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Although selective metabolic and receptor-based molecular agents
will surely be included in the future of prostate cancer diagnosis and

therapy, currently available inorganic compounds—such as 18F-NaF

for the diagnosis of bony disease and 223RaCl2 for the therapy of bone

metastases—were recently shown to be superior to standard 99mTc-
phosphonates for diagnosis and 153Sm-ethylenediaminetetramethylene

phosphonate or 89SrCl2 for therapy. The advantages of 18F-NaF in-

clude improved lesion detection and, when used in combination with

CT, improved diagnostic confidence and specificity. In addition to
being the first approved α-emitter, 223RaCl2 is the first radiopharma-

ceutical to show an increase in overall survival, a decrease in skeletal

events, palliation of bone pain, and a low profile of adverse reactions
(which are mild and manageable). The management of metastatic

bone disease with 223RaCl2 is uniquely satisfying, as patients can

be monitored directly during their monthly treatment visits.
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The American Cancer Society has estimated that there will be
180,890 new prostate cancer (PC) patients and 28,170 deaths in
2016 (1). Prostate cancer ranges from asymptomatic to a progres-
sive systemic malignancy. Lymph nodes and bones are the most
common sites of metastases. Serum prostate-specific antigen (PSA)
levels, Gleason score, and clinical stage at presentation are used to
assess pretreatment risk and the probability of recurrence or metas-
tases. On the basis of these criteria, patients are characterized as
having low risk (bone metastases unlikely) or high risk (bone me-
tastases likely). Skeletal metastases correlate with a poor prognosis.
99mTc-methylene diphosphonate (99mTc-MDP) scintigraphy has
been the imaging method of choice for the evaluation of predom-
inantly sclerotic skeletal PC metastases. However, the growing
availability of PET imaging systems, the establishment of commer-
cial regional distribution centers for PET radiotracers, and the rel-
atively recent concerns with shortages of 99mTc-labeled radiotracers

have prompted much interest in the use of PET in this clinical
setting (2).

18F-NAF PET IN PC

18F-NaF is a positron-emitting radiopharmaceutical that was
used for skeletal scintigraphy in the 1970s. Clinical use was lim-
ited then because of logistic difficulties in delivering tracers with a
half-life of 110 min and the absence of PET technology. 18F-NaF
was replaced in the late 1970s by 99mTc-labeled phosphonates,
which had improved g-camera compatibilities (3,4). As an analog
of the hydroxyl group found in hydroxyapatite bone crystals, 18F-
NaF is an avid bone seeker. Ion exchange is its mechanism of
uptake, and blood flow is the rate-limiting step in the transfer of
fluoride ions from blood to bone (4,5). As with 99mTc-phosphonates,
which adhere to bone by chemisorption, fluorine is directly in-
corporated into the bone matrix, converting hydroxyapatite to
fluoroapatite (6). 18F-NaF is rapidly cleared from plasma, with
only 10% of 18F-NaF remaining in plasma at 1 h (7,8). This
desirable characteristic of rapid blood clearance in association
with fast and high bone uptake leads to high-quality (high target-
to-background uptake ratio) skeletal images in less than 1 h after
intravenous 18F-NaF administration (Fig. 1). Nonuniform uptake
of 18F-NaF in normal skeleton reflects differential regional blood
flow and bone crystal surface nonuniformity. Regional high up-
take in abnormal scans corresponds to processes that increase
blood flow to the exposed bone crystal surface.

