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Abstract Monitoring studies at the landscape level are
complex, expensive and difficult to conduct. Many aspects
have to be considered to avoid confounding effects which is
probably the reason why they are not regularly performed in
the context of risk assessments of plant protection products
to pollinating insects. However, if conducted appropriately
their contribution is most valuable. In this paper we identify
the requirements of a large-scale monitoring study for the
assessment of side-effects of clothianidin seed-treated
winter oilseed rape on three species of pollinating insects
(Apis mellifera, Bombus terrestris and Osmia bicornis) and
present how these requirements were implemented. Two
circular study sites were delineated next to each other in
northeast Germany and comprised almost 65 km? each. At
the reference site, study fields were drilled with clothiani-
din-free OSR seeds while at the test site the oilseed rape
seeds contained a coating with 10 g clothianidin and 2 g
beta-cyfluthrin per kg seeds (Elado®). The comparison of
environmental conditions at the study sites indicated that
they are as similar as possible in terms of climate, soil, land
use, history and current practice of agriculture as well as in
availability of oilseed rape and non-crop bee forage.
Accordingly, local environmental conditions were con-
sidered not to have had any confounding effect on the
results of the monitoring of the bee species. Furthermore,
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the study area was found to be representative for other
oilseed rape cultivation regions in Europe.

Keywords Sublethal effects - Risk assessment - Bee
monitoring - Site selection - Spatial analysis - GIS

Introduction

Pollinating insects are a key component of terrestrial
ecosystems and provide an essential ecosystem service to
wild plants and agricultural crops. The annual value of
insect pollination to agriculture was estimated to be worth
USS$ 153 billion globally in 2005 (Gallai et al. 2009) and the
demand of pollination services is high (Aizen and
Harder 2009; vanEngelsdorp and Meixner 2010). However,
many factors are suspected to impact pollinator health,
including parasites, the loss of habitat and decreasing
diversity of foraging resources (Goulson et al. 2008; Potts et
al. 2010; vanEngelsdorp and Meixner 2010; Winfree et al.
2009). Furthermore, the use of plant protection products
(PPPs) has been suggested to harm pollinating insects. In
particular the neonicotinoids, a group of systemic insecti-
cides, have been the subject of much discussion about
whether they cause adverse effects in pollinating insects
under field conditions (e. g., Godfray et al. 2014, Schmuck
and Lewis 2016).

Before a new PPP gets authorization for use in Europe, it
is subject to an extensive ecotoxicological risk assessment
in order to minimize the potential of adverse effects on non-
target organisms (European Commission 2009). These risk
assessments follow a tiered approach based on worst-case
assumptions to ensure cost-effectiveness and
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proportionality, ranging from laboratory toxicity tests to
more complex higher tier studies under field realistic con-
ditions (European Food Safety Authority 2013). The lower
tier studies are an important tool to assess intrinsic
mechanisms and identify potentially adverse effects of
PPP exposure in a set of model organisms. The strength of
these studies is their well-defined exposure under controlled
laboratory conditions. However, these studies apply
artificial conditions regarding the concentration and dura-
tion of the exposure to the PPP (Carreck and Ratnieks 2014;
Godfray et al. 2014) and simplify or disregard processes
which might be of relevance in the field (Cutler and
Scott-Dupree 2014; Godfray et al. 2014; Liess et al. 2005).
Particular uncertainty exists about the actual exposure of
pollinating insects to the focal PPP under field conditions
because, for example, bees forage on a wide array of
pollen and nectar sources or may actively avoid pollen
and nectar from treated crops which might reduce their
exposure to the PPP in question. Furthermore, the vulner-
ability of a species might differ from the model species
due to different ecological traits (Decourtye et al. 2013;
Liess et al. 2005). Due to these uncertainties, monitoring
studies at the landscape level may be needed in addition to
the common sequential testing in risk assessment to
gain a sound understanding of the actual environmental
effects of PPPs under current agricultural practice (Liess
et al. 2005).

In the case of clothianidin, a neonicotinoid insecticide
which is used in seed dressings of a number of crops e.g.
sugar beet, maize and oilseed rape (OSR), concerns were
raised by laboratory studies indicating sub-lethal effects in
bees (Godfray et al. 2014). However, field studies obtained
different results leading to differing conclusions (Blacquiere
et al. 2012; Cutler et al. 2014; Cutler and Scott-Dupree
2007; Pilling et al. 2013; Pohorecka et al. 2012). In this
issue, we present a large-scale monitoring study which
examines the potential side effects of clothianidin dressed
OSR seeds on bee pollinators under common agricultural
practice at the landscape level. This project consisted of
four different pollinator studies performed jointly in the
project area: a honey bee (Apis mellifera) monitoring study
(Rolke et al. 2016a), a bumble bee (Bombus terrestris)
monitoring study (Sterk et al. 2016), a mason bee (Osmia
bicornis) monitoring study (Peters et al. 2016), and a resi-
due analysis in pollen and nectar collected by the three
investigated bee species (Rolke et al. 2016b). Because
large-scale monitoring studies with freely foraging
bees can be challenging to conduct and interpret due to a
range of confounding factors (Godfray et al. 2014), this
paper aims to identify the requirements of a large-scale
monitoring study and documents how these were imple-
mented in the current study to increase its validity and
conclusiveness.

To conduct this large-scale monitoring, the prospective
study area was selected based on the following require-
ments: (i) high density of OSR cultivation with (ii) no other
mass flowering crops available as bee forage during OSR
flowering, (iii) homogenous environmental conditions over
a spatial extent of several thousand hectares which allow
delineation of two spatially separate study sites, and (iv)
representativeness of the study area for other OSR cultiva-
tion sites in a regional and European context.

Study area and design

A region in northeast Germany (federal state of Mecklen-
burg-West Pomerania, Fig. la) was identified based on
official cropping statistics (Statistical Offices of the Fed-
eration and the federal states 2014) and CORINE land cover
data (European Environment Agency 2011, Table 1) to
meet the requirements of high OSR cultivation density with
no other crop providing suitable bee forage during OSR
flowering. In the study area, winter OSR is usually culti-
vated on 25-33 % of the arable land and the agronomic
infrastructure of the area with large farms enabled the
cooperation with a manageable number of farmers. Two
circular study sites of 9 km in diameter were delineated next
to each other each containing a core area of 7km in dia-
meter which were investigated in depth (Fig. 1b). At the
reference site (R), study fields were drilled with clothiani-
din-free OSR seeds while at the test site (T) the OSR seeds
contained a coating with 10 g clothianidin and 2 g beta-
cyfluthrin per kg seeds (Elado®). Farmers were allowed to
decide about all agricultural activities such as sowing,
application of fertilisers and PPPs as well as harvesting
according to their common practice. This includes—if
necessary—the compensation of the missing insecticidal
dressing of OSR seeds at the reference site by spray
application of insecticides to ensure crop emergence and
homogenous flowering. In total, the sites provided nearly
1800 ha of OSR crops (27 % of available arable land) and
both study sites covered an area of approximately 65 km?>
each.

