conduct and to interpret.
Finding suitable study sites with sufficient distance between
the reference and test areas, which are also separated from
other potentially confounding PPP-treated alternative fora-
ging sites, is very challenging. Furthermore, conducting
such studies with sufficient true statistical replication is also
difficult—or impossible. In our monitoring study, locations
within each site are closer to each other than to any of the
locations of the other site and, therefore, can be considered
as “pseudoreplicates” (Hurlbert 1984). However, conditions
at the project area were comparable for the R and T sites
and differences in meteorological conditions were marginal
(Heimbach et al. 2016, this issue). No alternative agri-
cultural crops suitable for honey bees were cultivated in the

Table 4 Results of GLMMs fitted to the numbers of Varroa mites per approx. 500 bees as well as of a logistical model applied to the presence/
absence data of Nosema, DWV, SBV, and ABPV

Varroa infestation level
as determined by the
icing sugar method

Nosema DWV SBV ABPV

Intercept 3.48± 0.09*** −3.90± 1.00*** −3.21± 2.59 −45.06± 13,448.37 −7.71± 7.84

DAP 4.04± 3.53 −8.01± 10.86 0.02± 0.05 −6.52± 3,544.90 34.75± 42.91

Study site (test compared to
reference)

0.03± 0.11 −1.45± 0.95 0.12± 0.39 11.43± 9,508.04 0.23± 0.48

Distance to OSR (distant
compared to edge)

−0.02± 0.11 1.64± 1.04 0.41± 0.39 −19.56± 8,816.63 −0.44± 0.48

Temperature sum −2.37± 2.13 10.62± 8.03 −0.19± 102.63 −14.00± 24.92

Humidity sum −1.61± 1.52 0.10± 38.56 −12.20± 18.53

Rain sum 0.47± 0.26 −1.91± 5.74 0.69± 1.99 0.50± 297.64 −2.00± 2.16

Wind sum 0.22± 0.19 −0.95± 3.08 −0.40± 1.07 0.56± 314.03 −1.85± 1.38

Effect size± SD is given for each parameter. Positive values indicate an increase in relation to the respective reference value whereas negative
values indicate a decrease. All other parameters are as explained in the legend of Table 1. ***p< 0.001

Table 5 Summary of the MDD analysis

Measures of bee development and
health

MDD %MDD

Number of adult worker bees 269.7–4425 15.2–21.4

Number of capped worker brood cells 133.7–5337 30.8–40.8

Number of open worker brood cells 56.79–6665 34.9–49.3

Spring honey yield 2.0–2.0 7.8–8.5

Percentage of Brassica napus pollen
in spring honey

5.2–5.3 7.2–7.6

Summer honey yield 3.1–3.2 27.7–43.2

Naturally occurring fall of Varroa
mites (DAP 11–92)

0.70–4.9 73.3–690

Flumethrin-induced fall of Varroa
mites (DAP 108–150)

16.6–44.1 67.9–69.7

Varroa infestation level as determined
by the icing sugar method

4.3–15.0 23.4–24.5

Nosema spores 0.010–0.15 86.7–98.0

DWV 0.026–0.27 43.7–71.7

SBV 0–1.1 × 10−8 0–100.0

ABPV 2.6 × 10−6–0.34 52.3–100.0

Ranges for MDDs and relative MDDs (%MDD) for various endpoints
are shown
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Fig. 7 Occurrence of DWV, SBV, ABPV, and Nosema spp. in honey
bee colonies at three different time points. For viruses, red bars
indicate infection, green markings no infection. For Nosema, red bars
indicate infection (light red: single or few spores not found in each
field of vision; red: single or few spores found in each field of vision;

dark red: numerous spores found in each field of vision), green
markings indicate that no spores were found. Sample size was reduced
during the second examination due to swarming of colony TB-4 and
during the last examination further due to loss of colonies, these are
left blank
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study area during OSR flowering. Analyses of pollen, nectar
and honey confirmed that OSR was the major food source
of the bees during the exposure phase. Exposure of honey
bees to clothianidin at the T site was verified by analysis of
residues in nectar and pollen (Rolke et al. 2016, this issue).
Colony development was very consistent. Harvested
amounts of spring honey confirmed good conditions for the
bees despite the numerous disturbances of the colonies by
the beekeeper in the course of the study. Colony loss in the
course of a medium or long term study due to “background
disease” (varroosis in the case of the current study), queen
loss, or swarming may be a potential drawback of such
large-scale monitoring studies. A risk assessment based on
laboratory data only, however, will not provide reliable
information on the development and health status of honey
bees following actual use of the PPP under real agricultural
field conditions. This requires monitoring studies at the
landscape level (Liess et al. 2005; Rundlöf et al. 2015).
Indeed, no detrimental effects of clothianidin seed-treated
OSR could be observed under the realistic exposure con-
ditions of this study although various laboratory and semi-
field studies (for recent reviews, see Belzunces et al. 2012;
Godfray et al. 2014; Pisa et al. 2015) have reported sub-
lethal effects in honey bees exposed to neonicotinoid
insecticides.
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