18F-NAF PET/CT VS. 99MTC-MDP BONE SCINTIGRAPHY

18F-NaF PET/CT is currently under evaluation for the detection
of malignant skeletal lesions. In December 2015, the Centers for
Medicare & Medicaid Services issued a decision memorandum
regarding the use of 18F-NaF PET for the detection of bony me-
tastasis, concluding that available outcome evidence was not suf-
ficient to allow for 18F-NaF PET reimbursement (9). The Centers
for Medicare & Medicaid Services recommended continuation of
coverage with evidence development for another 2 y, as before,
through the National Oncologic PET Registry for 18F-NaF (9).
99mTc-MDP bone scintigraphy has been the method of choice
for the evaluation of osseous metastases, as it enables a relatively
low-cost whole-skeleton survey. Applications of skeletal scinti-
graphy include initial staging, monitoring the response to therapy,
and detection of areas at risk for pathologic fracture. Although
99mTc-MDP scintigraphy is sensitive for the detection of advanced
skeletal metastatic lesions, early involvement may be missed be-
cause this technique relies on identification of the osteoblastic
reaction of the involved bone rather than detection of the tumor
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itself. The technique relies significantly on regional blood flow to
bone. Spatial resolution limitations imposed by planar scintigra-
phy and SPECT also affect bone scintigraphy sensitivity for osse-
ous metastases (10). In a study by Even-Sapir (11), patients with
high-risk PC underwent 99mTc-MDP bone scintigraphy with
SPECT and 18F-NaF PET/CT. In a patient-based analysis, the
sensitivities of 99mTc-MDP planar scintigraphy, SPECT, and 18F-
NaF PET/CT were 70%, 92%, and 100%, respectively. The spec-
ificities of 99mTc-MDP planar scintigraphy, SPECT, 18F-NaF PET,
and 18F-NaF PET/CT were 57%, 82%, 62%, and 100%, respec-
tively. Another study involving 42 PC patients demonstrated a
sensitivity of 91%, a specificity of 89%, and an accuracy of 90%
for 18F-NaF PET/CT in the detection of bone metastases (12).
Cook et al. compared qualitative bone scintigraphy with semi-
quantitative 18F-NaF PET for evaluation of the response to bone
metastasis treatment with 223RaCl2 (13) and concluded that 18F-
NaF PET was more accurate than 99mTc-MDP (Fig. 2).
A recent study comparing 18F-NaF PET with 99mTc-MDP

scintigraphy demonstrated that 18F-NaF PET/CT was more
accurate than conventional bone scintigraphy for localizing and
characterizing malignant bone lesions (14). High-quality imag-
ing, increased clinical accuracy, and greater patient and referring

physician convenience support 18F-NaF PET/CT in compari-
son with planar bone scintigraphy, SPECT, SPECT/CT, and
whole-body MRI, including diffusion-weighted imaging, for
the evaluation of skeletal malignancy (15,16). Despite the high
performance of 18F-NaF PET/CT, clinical use remains low be-
cause of limited access and nonuniform reimbursement. The
exact PSA threshold for using 18F-NaF PET/CT also remains
to be established, although the threshold is probably lower than
that for 99mTc-MDP scintigraphy (typically a serum PSA level of
.20 ng/mL).
Our results indicated the feasibility and utility of the combined

administration of 18F-NaF and 18F-FDG in a single PET/CT ex-
amination for the detection of malignancy, including PC (17–20).

TARGETED RADIONUCLIDE THERAPY FOR BONE

METASTASES

Initial and subsequent treatment of PC is complex and may
involve surgery, radiation therapy, hormonal therapy, chemother-
apy, bisphosphonates, pain medication, or a combination of these.
Typically, the initial phase of hormone dependence gives way
to hormone independence or castration resistance, at which time
the cancer tends to metastasize more readily, especially to bone.
About 90% of patients with advanced castration-resistant PC
(CRPC) will develop bone metastases (21). Bone lesions may
cause pain, disability, deterioration of quality of life, and skeletal
events (e.g., pathologic fractures or spinal cord compression)
that may require treatment, with associated costs and potential
complications. Metastatic CRPC (mCRPC) is associated with
significant morbidity and mortality. Successful mCRPC treat-
ment alleviates bone pain, reduces skeletal events, reduces dis-
ease biomarkers (such as alkaline phosphatase and PSA levels),
and improves survival.
Prostate cancer cell proliferation generally induces an osteo-

blastic reaction in bone. One successful strategy for improving
clinical outcomes in PC patients with bone metastases is the use of
radiopharmaceutical agents that preferentially accumulate at sites
of increased osteoblastic activity and provide a local antitumor
effect (21,22). Targeted radionuclide therapy is used to deliver a
specific amount of radioactivity to specific tissues in a certain area
of the body to destroy cancer lesions (Table 1).

89SRCL2 AND 153SM-ETHYLENEDIAMINETETRAMETHYLENE

PHOSPHONATE (153SM-EDTMP)

Historically, the most common radiopharmaceuticals for bone
pain palliation in the United States were the b-emitting radiophar-
maceuticals 89SrCl2 and 153Sm-EDTMP. 89SrCl2 was approved by
the U.S. Food and Drug Administration (FDA) in 1993 and has a
physical half-life of 50.5 d, a maximum b-energy of 1.463 MeV
(100%), and a tissue range of 8 mm. The typical dose is 148 MBq
(4 mCi) through a slow intravenous push. Doses can be repeated at
3-mo intervals. Pain relief usually begins in 10–20 d and lasts up
to 6 mo, resulting in reduced management expenditures (23). Al-
though the tumor-to-marrow absorbed dose is approximately 10:1,
to avoid complications from marrow suppression, a pretreatment
platelet count of greater than 60,000/mm3 and a white blood cell
count of greater than 2,400/mm3 are suggested. With specific
instructions, effective doses to bystanders are acceptable (24).
Kurosaka et al. showed that 89SrCl2 was effective in reducing pain,
including a subset of patients who became pain-free, with resul-
tant improvement in quality of life (25).