The size of the study sites was determined by the number
of investigated bee hives and to provide at least 3 km of
buffer area around the bee hives to ensure the exclusive
exposure to the reference and test conditions, respectively.
Although maximum foraging flights of single honey bees
have been reported to extend up to 15 km under exceptional
conditions (Beekman and Ratnieks 2000), these distances
are not representative for whole colonies under attractive
foraging conditions (Beekman and Ratnieks 2000; Steffan-
Dewenter and Kuhn 2003). Therefore, a minimum of 3 km
between the bee hive locations and the border of the study
sites was considered adequate to cover the foraging flight

@ Springer



1632

F. Heimbach et al.

Land Use/Cover Types

|:] Oilseed Rape
- Wheat

B Rye

- Barley

B Titicale

- Sand-sedge
- Maize

- Sugar Beet
- Set-aside

- Hedges, Shrubs
- Grassland

- Deciduous Forest
- Mixed Forest
- Coniferous Forest
:l Grove of Trees

- Kettle
|:| Urban Areas
|:| Water Body

Boundaries

Fig. 1 Location of study sites in Central Europe and their habitat
composition. a The study sites (yellow points) are situated in the dis-
trict of Ludwigslust-Parchim (blue), which is part of the federal state

distances for honey bees (Eckert 1933; Garbuzov et al.
2015; Steffan-Dewenter and Kuhn 2003) and bumble bees
(Darvill et al. 2004; Osborne et al. 2008; Walther-Hellwig
and Frankl 2000; Wood et al. 2015). Mason bees on the
other hand conduct distinctly shorter foraging flights
(Gathmann and Tscharntke 2002) and, hence, their nesting
shelters could be positioned closer to the edge of the study
site, although the distance always exceeded 1.9 km.

In total, 96 honey and 120 bumble bee hives were
positioned at six study locations per study site within the
central part of the study sites. Of these study locations, three
were situated at the edge of an OSR field and three
approximately 400 m apart from the nearest OSR field to
allow consideration of suggested impacts on orientation and
the homing capability of the bees after exposure to neoni-
cotinoids (Decourtye and Devillers 2010; Henry et al.
2012). The study locations were identical for honey and
bumble bees, although their hives were positioned
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Mecklenburg-West Pomerania (red). b Yellow polygons indicate the
numbered OSR fields. The broken inner circle marks the core areas of
the study sites of 7km in diameter

approximately 10-30 m apart from each other. Three nest-
ing shelters with 8 nesting blocks for mason bees were set-
up at each of 6 additional study locations per study site (96
nesting shelters in total). As for the other bee species, three
of these study locations were situated at the edge of an OSR
field and three about 100 m distant from the nearest OSR
field, accounting for the shorter foraging flights of the
mason bees. According to the number of hives and nesting
shelters per study location, there were 8 repetitions for the
monitoring of honey bees and mason bees, and 9 repetitions
for bumble bees because one of the ten hives per study
location was exclusively used for pollen sampling (compare
Sterk et al. 2016).

The requirements for separation of reference and test
conditions limit the possibility for true statistical replication
which would be desirable under ideal conditions (Hurlbert
1984) but is hardly feasible for large-scale, resource inten-
sive studies like large honey bee field trials (European and
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Table 1 Overview of (geo)data used for the analyses of the study area and other OSR cultivation regions

Data type Major data use

Data source

Administrative boundaries e General study sites identification &

characterisation
e Study sites context setting

Cropping statistics e General study sites identification &

characterisation
e Study sites context setting
e Transfer to EU level

Land use / land cover (LULC) e General study sites identification &

characterisation
e Sites similarity analysis
e Study sites context setting
o Transfer to EU level
Bee forage o Sites similarity analysis

e Transfer to EU level

Weather e General study sites characterisation
o Sites similarity analysis

e Study sites context setting

e OSR phenology analysis

Climate e General study sites characterisation
o Sites similarity analysis

e Study sites context setting

e Eco-physiological climate
classification

Soil e Study sites context setting

e Site characterisation and context
setting

e NUTS 2 and 3 (Nomenclature des unités territoriales statistiques,
Eurostat 2011)

e Struktur der Bodennutzung in Mecklenburg-Vorpommern 2014
(Statistisches Amt Mecklenburg-Vorpommern 2015)

e Regional database Germany (Statistical Offices of the Federation
and the federal states 2014)

o Corine Land Cover CLC2006 (European Environment Agency 2011)

e Topographic (arcgis.com)

e Generated high-resolution LULC data by manual digitisation from
aerial imagery (www.arcgis.com) and field work

e Spatially explicit semi-quantitative field sampling (GPS) of bee
forage plants and mapping

e Generated high-resolution LULC data by manual digitisation from
aerial imagery (www.arcgis.com) and field work

e European Centre for Medium-Range Weather Forecasts (ECMWF)
(2000-2013)

o German Weather Service (1995-2014)
e European Centre for Medium-Range Weather Forecasts (ECMWF)

(2000-2013)
e Lauer et al. (2002)

o Joint Research Centre of the European Community (EC) (1995-2014)

Mediterranean Plant Protection Organization PP 1/170 (4)
2010; Pilling et al. 2013). Because a possible treatment
effect could be confounded with site differences the
study sites were carefully chosen so that differences were
limited to an absolute minimum achievable under field
conditions and the applied mixed effects models are a
common tool to address non-independence of data (Zuur et
al. 2009). This study design ensured sufficient statistical
power to detect even small to medium side effects of clo-
thianidin dressed OSR on the development of hives,
reproduction and health of the bees. Further details of the
experimental set-up of the bee monitoring studies are given
in the respective papers (Peters et al. 2016; Rolke et al.
2016a,b; Sterk et al. 2016).

Overcoming confounding effects

The main challenge of studies under field realistic condi-
tions is to overcome the diverse confounding factors.

Ideally, identical environmental conditions prevail at all
investigated study sites to relate any differences found
exclusively to the treatment and increase the validity of the
results. However, in a large-scale monitoring study like the
one presented in this issue, equal conditions cannot be
ensured as variability is part of the natural system (Liess et
al. 2005). Nevertheless, where variable conditions cannot be
avoided, the parameters can be measured and included as
covariates in the statistical analyses, thus, providing a better
understanding of complex interactions under realistic field
conditions.

In the following, the measures applied to account
for common uncertainties in field studies are highlighted.
These measures include (i) comparable conditions
at the reference and test sites in terms of land use, soil,
climate, alternative forage resources, as well as develop-
ment of the OSR, (ii) ensuring the crop fidelity of the stu-
died bees and (iii) the exposure of the bees to the focal
neonicotinoid.

@ Springer
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Similarity of environmental conditions and agronomic
practice at the reference and test site

Land cover and land use types

The study sites were chosen based on the high OSR crop
density for the region but also to resemble each other in
important environmental conditions. Land use/land cover
data (LULC) for the study area were obtained from high-
resolution aerial images (Table 1). All types of arable fields
as well as different landscape structures such as hedges,
kettles (small hollows originating from buried dead ice after
glacier retreat), and settlements were identified in the field
and manually digitised from satellite images (Google
Satellite, date taken 06.05.2011) using a computer-based
geographical information system (Quantum GIS, Version
1.8.0 Lisboa). The exact coordinates of the location and
shape of OSR fields in the study area as well as relevant
landscape features inside the fields such as kettles, forest
patches or shrubs were recorded with a GPS handheld
receiver (Garmin eTrex 10).

