Cardenas et al. Journal of Environmental Health Science & Engineering (2016) 14:14

DOI 10.1186/540201-016-0257-8

Removal of micropollutants through a

Journal of Environmental
Health Science and Engineering

@ CrossMark

biological wastewater treatment plant in a
subtropical climate, Queensland-Australia

Miguel Antonio Reyes Cardenas', Imtiaj Ali, Foon Yin Lai®, Les Dawes”, Ricarda Thier” and Jay Rajapakse®’

Abstract

Background: Municipal wastewaters contain a multitude of organic compounds derived from domestic and
industrial sources including active components of pharmaceutical and personal care products and compounds
used in agriculture, such as pesticides, or food processing such as artificial sweeteners often referred to as
micropollutants. Some of these compounds or their degradation products may have detrimental effects on
the environment, wildlife and humans. Acesuflame is one of the most popular artificial sweeteners to date
used in foodstuffs. The main objectives of this descriptive study were to evaluate the presence of micropollutants
in both the influent and effluent of a large-scale conventional biological wastewater treatment plant (WWTP) in
South-East Queensland receiving wastewater from households, hospitals and various industries.

Methods: Based on USEPA Method 1694 Filtered samples were spiked with mass-labelled chemical standards
and then analysed for the micropollutants using liquid chromatography coupled with tandem mass spectrometry.

Results: The presence of thirty-eight compounds were detected in the wastewater influent to the treatment
plant while nine of the compounds in the categories of analgesic, anti-inflammatory, alkaloid and lipid/cholesterol
lowering drugs were undetectable (100 % removed) in the effluent. They were: Analgesic: Paracetamol, Salicylic
acid, Oxycodone; Anti-inflammatory: Naproxen + ve, Atorvastatin, Indomethacin, Naproxen; Alkaloid: Caffeine;

Lipid/cholesterol lowering: Gemfibrozol.

Conclusions: The study results revealed that the micropollutants removal through this biological treatment
process was similar to previous research reported from other countries including Europe the Americas and Asia,
except for acesulfame, a highly persistent artificial sweetener. Surprisingly, acesulfame was diminished to a much
greater extent (>90 %) than previously reported research for this type of WWTPs (45-65 %) that only include
physical removal of objects and solids and a biodegradation step.
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Background

Health and environmental concerns about the effects of
micropollutants in wastewater have become increasingly
important in wastewater management. The term micro-
constituents includes pharmaceuticals and personal care
products (PPCPs), and other compounds that may be
found in wastewater in small amounts including com-
pounds used in food processing and agriculturally used
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pesticides. Public concern increases particularly in situa-
tions where wastewater effluent is released into the envir-
onment (e.g., streams and rivers) that are then used as a
raw potable water source for communities located down-
stream [1]. This especially concerns countries in Europe,
where recycled water is used not only for agricultural pur-
poses but also for preparation of drinking water. Water
usage has become highly critical in other countries as
well. For example, several states in Australia are commit-
ted to recycle more water in the future due to Australia’s
general arid climate, frequent droughts and other pres-
sures. Local governments are searching for strategies to
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minimise micropollutant release into surface waters and/
or increase of removal from wastewater, in order to ensure
the health of humans and their ecosystem [2].

As of 2006, there are about 50,000 chemicals used for
industrial, agricultural and veterinary purposes in Australia
[3]. Since the early 1990s, chemical assessments have taken
place which resulted in the creation of different strategies
and regulations for the utilisation and manipulation of
pesticides, medicines, and so forth [4]. The National
Industrial Chemicals Notification and Assessment
Scheme (NICNAS) and the Therapeutic Goods Adminis-
tration are examples of regulators created to control
the use and disposal of industrial chemicals and phar-
maceuticals, respectively. Significant questions remain
about the types and levels of monitoring of treatment
processes required in order to adequately protect
human health and the environment.