FIGURE 2. 73-y-old man with PC. (A and B) 99mTc-MDP bone scan

was negative (A), whereas 18F-NaF PET/CT revealed single L4 metas-

tasis (B). (C and D) Axial PET (C) and CT (D) revealed focal uptake in

small sclerotic lesion (arrowhead).

FIGURE 1. 18F-NaF PET/CT maximum-intensity-projection images il-

lustrating appearance of anterior osteophyte (A), solitary metastasis (B),

and multiple metastases (C) in 3 different PC patients.
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89SrCl2 may also be effective in combination with other drugs.
In a study by Tu et al., 36 patients who had CRPC and were
randomly assigned to receive 89SrCl2 and doxorubicin had a me-
dian survival time of 27.7 mo; in contrast, for 36 patients who
received doxorubicin alone, the median survival time was 16.8 mo
(P 5 0.0014) (26). However, such an outcome benefit with com-
bined therapy was not demonstrated in patients with advanced
castration-sensitive prostate cancer (27).

153Sm-EDTMP was approved by the FDA in 1997, emits both
medium-energy b-particles and a g-photon (which allows for
imaging), and has a physical half-life of 46.3 h (Fig. 3). The rec-
ommended dose of 153Sm-EDTMP is 37 MBq/kg (1.0 mCi/kg),
administered intravenously. The patient should ingest or receive
fluids and should void often to minimize bladder radiation.
153Sm-EDTMP has a desirable combination of high bone uptake,
low nonosseous uptake, and rapid blood clearance, making it
useful in treating bone metastases. The highest doses are present
in bone and the urinary bladder wall (28). 99mTc-MDP and
153Sm-EDTMP concentrate in metastatic skeletal lesions through
the same mechanisms (29). In a phase 1 study of patients with
skeletal metastases, prospective radiation dosimetry calculation
permitted an accurate 153Sm-EDTMP dosage on the basis of
total red marrow exposure, starting at 100 cGy and escalating to
280 cGy, to define dose-limiting myelotoxicity (30). Pain was
relieved in 22 of 34 patients (65%) for periods ranging from 4 to
35 wk (30). Other, larger studies confirmed similar response rates
in both breast cancer and prostate cancer (31–33). Transient
myelosuppression with delayed thrombocytopenia was noted in
some patients (30). Bayouth et al. reported that radiation esti-
mates permitted the identification of at-risk patients before myelo-
toxicity was reached (34).
In 55 patients with painful bone metastases, Sartor et al.

reported that repeat dosing with 153Sm-EDTMP at 37 MBq/kg
(1.0 mCi/kg) was safe and effective, and Heron et al. found that
multiple treatments with 153Sm-EDTMP had no effect on the se-
verity of myelotoxicity (35,36). This treatment option is reason-
able in patients who have adequate hematologic function and bone
pain that recurs after an initial successful dose.
Baczyk et al. compared 89SrCl2 and 153Sm-EDTMP in 60 pa-

tients with PC and 40 patients with breast cancer (37). Complete
pain relief was found in 40% of women and men treated with
153Sm-EDTMP and in 25% of women and 33% of men treated
with 89SrCl2. No relief occurred in 20% of patients. Greater pain
reduction occurred with osteoblastic metastases than with mixed
metastases. Statistically significant pain reduction, pain drug re-
quirements, and Karnofsky scale improvement were found with
both radionuclides (37). Montesano et al. reported on 27 patients

who had bone metastases (16 prostate, 5 breast, and 6 lung can-
cers) and received 89SrCl2 (17 patients) or 153Sm-EDTMP (10
patients) (38). After therapy, there was no significant tumor
marker or bone scan changes. 89SrCl2 and 153Sm-EDTMP enabled
partial or total pain relief and improvement in quality of life. No
tumoricidal effect was found. Hematologic toxicity was limited
and reversible. Patients with PC seemed to have a higher response
rate (38).