The habitat mapping indicated a diverse distribution of
different LULC types at both study sites and although field
sizes are relatively large (up to several hundreds of ha), the
whole area is well structured by a diversity of small forest
patches and groves of trees, hedges, water bodies of dif-
ferent sizes and kettles (Fig. 1b). The most important land-
use type was arable land, covering 49.5 % and 72.2 % of the
core area of the reference site and the test site, respectively.
The higher proportion of arable land at the test site was
mainly due to the larger cropping area of maize and the lack
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of any larger water body at the test site (Fig. 1b, Fig. 2).
OSR was the most common crop at both study sites (Fig. 2).
At the core of the reference site, 17 study fields covered in
total 614.6 ha with OSR, constituting 16.0 % of the area,
whereas the test site comprised 791.7 ha (20.6 %) of OSR at
18 study fields (Fig. 1b, Fig. 2). The median size of OSR
study fields did not differ between reference and test site
(Table 2).

Soil characterisation

To characterize the soil from each study field of the core
areas, soil samples were taken before drilling of OSR seeds
in August 2013. Study fields were subdivided into plots of
10 ha. Ten samples from equally spaced points were taken
from the upper 10 cm of the soil in each plot. Plant material
and other coarse contaminants were removed and all sam-
ples of one plot were combined and thoroughly mixed
before the analyses. Characterisation of soil samples
included the determination of pH (DIN ISO 10390 (2005)),
total organic carbon (TOC, DIN ISO 10694 (1996)), water
holding capacity (WHC, DIN EN ISO 11274 (1998)), and
particle size (DIN 19683 (2012)). The pH, TOC and WHC
were tested for differences between the study sites by fitting
linear mixed models which included the study field ID as a
random effect to account for the non-independence of
sampled plots per study field. The soil type classification
was analysed with a Fisher’s exact test. The soil char-
acterisation indicated no significant difference between
study fields at the reference and test site regarding the pH,
the total organic carbon, and the water holding capacity
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Table 2 Summary of parameter comparison between the study sites

Dependent variable Test Test statistic P Reference site Test site
Land cover
Total OSR at Core area 614.6 ha 791.7 ha
Median OSR field size Wilcoxon rank sum W =170 0.999 33.5ha 35.3ha
test
Percentage OSR of arable land 323 % 28.5%
Percentage arable land 49.5 % 72.2 %
Soil characterisation of OSR fields
pH Linear mixed model F; 33=3.79 0.060  6.33+0.72 6.15+0.44
Total organic carbon Linear mixed model F; 33=3.92 0.056 1.02+0.24 % 0.88+£0.20 %
Water holding capacity/100 g dry matter Linear mixed model F; 33=3.71 0.063 285+20¢g 269+2.6¢
Soil type Fisher’s exact test 0.093  98.3 % loamy sand 98.7 % loamy sand
Climatic conditions at study locations during exposure phase
Daily mean temperature Linear mixed model Fjg 335=0.19 0.669 123+24°C 122 +2.6°C
Daily mean of relative humidity Linear mixed model Fjg 335 =0.50 0497  779+93% 78.5+93%
Daily sum of precipitation Linear mixed model Fjg 335=0.12 0.739 1.4 +2.2mm 1.3+ 3.1 mm
Daily mean wind speed Linear mixed model Fjg 305 =0.62 0.449 1.4 +0.7 m/s 1.5+0.7m/s
Agronomic practice
Flowering time of OSR varieties by crop Early 17.6 % 50.5 %
area
Medium 68.6 % 32.1%
Late 13.8 % 17.3 %
Thousand seed weight General linear model F; 3,=1.63 0.211 6.86+1.32¢g 592+121g
Drilling rate Student’s t-test t=-3.40 0.002 2.8 +0.8kg/ha 3.6 +1.1kg/ha
Drilling rate weighed by crop area General linear model F; ¢5=0.52 0474 2.6 +1.3kg/ha 2.7+ 1.7 kg/ha
OSR seeds/m* Wilcoxon rank sum W =304.0 < 0.001 39.6+74
test
50.8+14.2
Total number of insecticide spray Wilcoxon rank sum W =192.5 0.021 48+04 4.1+09
applications test
Number of insecticide spray applications in Wilcoxon rank sum W =195.5 0016 1.4+08 0.9+0.25
autumn 2013 test
Number of insecticide spray applications in Wilcoxon rank sum W =152.0 0.543 34+05 3.1+09
spring 2014 test
OSR development
Date of OSR drilling ANOVA Fy 33=1.09 0.305 18 August 2013 +2.5 19 August 2013 +
days 4.4 days
OSR emergence rate Wilcoxon rank sum W =669.5 0.800 68+21% 68 +28 %
test
OSR plant density Wilcoxon rank sum W =391.5 0.004  26.0+7.3 plants/ m*  32.6 + 11.4 plants/
test m?
OSR development (BBCH stages) ANOVA Fy, 23,=0.00 0.972
OSR yield General linear model F; 33=8.08 0.008 33.9 +7.1dt/ha 38.6 +£ 6.3 dt/ha
Clothianidin
Residues in soil before drilling® Linear mixed model F; 33=0.53 0.470 1.9+ 1.1 pg/kg 2.3+ 1.5pg/kg
Loading of OSR seeds Linear mixed model F; 3, =439 < 0.001 0.06 +0.07 g/kg
7.8 +1.5g/kg
Application rate Linear mixed model F; 3, =83.9 < 0.001 0.19 £0.25 g/ha

28.8 +10.0 g/ha

Mean values are given + standard deviation. For parameters without test statistic, only descriptive analyses were performed

 Calculating with upper limits of 1.5 pg/kg for determined concentrations < LOD,; and 5 pg/kg for < LOQq;
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(Table 2). The soil texture was identified to contain, on
average, 67 % sand, 23 % silt, and 10 % clay and was
classified accordingly as predominantly loamy sand both at
the reference (98.3 %) and test site (98.7 %). Loamy sands
are dominated by sand particles, but contain enough clay
and silt to provide some structure and fertility.

Climatic conditions

To account for small scale climatic differences, weather
conditions were measured at all study locations during the
exposure phase. At each honey bee location, calibrated
devices connected to two hive balances (CAPAZ GSM 200)
measured the air temperature and relative humidity once per
hour. From these double measurements an hourly average
per location for both temperature and humidity was calcu-
lated. Wind speed and direction at 2 m height was recorded
every 10 min by an anemometer (Davis Vantage Pro II) and
stored as hourly mean and maximum. Additionally, hourly
sums of precipitation were collected by a rain gauge
(accessory of CAPAZ GSM 200). At each mason bee study
location, the air temperature and relative humidity were
collected by a validated data logger (Gemini TGP-45000) at
30 cm height which was protected against rain and direct
sunlight. Similar to the honey bee study locations, an
anemometer was set up at each mason bee study location to
measure wind speed and direction. Daily sums of rainfall
for all mason bee locations were obtained from the German
Weather Service (DWD) of a local weather station at
Goldberg, approximately 10 km east of the test site.