The three largest sources of PPCPs include industry,
hospitals, and private homes. PPCPs enter into the sanitary
sewer primarily through excretion of un-metabolised
pharmaceuticals [5]. Table 1 shows urinary excretion per-
centage as parent compound of some of the most common
pharmaceuticals found in sewerage systems. In addition,
residual products are frequently discarded via the sewerage
system. For example, the results from a survey of the
American public found that only 1.4 % of the surveyed
people returned unused medication to the pharmacy,
whereas 54 % threw them away and 35.4 % disposed them
in the sink or the toilet [6]. Another source of these com-
pounds are uncontrolled landfill sites where they and their
chemical or biological degradation products reach nearby
rivers or groundwater as surface run off or leachate [7].
Surface run-off may also contain chemicals from agricul-
tural activity such as pesticides and animal medicines [8].

Recently, artificial sweeteners (ASs) have been identified
as emerging environmental contaminants [9-13]. ASs are
widely used in foods, particularly beverages, as sugar sub-
stitutes and are excreted mainly unmetabolised. They are
excreted via the kidney and reach surface waters of the
environment mainly in this unchanged form [11-13].

Table 1 Percentage of drug found in urinary excretion as
parent compound for common medicines

Drug Class Compound  References
excreted (%)
Ibuprofen Non-steroidal 10 [53]
anti-inflammatory (NSAID)
Paracetamol Painkiller 4 [54]
Erythromycin Antibacterial 25 [54]
Sulfamethoxazole  Antibacterial 15 [55]
Atenolol {3 - blocker 90 [53]
Metoprolol B - blocker 10 [54]
Carbamazepine  Antiepileptic 3 [54]
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Acesulfame (ACE) is one of these sugar substitutes
found in the aquatic environment as a result of efflu-
ents containing ACE from wastewater treatment plants
being discharged into water courses. Acesulfame con-
centrations in the wastewater treatment plant effluents
were reported from as low as 20 ug/L [14] up to very
high values as 2.5 mg/L [11-13, 15]. It is so persistent
that on the one hand, it has raised concern as an environ-
mental pollutant but on the other hand, it is appreciated
as a marker for contamination of e.g., groundwater with
domestic wastewater [12, 16]. However, as Lange et al.
[12] identified the actual knowledge about environmental
persistence and potential hazard of ACE is not well
understood.

The impact of most micropollutants on human health
and environment is not well understood. However, effects
of some PPCPs on human health and environment are
known. For example triclosan, an antibacterial and anti-
fungal used in personal care products such as soap and
tooth paste, is called an endocrine disrupting com-
pound (EDC) because it interferes with natural hormonal
functions, potentially altering metabolism, development,
reproduction and growth [17] including decline in repro-
ductive function in men [18]. Effects of EDCs on the en-
vironment comprise birth abnormalities and feminisation
of organisms including fish, frogs, birds and mammals [4].
Effects on aquatic organisms have also been documented
for certain herbicides, such as 2,4-Dichlorophenoxyacetic
acid (2,4 D), which alters the shell formation of the bivalve
Anodonta cygnea [16]. This compound has also been
investigated intensely for chronic toxicity in humans
but results remained inconclusive [19].

Some water micro-constituents, such as the antibiotic
ciprofloxacin and the artificial sweetener acesulfame,
have been shown to be degraded during certain treatment
steps, which can lead to conversion into more toxic
compounds [9, 20]. Antibacterials are of concern not
only because of their toxicity but also as harbinger of
bacterial resistance. Bacteria in wastewater comprise
very high levels and varieties of resistance genes, which
may be disseminated to human and animal pathogens
[21-23]. Multi-resistance in bacteria is a major global
health issue that has further restricted treatment options
for already limited options of infectious diseases [24].

There is only limited knowledge around the accumula-
tive effects of individual compounds and combination
effects of mixtures of micropollutants in wastewater.
Some advances in this field have been made with the con-
sideration of toxic equivalent concentrations and the use
of mode of action based test batteries where concentrated
water samples are tested and the risk is assessed by com-
paring the results of e.g., environmental water samples to
specific reference compounds for each test [25-27].
Advanced methods of water treatment have been designed
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for reclamation of wastewater for drinking purposes in-
cluding reverse osmosis, ozonation, UV-irradiation, nano-
and ultrafiltration, activated carbon filter and biofiltration.
When applied after traditional wastewater treatment these
techniques reduce a wide variety of biological effects
including estrogenic, genotoxic, neurotoxic and phyto-
toxic effects. These reduction of these effects varied
depending on the treatment combined with the
compound composition of the water [28—30].