223RACL2

223RaCl2 (Xofigo; previously Alpharadin; Bayer Healthcare) is
the newest radiopharmaceutical approved by the FDA (on May 15,
2013) for the treatment of painful osseous lesions from mCRPC
(39). Compared with 89SrCl2 and 153Sm-EDTMP, 223RaCl2 repre-
sents a significant departure for 2 important reasons. First,
223RaCl2 is primarily an a-emitter rather than a b-emitter (decay
scheme: 93.5% as a-particles, ,3.6% as b-particles, and ,1.1%
as g-radiation). Second, 223RaCl2 is the first radiopharmaceutical
to show an increase in overall survival (OS), a decrease in skeletal
events, palliation of bone pain, and low toxicity.
Until 2010, docetaxel was the only chemotherapeutic agent able

to prolong survival after development of CRPC, and 89SrCl2 and

FIGURE 3. 72-y-old man who had PC and was referred for 153Sm-

EDTMP treatment of painful bone metastases. 99mTc-MDP bone scan

(A) and 153Sm-EDTMP (B) revealed extensive metastases.

TABLE 1
Bone-Targeted Radiopharmaceuticals

Radiopharmaceutical
Physical
half-life (d)

Particle
type

Usual

administered
activity

Typical

response
time (d)

Typical

response
duration

Retreatment
interval

89SrCl2 (Metastron;

GE Healthcare Ltd.)

50.5 β 148 MBq 14–28 12–26 wk .3 mo

153Sm-EDTMP (Quadramet;

IBA-Molecular)

1.9 β 37 MBq/kg 2–7 8 wk .2 mo

223RaCl2 (Xofigo; Bayer Healthcare) 11.4 α 50 kBq/kg · 6 every 4 wk ,10 Unknown Unknown
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153Sm-EDTMP were used for bone pain palliation, along with pain
medications (40). Since then, 5 new drugs have been proven to be
efficacious in prolonging survival: sipuleucel-T, cabazitaxel,
abiraterone, enzalutamide, and 223RaCl2 (41–44).
Because of their short range, a-particles deliver a large amount of

radiation to target tissue while relatively sparing normal surround-
ing tissue. 223RaCl2 has a much higher energy and a shorter tissue
range than either 89SrCl2 or 153Sm-EDTMP (45). The range of
a-particles in human tissue is approximately 0.1 mm. The admin-
istration of 223RaCl2 is similar to that of 89SrCl2 and 153Sm-EDTMP
(a slow intravenous push). Dosimetry was studied during a phase 1
study of 223RaCl2 for 3 cohorts, at 50, 100, and 200 kBq/kg. Dose
rates were usually less than 2 mSv/h/MBq on contact and averaged
0.02 mSv/h/MBq at 1 m immediately after administration. Fecal
excretion was the primary method of clearance, with resulting
whole-body effective half-lives of 2.5–11.4 d (Fig. 4) (45–47).
a-particles require relatively minimal radiation safety precau-

tions (48). For example, in the average patient receiving 3.5 MBq
(95 mCi) of 223RaCl2, the dose measures 0.35 mSv/h (0.035 mrem/h)
at 1 m. Thus, no contact precautions are associated with 223RaCl2.
Similar to recommendations for 131I therapy, bathroom precautions
are recommended for 1 wk to minimize radiation exposure to others;
these precautions include multiple flushing, area cleanup, and hand
washing.
An early phase 2 study (49) was done to investigate the dose–

response relationship and pain-relieving effect of 223RaCl2. In that
study, 100 mCRPC patients were randomized to receive a single
223RaCl2 dose of 5, 25, 50, or 100 kBq/kg. The pain index 2 wk
after 223Ra administration was significantly related to the dose
(P 5 0.035). At week 8, there were 40%, 63%, 56%, and 71%
pain responders in the groups receiving 5, 25, 50, and 100 kBq/kg,
respectively. All doses were considered safe, and a decrease in the
bone alkaline phosphatase level in the group receiving the highest
dose was noted (P 5 0.0067).
In another phase 2 study, the efficacy and safety of 223RaCl2 at 3

different doses were evaluated in mCRPC patients (50). In this

phase 2 double-blind multicenter study, 122 patients were random-
ized to receive 3 injections of 223Ra at 6-wk intervals: 25 kBq/kg
(n 5 41), 50 kBq/kg (n 5 39), and 80 kBq/kg (n 5 42). The
primary endpoint was reached, with a statistically significant
dose–response relationship, for no patients (0%) in the group re-
ceiving 25 kBq/kg, for 2 patients (5%) in the group receiving
50 kBq/kg, and for 5 patients (12%) in the group receiving
80 kBq/kg (P 5 0.0297). A decrease in the bone alkaline phos-
phatase level of greater than or equal to 50% was identified in
6 patients (16%), 24 patients (67%), and 25 patients (66%) in
the groups receiving 25, 50, and 80 kBq/kg, respectively (P ,
0.0001). The most common treatment-related adverse events oc-
curring up to wk 24 across all dose groups were diarrhea (21%),
nausea (16%), and anemia (14%). No difference in the incidences
of hematologic events was seen among the dose groups. 223RaCl2
was well tolerated at all doses and had a dose-dependent effect on
serum CRPC activity markers.
Final approval of 223RaCl2 followed the phase 3 ALSYMPCA