The measured weather conditions at the study locations
coincided with official measurements (Statistisches Amt
Mecklenburg-Vorpommern 2015) indicating a warm and
relatively dry period during the third pentad of April, fol-
lowed by lower temperatures at the beginning of May which
increased again towards the end of May. Rainy periods
were concentrated during the second and third pentads in
May (Statistisches Amt Mecklenburg-Vorpommern 2015).
In general, no weather extremes occurred during the expo-
sure phase. Although they are not representative for the
whole study area, weather data collected at the honey bee
study locations were analysed for differences between the
study sites. There were no significant differences between
the study sites in the daily mean temperature, the daily mean
of relative humidity, the daily sum of precipitation, and the
daily mean wind speed (Table 2, Fig. S1).

Agronomic practice
Information about agricultural practices at the study fields,
such as treatment with other PPPs and their application rates

was gathered from the farmers for the period of the mon-
itoring study as well as additional details of the variety,
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drilling rate, and origin of OSR seeds. Apart from the seed
dressing and the request not to apply any further neonico-
tinoids between drilling in August 2013 and harvest in July
2014, the farmers were allowed to decide for themselves
about all agricultural practices including the application of
other PPPs.

The study was conducted with the cooperation of inde-
pendent farmers who made the decisions about all agri-
cultural practices, the seed types and the PPP applications
and so there was some variation between study fields. In
order to comply with local conditions and to optimally
schedule agricultural activities, several OSR varieties were
used. In total, 33 different OSR varieties were drilled at the
study fields of which the most common were Genie (R:
40.6 % of crop area, Rapool-Ring GmbH), Sherpa (R: 25.3
%, T: 22.2 %, Rapool-Ring GmbH), and Xenon (T: 21.4 %,
Rapool-Ring GmbH). The diversity of OSR varieties was
larger at the test site mainly because the study field T13 was
used for a variety demonstration and, thus, contained 22
different varieties sown in stripes each less than 1 ha in size.
Two of these demonstration varieties were dressed with
thiamethoxam (3 g/kg seeds) instead of clothianidin. The
test fields T1, T9, T10, T14 and T15 also contained more
than one OSR variety (Table S1). Grouped by their antici-
pated time of flowering, early varieties dominated at the test
site while intermediate flowering varieties dominated at the
reference site (Table S1). However, the difference in the
period of full flowering between early and intermediate
varieties constitutes 3—4 days only and nectar and pollen are
available beyond that period. Furthermore, small scale
microclimatic conditions may cause a higher variability in
the flowering time of OSR. The seeds had an average
thousand seed weight (TSW) of 6.2 + 1.3 g. The General
Linear Model revealed that the TSW differed due to the
OSR variety (F3;, 3, =2.42, p=0.007) and the amount of
seed dressing (Fy, 3, =5.39, p =0.027), but not between the
reference and test sites (Table 2). The drilling rate of OSR
seeds averaged 3.4 + 1.1 kg/ha and was significantly higher
in study fields at the test site compared to the reference site
(Table 2, Table S1). However, compared at the landscape
level and weighted by the field size of study fields, the
drilling rate did no longer differ between the treatments
(Table 2). Based on differences in the TSW and the drilling
rate, the average number of seeds per square meter was
significantly higher at test fields compared to the reference
fields (Table 2).

During the development of the OSR plants, they received
on average 4.8 +0.4 and 4.1 +0.9 insecticide spray appli-
cations at the reference and test site, respectively. This
difference was statistically significant (Table 2) and was due
to a significantly higher number of applications in autumn at
the reference site (Table 2). This was because the OSR
plants lacked the insecticidal seed treatment and most of the
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study fields at the reference site received an additional
pyrethroid spray treatment in autumn 2013 to control
cabbage stem flea beetles (Psylliodes chrysocephalus)
and cabbage root fly (Delia radicum). The number of
additional insecticide applications in spring 2014 did not
differ statistically significant between the sites. The most
frequently applied compounds were the pyrethroids
etofenprox (Trebon 20 EC®) and beta-cyfluthrin (Bull-
dock®). The oxadiazine indoxacarb (Avaunt®) which is
classified as harmful to honey bees and bumble bees
when exposed to direct treatment (DuPont 2004; van der
Steen and Dinter 2008), was applied at seven reference
fields in March and the beginning of April 2014.
This was well in advance of the establishing of the bumble
bee hives at the study locations (by at least 2.5 weeks).
Pymetrozine (Plenum®), the only triazine used on
the study fields, was applied at T7-T10 and T13-T15 at
least 3 weeks prior to the start of the exposure phase
of the bees.

The agronomic practice of non-OSR fields at the study
sites are also not expected to have any confounding effect
on this study. Although sowing of maize fields overlapped
with the flowering of OSR and the dust from sowing
operations of neonicotinoid dressed maize was shown to
adversely affect honeybees under specific exposure condi-
tions (Pistorius et al. 2009), neonicotinoid dressings of
maize are not authorized in Germany since 2008 (Federal
Office of Consumer Protection and Food Safety 2009) and
the sown maize only contained a fungicide or no dressing at
all (personal communication with farmers). Furthermore,
due to the restrictions on neonicotinoid use since December
2013 (European Commission 2013), confounding effects of
neonicotinoid applications at adjacent fields can also be
excluded.

OSR development

At the study fields in the core area, the development of the
OSR crops was surveyed seven times between November
2013 and the end of the exposure phase in May 2014.
Corresponding BBCH-stages were determined based on the
adjusted code for OSR development (Federal Biological
Research Centre for Agriculture and Forestry 2001). The
rate of emerged OSR plants and the respective plant density
was assessed prior to the stem elongation in March 2014.
For methodological details of the density estimation see
Rolke et al. (2016D).

Drilling of the OSR seeds took place between 13 and 29
August 2013 with a peak on 18 and 19 August 2013 which
was similar for study fields at the reference and test sites
(Table 2). The rate of plants surviving the winter averaged
68 +25 % and was equal at study fields of the reference and

test sites (Table 2). However, due to the differences in the
drilling rate, the OSR plant density was higher at test fields
compared to reference fields (Table 2). The OSR crops at
the study sites developed homogenously across all seven
assessments based on the BBCH stages (Table 2). By the
first assessment on 21 November 2013, almost all OSR
plants had reached BBCH stage 19 (“9 or more leaves
unfolded”). More importantly, a few days before the start of
the exposure phase of the bees (21 April 2014) at least 30 %
of flowers were open on all study fields (BBCH 63),
ensuring sufficient food was available for the bees. Full
flowering of OSR (BBCH 65) lasts for three to five weeks.
Accordingly, by 22 May 2014 flowers at the majority of
study fields had withered and only 5 % of the plants were
still with flowers. The exposure phase was terminated at this
stage because the OSR plants did not provide sufficient
amounts of nectar and pollen for foraging bees any more.