In summary, it becomes clear that additional steps for
wastewater treatment are essential to decrease the dis-
charge of micropollutants [31] into Australian rivers and
estuaries as current traditional wastewater treatment is
insufficient to avoid their release into the environment.
In South-East Queensland, several studies have investi-
gated the removal of micropollutants in modern state of
the art water reclamation plants [27-30]. These studies
have focussed on the removal of micropollutants with
sophisticated methods. Furthermore, in the South-East
Queensland region, Shareef et.al [32] investigated the re-
moval of EDCs and PPCPs at Oxley Creek and Luggage
Point which received wastewater from domestic and
domestic/industrial sources respectively. Ying et al. [33]
studied the estrogens and xenoestrogens removal in the
final effluents of five wastewater treatment plants from
South-East Queensland. Also, Tan et al. [34] did a com-
prehensive study of the removal of 15 EDCs and estrogen
equivalent (EEqs) of five wastewater treatment plants from
South-East Queensland. Two other studies have investi-
gated the fate of antibacterials and these were used for
comparison where appropriate [35, 36].
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This paper assesses the efficiency of conventional waste-
water management practices on the removal of PCPPs
and other micropollutants in a traditional 3-step WWTP
in South-East Queensland to inform future individual
wastewater management plans for this WWTP. The con-
centrations of 95 different micropollutants in wastewater
influent and effluent were determined. Removal rates for
the biodegradation step were calculated for compounds
that were found in the influent.

Methods

Description of the wastewater treatment plant

The municipal wastewater treatment plant (WWTP)
receives wastewater mainly from households, hospitals
and various manufacturing and service industries includ-
ing meat manufacturing, automobile repairing and
maintenance, fuel retailing, laundry and dry cleaning
and spirit manufacturing.

The WWTP is equipped with a conventional 3-step
treatment process including physical removal of objects
and solids, biological oxidation and a chlorine based
disinfection process (Fig. 1). Preliminary treatment in-
volves three band screens and two grit chambers, which
removes grit and screenings. Sodium hypochlorite (NaOCl)
and sodium hydroxide (NaOH) are used in the preliminary
treatment for odour control and pH adjustments. The sys-
tem has a fully automated wet weather by pass system to
send excess flow into environment (a receiving stream).
The biological process integrates four oxidation ditches
(OD) with an aerobic and anaerobic zone followed by clari-
fiers. The sludge dewatering facility consists of a gravity
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Fig. 1 Flow diagram of the studied wastewater treatment plant
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drainage deck (GDD) and a belt filter (BFP) process. The
disinfection process uses chlorination. Current average flow
rate of influent is 45 ML/day.

Sampling points are shown in Fig. 1 as A and B. Sam-
pling Point A: The wastewater influent, the raw waste-
water, was collected after screenings and grit removal.
Sampling Point B: The effluent was collected after the
biological oxidation ditch and clarifier, but before disinfec-
tion of the final effluent. WAS: Waste Activated Sludge,
RAS: Return Activated Sludge.

Sampling and analysis

During September 2012, grab samples were collected in
alignment with the Water Monitoring Data Collection
Standards of Queensland Government using the meth-
odology described in AS/NZS 5667.1 Water Quality —
Sampling — Guidance on the design of sampling
programs, sampling techniques and the preservation and
handling of samples [37-39]. Two sets of samples were
collected at two different locations (influent A and effluent
B) of the WWTP on 2 different days. The sampling points
were located at two different stages of the treatment plant
process: Point A was located after primary treatment and
before entering the biological treatment unit (oxidation
ditch), while Point B after the biological treatment and
clarification process (Fig. 1). In total eight grab samples
were collected in 500 ml plastic bottles following the
hydraulic retention time (average HRT =24 h; i.e,, 20 h
in oxidation ditch and 4 h in clarifier) of the WWTP
and together with blank samples were stored at 4 °C
until analysis.