(Alpharadin in Symptomatic PC) trial (51). In this randomized,
double-blind, placebo-controlled study, 921 patients who had re-
ceived, were not eligible to receive, or declined docetaxel (in a 2:1
ratio) were randomized to receive six injections of 223RaCl2
(50 kBq/kg) or matching placebo every 4 wk. The primary end-
point was OS. The main secondary efficacy endpoints included
time to the first symptomatic skeletal event and various biochem-
ical endpoints. A prespecified interim analysis conducted when
314 deaths had occurred assessed the effect of 223RaCl2 versus
placebo on survival. An updated analysis conducted when 528
deaths had occurred was performed before the crossover from
placebo to 223RaCl2.
At an interim analysis of 809 patients, compared with placebo,

223RaCl2 significantly improved OS (median, 14.0 vs. 11.2 mo;
hazard ratio, 0.70; 95% confidence interval, 0.55–0.88; 2-sided
P 5 0.002). An updated analysis of 921 patients confirmed the
223RaCl2 survival benefit (median, 14.9 vs. 11.3 mo; hazard ratio,
0.70; 95% confidence interval, 0.58–0.83; P , 0.001). Assess-

ments of efficacy endpoints also revealed
a benefit of 223RaCl2 compared with pla-
cebo. 223RaCl2 was associated with low
myelosuppression rates and fewer adverse
events. The study was terminated for efficacy,
as 223RaCl2 improved OS (51–53). The en-
couraging outcome of the ALSYMPCA
clinical trial not only resulted in FDA ap-
proval but also led to the recent incorpora-
tion of 223RaCl2 into the updated National
Comprehensive Cancer Network guideline
(version 3.2013).
Although there may be a decrease in the

PSA or alkaline phosphatase level similar
to that seen with 89SrCl2 or 153Sm-
EDTMP, some patients either did not
have a decrease in PSA or had an in-
crease in PSA after 223RaCl2 therapy.
Thus, PSA can fail to accurately indicate
the response of mCRPC to a variety of
therapies (54). Both patients and physi-
cians should be aware of this potential
unlinking of OS and PSA in mCRPC so
that therapy is not unnecessarily stopped
prematurely.FIGURE 4. Biodistribution of 223RaCl2. (Adapted with permission of (47).)
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On the basis of phase 2 and 3 trials, the most common (.10%)
adverse reactions in patients receiving 223RaCl2 were nausea, di-
arrhea, vomiting, and peripheral edema. The most common hema-
tologic abnormalities were anemia, lymphocytopenia, leukopenia,
thrombocytopenia, and neutropenia (52). One study reviewed the
1-y clinical experience with 223RaCl2 in 25 mCRPC patients (55).
About one-quarter of the cohort completed the entire 6-dose treat-
ment cycle. Advancing soft-tissue disease was the primary reason
for the cessation of therapy. Adverse events were mild and man-
ageable. A decline in the serum alkaline phosphatase level was
more common than a decline in the PSA level. Another retrospec-
tive investigation reviewed the clinical experience after 532 cycles
of 223RaCl2 administration in 110 patients (56). That study showed
that there were significant reductions in the serum alkaline phos-
phatase level and pain score and that progression risk was associ-
ated with a decrease in the serum PSA doubling time. Simultaneous
external-beam radiation therapy was associated with an increased
risk of bone marrow failure.
The effectiveness of 223RaCl2 therapy was recently evaluated in

relation to skeletal tumor burden on whole-body 18F-NaF PET/CT
(57). In 42 patients, skeletal tumor burden indices derived from
PET/CT at baseline were highly correlated and were significant
independent predictors of OS. In an earlier study, an SUVmax

threshold of 10 was shown to exclude nearly all normal bone
activity from volumetric calculations (58).

CONCLUSION

18F-NaF PET provides superior diagnostic performance com-
pared with 99mTc-MDP bone scintigraphy for the evaluation of
patients with PC. Radionuclide therapy for painful bone metasta-
ses is undergoing a significant resurgence because of the introduc-
tion of 223Ra and the use of radiopharmaceuticals in combination
with standard chemotherapy. These developments will contribute
significantly to the care of patients with PC in the era of person-
alized and precision medicine (59).
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