The OSR yield standardised to the field size was sig-
nificantly higher at the test site than at the reference site
(Table 2). This difference was in line with yield differences
in previous years probably due to a slightly more productive
soil in the south of the study area. This difference could also
have been due to early losses of OSR plants at the reference
site which lacked the neonicotinoid seed treatment although
it was compensated for by the additional pyrethroid spray
application. The lower plant density at the reference fields
may also have contributed to the difference in yields.
However, the different plant densities did not affect the
availability of OSR nectar and pollen for the investigated
bees because the coverage of OSR at the study sites pro-
vided food in excess and all bee hives developed very well
during the exposure phase (Rolke et al. 2016a; Sterk et al.
2016). Furthermore, the average yields at both study sites
were close to the average yield of winter OSR of 37.5 dt/ha
in the district of Ludwigslust-Parchim in 2014 (Statistisches
Amt Mecklenburg-Vorpommern 2015).

In summary, the environmental and agronomic condi-
tions at the reference and test site were largely similar with
the exception of the insecticide treatment. Thus, local
environmental conditions were considered not to have any
significant confounding effect on the results of the mon-
itoring study.

Crop fidelity of bees

Three measures were applied to ensure that the investigated
bees foraged at the OSR that was grown from seeds either
treated with or without a clothianidin dressing. Firstly, the
study sites were selected to provide a high density of OSR
crops but did not include any other mass flowering crop
which was suitable as bee forage during OSR flowering.
Furthermore, as described above, the size of the study sites
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Fig. 3 Sampling sites (black
points) and occurrence of
habitats with alternative forage
for bees at the reference (a) and
test site (b)

[] Oilseed rape field

was intended to cover the foraging flights of the investi-
gated bees.

Secondly, bees may also use weeds and flowering plants
at field margins, forest edges, settlements and grasslands as
pollen and nectar resource apart from cultivated crops
(Stanley et al. 2013a; Stanley and Stout 2014). Accordingly,
a detailed assessment of the abundance of alternative bee
forage (pollen and nectar provided by other than OSR
plants) during OSR flowering was obtained by a semi-
quantitative survey of non-crop habitats at both study sites.
During OSR flowering, 10 representative hedges, kettles,
and forest edge habitats were visited once and the abun-
dance of flowering plants assessed along a transect of at
least 150 m in length (Fig. 3). Taking the variations in
importance for the different bee species into account, each
flowering plant species was rated on an ordinal scale as
following: 0—no occurrence of plant species; 1—very few
flowers present, to be neglected as food source for bees; 2—
few flowers present, sufficient as food source for individual
bees; 3—numerous flowers present, sufficient as food
source for bees; 4—abundant flowers present, sufficient as
food source for bees, very attractive. A similar classification
was carried out for grasslands and field margins from
photographs taken during OSR flowering. Ratings of all
plant species present at a sampling site were averaged and
used to calculate a mean for each habitat type per study site.
The resulting value per habitat was weighted by the area of
the habitat according to Eq 1.

ti ling sit
Availability per habitat = 2 mean rating per sampling site

number of sampling sites

x area of habitat
(1)

In total, 38 plant species were found in hedges, kettles
and forest edges which are attractive to bees during OSR
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flowering and may have represented a forage source for at
least one of the bee species studied. Of these plants, 7.2
species occurred on average per surveyed site. The Wild
Chervil (Anthriscus sylvestris), Common Oak (Quercus
robur), Archangel Fair (Lamium album), and Dandelion
(Taraxacum spec.) were relatively common and occurred at
more than half of the surveyed sites. Only trees and shrubs
were highly available as food resource for foraging bees.
Hedges were on average more diverse than kettles and
forest edges. For grassland, field margins and urban areas
the coverage with flowers suitable as bee forage were esti-
mated to constitute 10 % which is transformed to a rating of
1.5. Compared to OSR, which is highly attractive at least to
honey bees and available at 13.9 % of the area of the study
sites, the alternative foraging resources play only a minor
role (Fig. 4).

However, this assessment of alternative forage for bees at
non-crop habitats can only give an approximate estimate of
the availability of alternative food resources. Therefore, a
third approach to ensure that the investigated bees fed on
the OSR of the study sites, was to analyse the composition
of the pollen collected by the honey bees, earth bumble
bees and red mason bees, as well as the nectar and honey
collected by honey bees. For methodological details
see the respective papers in this issue (Peters et al. 2016;
Rolke et al. 2016a; 2016b; Sterk et al. 2016). This
investigation confirmed that all three bee species foraged
on OSR although to different degrees. In particular red
mason bees collected pollen from a diversity of plants
available in the close vicinity of the study locations.
Nevertheless, the exposure of the bees to OSR at the study
site was proven and the difference in the amount of OSR
among the utilized food resources reflect the typical expo-
sure of the different bee species to OSR under natural field
conditions.
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Fig. 4 Availability of alternative forage plants at different non-crop
habitats of the reference and test site for the three bee species in focus
(Apis mellifera, Bombus terrestris, and Osmia bicornis). The

History of study fields
Crop and PPP history of study fields

The study area has a long agricultural history which might
contribute confounding effects on the monitoring study
because PPPs from agricultural applications seem to occur
ubiquitously in the environment (Stewart et al. 2014, Cutler
et al. 2014). Hence, the difficulty arises to find control sites
which coincide with the test sites in their background levels
off PPPs without confounding the study results (e. g., Cutler
et al. 2014; Rundlof et al. 2015). In order to reduce the
possibility that PPPs applied to the study fields in recent
years might have affected the outcome of the monitoring
study, detailed information on the agricultural practice at the
study fields within the five years previous to the monitoring,
including cultivated crops, treatment with PPPs and their
application rate were obtained from the farmers.

The crop history of the study fields between the harvest
years 2009 and 2013 indicated common crop rotations
following good agricultural practices at both reference and
test site (Fig. 5). The most common crops cultivated at the
study fields during the previous five years were wheat and
maize. The previous OSR cultivation at the study fields
dated back between three and more than five years. At least
83.3 % of previously cultivated OSR contained a clothia-
nidin dressing, and for 12.5 % of the former OSR cultivated
there was no information of seed dressing available. Seed
dressings of crops other than OSR were primarily

availability is calculated from the rating of attractiveness and avail-
ability of several plant species and the size of the area covered with the
respective habitat

fungicides and did not contain clothianidin or other neoni-
cotinoids as an active ingredient except for sugar beet cul-
tivated at the test field T10 in 2012 which was dressed half
with clothianidin and half with thiamethoxam, a neonico-
tinoid of which the primary metabolite is clothianidin
(Nauen et al. 2003). Insecticides applied to the study fields
during the five years previous to the study were mainly
pyrethroids (70 % of insecticide applications) and neoni-
cotinoids (21 %). Oxadiazines (5 %), carbamates (2 %), and
organophosphates (2 %) played only a minor role. Neoni-
cotinoids were primarily applied as seed dressings of which
96 % contained clothianidin and 4 % thiamethoxam. Thia-
cloprid accounted for 96 % of all neonicotinoid spray
applications whereas acetamiprid was applied once. Imi-
dacloprid had not been applied during the last five years. At
all study fields, the last applications of neonicotinoids were
in 2011 or earlier, hence, at least 3 years prior to the
monitoring study.