The samples in this study were analysed for a total of
95 compounds, including PPCPs, agricultural, food pro-
cessing and other micropollutants, which are commonly
found in wastewater, using an in-house validated analytical
method from Queensland Health Forensic and Scientific
Services. This method has been optimised according to
the USEPA Method 1694 [40]. A 1 mL filtered-sample
was spiked with mass-labelled chemical standards (com-
pensating for any instrumental variations during analysis)
and analysed using liquid chromatography (Shimadzu
Prominence, Shimadzu Corp., Kyoto, Japan) coupled with
Tandem mass spectrometry (LC-MS/MS; Applied Biosys-
tem/Sciex API 4000Q system). Separation of the com-
pounds was performed on a C18 analytical column (Luna
C18, 150X2.1 mm, 3 pm, Phenomenex) at 45 °C with a
gradient mobile phase (A: 1 % acetonitrile, 99 % Milli-Q
water and 0.1 % formic acid; B: 95 % acetonitrile, 5 %
Milli-Q water and 0.1 % formic acid) programmed as: 8 %
B at start; ramped up to 35 % B at 3.5 min; increased to
100 % B at 11 min; held 100 % B for 4 mins; equilibration
of the column for 3 mins. The mass spectrometry was
operated in a multiple reaction monitoring mode to
identify and quantify the micropollutants in the samples.
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Results

Wastewater samples were taken at two sampling points
before and after the biodegradation step, which has an
aerobic and an anaerobic zone and analysed 95 compounds
including PPCPs, compounds used in food processing and
agriculture by LC-MS/MS. From the two sets of samples
collected on two different days (with 5-days apart), during
the month of September 2012, the arithmetic average
pollutant levels of the two samples were calculated. Out
of the 95 compounds tested, we found 38 compounds
in the influent, mainly drugs or drug metabolites as shown
in Table 2. There were three pesticides and two food com-
ponents, the artificial sweetener acesulfame and caffeine.
Nine of the identified compounds were undetectable in
the effluent, but 29 were still present to various degrees in
the effluent samples after the biodegradation step in the
oxidation ditch.

The majority were removed to at least 80 % (Fig. 2).
The most persistent compounds included MCPA (2-
methyl-4-chlorophenoxyacetic acid), 2,4-D (2,4-Dichloro-
phenoxyacetic acid), desmethyl citalopram, phenytoin and
carbamazepine (Fig. 2). Surprisingly, acesulfame was
removed in the conventional treatment process by 92 %
(Fig. 3). Three compounds paracetamol, salicylic acid
and caffeine found at concentrations of 289.40 ug/L,
32.74 pg/L, and 78.09 ug/L respectively in the influent
were undetectable in the effluent (Fig. 3).

Tables 3 and 4 present the characteristics of raw waste-
water (influent) received by the treatment plant and the
quality of treated effluent before disinfection and discharge
respectively. The data are typical for water quality of this
type of traditional treatment plants. The treatment plant
total nitrogen (TN) discharged in the adjacent licensed
discharge point is 53 t per year, keeping acceptable
levels according to the maximum permitted by regula-
tor (Environment and Heritage Protection) for the river
(98 t per year).

Discussion
The concentrations of observed micropollutants in the
wastewater of the investigated WWTP in South-East
Queensland were generally within the lower range of previ-
ously reported values from around the world [36, 41-45].
This is in agreement with the comparatively low population
density in the catchment of the observed WWTP. Where
applicable, all values were at least one order of magnitude
below the Australian Drinking Water Guidelines 6 [46]
and the Australian Guidelines for Water Recycling [47].
In addition, the differences between concentrations of
micropollutant parent compounds in influent and effluent
water observed in our study fit well within the ranges of
current reports from other studies [12, 43].