Residues in soil before drilling

The collected soil samples were analysed for clothianidin
residues because of the predominant use of this active
ingredient and its relatively long half-life in soil (Krupke
et al. 2012). Based on the information gained by the
agricultural practices of the farmers, the analysis of the soil
was restricted to clothianidin because other neonicotinoid
insecticides were not applied or the application dated
back a multiple of the respective half-life. Samples of the test
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Fig. 5 Crops of the study fields
in the five years previous to the
study. Two colors at one field c1 -
indicate a field which was

Crop

C2 -
partitioned to cultivate two c3 -
different crops. For some study ca -

fields no data were available for
2009, these plots were left blank.
OSR varieties given in bold
italic indicate a dressing with
Clothianidin. For underlined
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field T18 were only taken after drilling of OSR seeds and
therefore were not suitable for the analysis of background
clothianidin residue levels. Preparation of soil samples was
based on QUEChERS methods (“Quick Easy Cheap Effec-
tive Rugged Safe”, DIN EN 1552 (2008); Lehotay 2006). To
determine clothianidin concentrations, liquid chromato-
graphy coupled with tandem mass spectrometry (LC-MS/
MS) was applied. The chromatographic system used was a
high performance liquid chromatograph with a reversed
phase chromatography (Zorbax Eclipse C18, 50 x 2.1 mm,
1.8 pm column) coupled with tandem mass spectrometry and
electrospray ionisation (AB Sciex API 6500 Triple Quad-
ruple Mass Spectrometer, Analyst version 1.6.2). The coef-
ficient of determination for calibration curves was above
0.996. In soil, the limit of quantification (LOQ;) was 5 pg/
kg dry weight soil and the limit of detection (LODy;;) was
1.5 pg/kg.
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In 82 % of the 134 samples no clothianidin was detected
(< LODy;), whereas residues below the LOQ,,; were
found in 6 and 18 plots of study fields at the reference (R6,
R7, R9, R12) and test sites (T3, T4, T7, T8, T13, T14),
respectively. Calculations based on the upper limits of
LODy,;; and LOQ,; revealed a very conservative estimate
for average soil residues of 2.1 + 1.3 pg/kg which did not
differ significantly between the study sites (Table 2). This
residue concentration is in the range of clothianidin residues
reported for agricultural soils with repeated drilling of clo-
thianidin dressed corn (2-11.2 pg/kg (de Perre et al. 2015),
2013: 4.0 + 1.1 pg/kg, 2014: 5.6 + 0.9 pg/kg (Schaafsma et
al. 2015), 7.0 +4.2 pg/kg (Xu et al. 2016)) and OSR seeds
(5.7 +£4.0 pg/kg (Xu et al. 2016)). The distribution of plots
with clothianidin residues among the study fields did not
reveal any correlation with the crop or PPP history during
the previous five years. Since clothianidin is known for its
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ageing behaviour in soil and has also a low bioavailability
of 6-10% (Xu et al. 2016), the non-quantifiable soil resi-
dues on 18 % of all sampled plots were considered not to
contribute to translocation into bee-relevant matrices (nectar
and pollen). This assumption has been confirmed by the
later residue findings in nectar and pollen samples on the
reference sites under confined conditions (>90 % of all
residue samples not detectable at LODpcciarpolienshoney =
0.3pg/kg).

Because crop history and PPP applications resembled
each other at the two study sites and based on the applied
PPPs no adverse long-term effects are to be expected.

Ensuring exposure to focal PPP
Clothianidin loading of OSR seeds

Another uncertainty in field studies is whether the investi-
gated free flying bees are exposed to the PPP under con-
sideration. To be able to quantify the potential exposure,
OSR seed samples taken before drilling were analysed for
their clothianidin loading. Before sowing, samples of
approximately 500 g were taken from all OSR seeds for the
analysis of clothianidin loadings. The seed samples were
pre-processed by mixing with an acetonitrile/water solvent
mix (4/1, v/v) to extract the clothianidin and analysed by
liquid chromatography coupled with tandem mass spectro-
metry similar to the analysis of residues in soil samples
described above. The coefficient of determination for cali-
bration curves was again above 0.996. The LOQgeeqs Of
clothianidin residues in OSR seeds was 1.0 mg/kg.

The amount of clothianidin in the seed coating of treated
OSR seeds averaged 7.8 +1.5 g/kg and ranged between
43.9 % and 108.2 % of the nominal concentration of 10 g/kg
(Table S1). Traces of clothianidin were also found in the
OSR seeds of the reference site with a median loading of
0.02 g/kg (range 0.001-0.226 g/kg). These low amounts of
clothianidin arose from residues in commercial facilities for
seed treatment. Though OSR seeds used on the reference
site were not treated with clothianidin, the seeds were
processed in common seed treatment facilities for dressing
with the fungicides thiram and dimethomorph. The study
fields R17 and R18 at the edge of the reference site (Fig. 1)
also contained a clothianidin seed dressing. However, this
did not diminish the value of the monitoring study because
the nearest study locations of bees were 2.9 km apart
(compare Rolke et al. 2016b) and the Great Sternberg Lake
in between most likely formed a natural barrier for the bees.
Accordingly, the lack of clothianidin residues in pollen and
nectar from the closest study locations verified that the bees
at the reference site did not forage on these two study fields
where the seeds had been treated with clothianidin (Rolke et

al. 2016b) probably due to the ample food available in the
vicinity of the hives.

Based on the clothianidin-loading of seeds and drilling
rates, on average 28.8 +10.0 g/ha of clothianidin were
applied to the study fields of the test site and 0.19 + 0.25 g/ha
at the reference site during drilling. If we assume an equal
distribution of OSR seeds and clothianidin at the field and
an average soil density of 1.5kg/L, the clothianidin con-
centration at the test and reference site amounted to 19.2 +
6.7 pg/kg and 0.13 +£0.17 pg/kg, respectively, in the
uppermost 10 cm of the soil after drilling. The contamina-
tion at the reference site is below the average residue con-
centration in the soils before drilling and, thus, considered
very unlikely to have a confounding effect on the study
results.

Clothianidin residues in bee forage

To further verify the exposure to clothianidin of the bees at
the study locations, pollen collected by honey bees, earth
bumble bees and red mason bees as well as nectar and honey
collected by honey bees were analysed for clothianidin
residues and its metabolites thiazolylmethylurea and thia-
zolylnitroguanidine. For methodological details see Rolke et
al. (2016b). In an additional semi-field tunnel-tent study
(bees confined to the test crop in insect-proof cages at all
study fields), nectar and pollen samples were collected from
honey bees foraging exclusively on OSR. The residues in
pollen and nectar (Npopien = Npectar = 39) from the tunnel-tent
study indicated a clear exposure to the neonicotinoid at the
test site, whereas at the reference site no residues were
detectable in the majority of samples (96 % for pollen, 100
% for nectar, Nponen = Npeciar = 34).

Similar results were obtained for the investigated bee
species at the study locations which could freely forage.
Neither clothianidin nor its metabolites were detected
(LODnectar/pollen/honey =03 ”g/kg) in any pollen Samp]e
collected by honey bees (N = 96), bumble bees (N = 6) and
mason bees (N =06) at the reference site, whereas a few
nectar samples (5.6 %, N=96) and 62.5% of honey
samples (N=48) contained non-quantifiable amounts
(LOQuectar/polienshoney = 1.0 pg/kg) of clothianidin. In con-
trast at the test site, clothianidin residues were detected in
the majority of Pouen (Nhoney bee = 96, Noumble bee = 6,
Niason bee =0), nectar (N=96) and honey samples
(N=48), mainly at concentrations below the
LOQnectar/polien/nectar bUt also at clearly quantifiable con-
centrations with a maximum of 2.7 pg/kg in pollen, 1.6 pg/kg
in nectar, and 2.1 pg/kg in honey (Rolke et al. 2016b).
These results clearly demonstrate that the investigated bees
were exposed to clothianidin while foraging on OSR grown
from clothianidin dressed seeds at the test site.
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Residues in soil after harvest

The half-life of clothianidin in soil was reported to range
between 13.3 and 305.4 days under field conditions (mean:
120.1 days, European Commission 2005). In order to assess
the persistence of clothianidin in the soil of the study area
after applying a known amount of the neonicotinoid as seed
dressing, the central study fields T7, T8, and T10 of the
treatment site were sampled again after the harvest of OSR
plants in August 2014. This time, one soil sample was taken
per subplot (N =15). The analysis of clothianidin residues
was conducted as described above for the previous analysis
of clothianidin residues in soil. The residues of clothianidin
were below the LOQq,;; (5 pg/kg) in 11 of the 15 samples
and the maximum concentration found was 5.9 pg/kg at
study field T10. These concentrations are considerably
lower than the amount of clothianidin in the soil after
drilling which was calculated as above to constitute 15, 9.4
and 169 pg/kg on the study fields T7, T8 and TI0,
respectively. The analysed residue concentrations indicate
clothianidin concentrations to dissipate by 50 % in 0.5 years
or less which corresponds well with the reported dissipation
of clothianidin in agricultural soil (Schaafsma et al. 2015).

Representativeness of the study area

The validity of results of the large monitoring study needs
to be considered for regions other than where the study was
conducted. Therefore, an assessment of whether the study
area is representative in terms of the eco-physiological cli-
mate was included, the OSR phenology, and the land use on
a regional scale, that is the district of Ludwigslust-Parchim
(Fig. 1a), as well as for the major OSR cultivation areas in
Germany. For this analysis, the inner core of both study
sites, encompassing the inner 7km in diameter each
(Fig. 1b), were investigated in depth because the majority of
studied bees was considered to forage in this area of 2 km
around the bee hives and nesting shelters (Gathmann and
Tscharntke 2002; Steffan-Dewenter and Kuhn 2003; Wal-
ther-Hellwig and Frankl 2000). Furthermore, a comparison
was conducted between the study area and other regions
with OSR cultivation at the European level based on the
density of OSR cultivation and the availability of alternative
bee forage, to facilitate the transferability of the results.

Climate and OSR phenology

The eco-physiological climate classification as developed
by Lauer et al. (2002) was applied. This classification is
based on empirical data of the heat and water budget of a
region and also integrates interactions of the ‘“climate-
vegetation-soil” system. The climate of the study area was
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classified as Cmha, which describes a warm temperate
climate (C) with a mesotherm (m) 5-6 months lasting
thermal growing season and a humid (h) 7-9 months lasting
hygric growing season, as well as a high maritime degree of
continentality (@). The Cmha climate predominates in the
district of Ludwigslust-Parchim as well as in Mecklenburg-
West Pomerania. Only in the very south of the federal state
outside the study area does the climate change to sub-humid
(sh), a 5-6 months lasting hygric season and a submaritime
degree of continentality (5).

Considering the weather parameters individually for the
period of winter oilseed rape flowering, data obtained from
the European Centre for Medium-Range Weather Forecasts
were analysed (Table 1). In the study area, this period is
characterized by mean temperatures of 11.8 °C (minimum
6.6 °C, maximum 17.3 °C), a precipitation sum of 54.2 mm,
and a solar radiation sum of 566 MJ/m> (Fig. S3). This is
consistent with the long-term average weather conditions of
the entire Ludwigslust-Parchim district with a mean tem-
perature of 12.1 °C (minimum 6.7 °C, maximum 17.7 °C),
53.5 mm precipitation and 561 MJ/m? solar radiation during
OSR flowering. Similarly, the weather conditions in
Mecklenburg-West Pomerania during OSR flowering are
characterised by a mean temperature of 11.8 °C (minimum
7.3 °C, maximum 16.5 °C), 47.9 mm precipitation and 580
MIJ/m? solar radiation. There is only little deviation towards
the Baltic Sea Coast (Figs. S2, S3). Thus, with deviations in
all average temperatures of less than 1 K, a difference in the
30-day precipitation sum of only 6.3 mm and 14 MJ/m? in
the solar radiation, the study area can be seen as repre-
sentative also for the federal state of Mecklenburg-West
Pomerania in terms of the weather conditions during OSR
flowering.

The average air temperature during OSR flowering for
the years 2000-2013 was further used to calculate tem-
perature sums and growing degree days for the analysis of
OSR phenology. The flowering period of OSR is defined as
starting when the first flowers open (BBCH 60, Federal
Biological Research Centre for Agriculture and Forestry
2001) and ends when all petals have fallen (BBCH 69).
Typically, in Central Europe the flowering of winter OSR
lasts 3-5 weeks, depending on the weather conditions
(German Weather Service 1995-2014). Therefore, the
average duration of flowering was set to 30 days for further
calculations. The analysis revealed that in the study area
flowering of winter oilseed rape starts on average in the
third decade of April (between 21st and 30th April) and
ends on average between the 11th and 20th May, hence, in
the second decade of May. According to the similarity in
climate, these dates also apply to the flowering of winter
OSR in general in the district of Ludwigslust-Parchim
(average OSR flowering third decade of April until second
decade of May) and the majority of OSR cultivation areas in
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Mecklenburg-West Pomerania (average OSR flowering
third decade of April/first decade of May until second/third
decade of May).

Land cover and land use

In order to estimate the availability of OSR and other mass
flowering crops as bee food, the land cover of different
habitats and crops was assessed as described above. Com-
parable land use data at the level of the district and the
federal state were taken from agrostatistical figures for the
harvest year 2014 (Statistisches Amt Mecklenburg-Vor-
pommern 2015) and regional statistical databases of the
surface area according to actual use for 2012 (Statistisches
Amt Mecklenburg-Vorpommern 2012). Europe-wide data
on the amount of OSR cultivation per administrative unit
(Nomenclature des unites territoriales statistiques—NUTS,
level 2 and 3) were obtained from official national statistical
services for the years 2010-2013, and those for other land
use types were derived from CORINE 2006/2010 land use
data provided by the European Environment Agency,
Copenhagen.

For the study area, the analysis of LULC revealed that
60.9 % of the 77.0km? comprising the inner cores of the
study sites were covered with arable land. Winter OSR was
cultivated on 1406.2 ha (30.0 %) of the agriculturally used
area in the harvest year 2014, which constitutes 18.3 % of
the core area of the study sites (compare Fig. 2). Other crops
cultivated in the study area during the monitoring study
were different grains (32.9 % of core area), maize (8.6 %)
and sugar beet (1.1 %), which are all not suitable as forage
sources for bees during OSR flowering. At the local (dis-
trict) and regional (federal state) scale, arable land covered
43.5 and 46.4 % of the landscape, respectively, and winter
OSR is cultivated at 7.0 % and 11.5 % of the area, respec-
tively. Grains, maize, and sugar beet were cultivated at
19.4 %, 10.0 % and 0.3 % and 23.3 %, 6.1 %, and 10.7 % of
the area of the district and federal state, respectively.
Grassland covered equal amounts of 11.2 %, 12.4 %, and
11.1 % of the core area of the study sites, the district Lud-
wigslust-Parchim, and Mecklenburg-West Pomerania state,
respectively. Urban areas covered 5.6 % of the core area of
the study sites which is in the same range as for the district
(7.3 %) and federal state (8.0 %). Forests constituted 28.1%
and 21.8 % of the district and federal state, respectively, but
considerably less in the study area (10 %) which is due to
the selection criteria for the study area of high coverage
with arable land and OSR crop in particular.

Exclusively winter OSR was cultivated in the study area,
but no summer OSR. This is consistent with the higher
economical importance of winter OSR and the negligible
percentages of summer OSR in Germany (2014: 0.3 % of

OSR cropping area, Federal Statistical Office) and the
European Union (2014: 6.5 %, Eurostat).

Compared to other OSR cultivation areas in Europe,
equally high OSR densities as in the study area of above
16 % of the area are hardly found at the larger scale of the
administrative units (Fig. 6a). Nevertheless, considering the
average OSR density of Mecklenburg-West Pomerania of
11.5 %, it is still at the upper range of OSR densities at
administrative levels in Europe, with only few areas having
similar or higher densities (Fig. 6a).

Alternative bee forage

During flowering, OSR is a highly attractive food resource
for bees (Abrol 2007, Holzschuh et al. 2013, Stanley et al.
2013b). Nevertheless, the polylectic bees may also forage
from other crops and flowering plants. LULC categories
providing high amounts of alternative bee forage during
OSR flowering were fruit trees and berry plantations, forest
margins, natural grassland, and pastures. For these LULC
categories, the relative coverage per administrative unit
were calculated for the OSR cultivation areas in Europe
(Fig. 6b). In the district Ludwigslust-Parchim, alternative
bee forage habitats as defined above cover 15.2 % of the
area. This is consistent with almost all regions of high OSR
density having a relatively low amount of habitats with
alternative bee forage. The highest percentages of alter-
native forage habitats exist in regions with large areas of
grassland, as found in Ireland, Wales, the northwest and
very south of Germany, The Netherlands, as well as the
Normandy and the Central Massif in France (Fig. 6b).
However, these regions in turn contribute little to the overall
OSR cultivation (Fig. 6a).

Therefore, at the smaller scale of the study area, the land
cover categories of arable land and OSR crop occur at a
high density due to the selection criteria applied to identify
a suitable study area. Accordingly, in terms of OSR density
and lack of other mass flowering crops during OSR flow-
ering, the study area constitutes a worst case in terms of
high exposure to OSR for foraging honey bees considering
actual field conditions. Furthermore, there are no major
differences in climate, OSR phenology and land use
between the study area, the district Ludwigslust-Parchim
and Mecklenburg-West Pomerania state. Therefore, the
study area can be seen as representative for the major winter
OSR cultivation region in Germany whereas in the Eur-
opean context, at a broader scale, OSR is usually cultivated
at lower densities and the availability of alternative bee
forage in arable fields and other habitats is higher. Hence,
the study area constitutes a worst case of high OSR expo-
sure with few alternative food sources also at the European
level for honey bees and to a lower extend also for earth
bumble bees because they can profit from more limited food
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Fig: 6 Spatial distripution Of_ a Oilseed rape cultivation in Europe
regional OSR cropping density (% OSR of total area per unit)
(a) and coverage with land use B oo
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resources. Generalizing the study results from the investi-
gated red mason bees to the European level and other
solitary bees is, however, limited due to the diversity of
species and their different life styles.

Conclusion

Monitoring studies at the landscape level are difficult to
conduct, complex, expensive and many aspects have to be
considered to avoid confounding effects. This is probably
the reason why they are not often performed in the context
of regulatory risk assessments of PPPs to pollinating
insects. In general, few of these studies have been con-
ducted so far to investigate the side-effects of crops treated
with neonicotinoids on pollinating insects under realistic
field conditions (Godfray et al. 2014). Those that have been
conducted (e.g. Cutler et al. 2014; Pilling et al. 2013;
Rundlof et al. 2015; Thompson et al. 2013) were criticized
amongst other things for their low statistical power due to
limited replication, contaminated control sites and further
differences between environmental conditions at the control
and treatments sites. This study aimed to avoid all these
confounding effects in this large-scale monitoring study of
side-effects of clothianidin seed-dressed OSR on three dif-
ferent pollinator species. This paper presents the imple-
mentations of the identified requirements for the study.

The study sites were shown to be sufficiently large to
ensure the exclusive exposure of the investigated bees to the
conditions controlled for at the respective study site. An
alternative approach would have been to compare several
paired sites distributed over a larger spatial scale as for
example done by Rundlof et al. (2014, 2015), and Cutler
and Scott-Dupree (2014). However, this approach would
have added considerably to the amount of natural variability
and, hence, limited the statistical conclusions possible.

In addition, the environmental conditions of the reference
and test sites were shown to be as similar as possible under
natural conditions and possible confounding effects will
have been reduced to an absolute minimum. Therefore, we
conclude that the results of the different bee monitoring
studies conducted in this project are valid and not sig-
nificantly influenced by environmental conditions.

The investigations reported here verify the suitability of
the selected study area by the high density of OSR crops
and the fact that no other attractive flowering crop was
available to provide bee forage during the flowering of
OSR. The high density of OSR crops and the long agri-
cultural history can be seen as a realistic worst case scenario
providing the highest possible exposure to OSR found
under field conditions which was also verified by the
comparison with other OSR cultivation sites in Europe. Due
to the representativeness of the study area for other OSR

cultivation regions, the findings of the monitoring project
are not restricted to the study area but can also be trans-
ferred to other OSR cultivation sites in Europe.
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