In the present study, caffeine is at about 80 pg/L in
the influent samples. This is about 10 times higher than
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Table 2 List of 95 compounds tested in the influent (The 38 compounds detected in the influent are in bold with 9 compounds

absent in effluent shaded)

Atenolol Phenytoin Paraxanthine
Ranitidine Oxazepam Asulam
Codeine Desmethyldiazepam Diatriozate
Gabapentin Sulfsalazine lopromide
Lincomycin Temazepam Hydrochlorthiazide
Oxycodone Naproxen Acesulfame
lopromide Praziquantel Acetylsalicylic acid
Trimethoprim Diazepam Chloramphenicol
Doxylamine Atorvastatin Salicylic acid
Paracetamol Indomethacin Frusemide
Ciprofloxacin Diclofenac Naproxen +Ve
Metoprolol Desisopropyl Atrazine Warfarin
Tramadol Desethyl Atrazine Atorvastatin
Caffeine Tebuthiuron Fluvastatin
Sulphadiazine Hexazinone Diclofenac
Sulphathiazole Ametryn Ibuprofen
Cephalexin Bromacil Gemfibrozol
Venlafaxine Simazine Dalapon
Propranolol Prometryn Picloram
Primidone Terbutryn Fluroxypyr
Desmethyl Citalopram Flumeturon Dicamba
Dapsone Atrazine MCPA
Erythromycin Diuron 24D
Erythromycin hydrate 3,4 DiCl Aniline Triclopyr
Sulphamethoxazole Metolachlor 24 DP
Tylosin Haloxyfop methyl Mecoprop
Ifosfamide Haloxyfop-ethoxyethyl 24 DB
Cyclophosphamide Propoxur MCPB
Fluoxetine Carbaryl Haloxyfop
Sertraline Diazinon Asulam
Roxithromycin Chlorpyriphos Bromoxynil

Carbamazepine

Flamprop-M-methyl

the study by Shareef et al., (8 pg/L =8000 ng/L) [32].
The difference is reasonable due to the difference of
business and human activities, lifestyle, and probably
season of the year. Our studied WWTP serves the catch-
ment with about 180,000 people (2011 census). For Oxley
and Luggage point, the WWTDPs serves about 85,000 and
300,000 people respectively.

With an influent concentration of about 43 pg/L, the
surprisingly higher reduction (about 92 %) of acesulfame

at the Queensland WWTP is the first report of reduction
of this artificial sweetener in a traditional 3-step WWTP
at this high level. The QA/QC details are presented
below:

Internal standard recovery: 100 % + 3.16 % (mean + S.D.)
for caffeine and 103 % + 6.84 % for acesulfame.
Variation of duplicate analysis: <10 % variation (CV%)
for both caffeine and acesulfame.
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Fig. 2 Removal of micropollutants with low to medium levels of pollutant in the influent (Mean with error bars depicting minimum and maximum

Inter-day variation: <20 % (CV%) for caffeine and <5 %
for acesulfame.

Milli-Q blank samples were included in the batch of
analysis. No contamination of these chemicals was found
in these blank samples.

Removal rates vary from study to study, which is antici-
pated as they depend on various conditions including the
physico-chemical properties of the compounds and the
treatment process itself [12, 43]. As noted earlier, acesul-
fame concentrations in the wastewater treatment plant
effluents were reported from as low as 20 pg/L (Scheurer
et al,, 2009) [14] up to higher values as 2.5 mg/L (Loos et
al,, 2013) [15]. In the German study [14] acesulfame con-
centration in the influent to the wastewater treatment
plant ranged from 34 to 50 pug/L and up to 41 % removal
was observed.

Some compounds are biodegraded by bacteria and in
these cases the removal rates can depend on their initial
concentration as the removal depends partially on enzyme
kinetics [42]. These effects are, however, unlikely to ex-
plain sufficiently the extremely high removal rate of ACE
found in this study. In previous studies, ACE was removed
consistently at 45-65 % by conventional WWT and only
additional treatment with ozone or UV light increased the
removal rate up to 90 % [10, 16, 40, 48]. But ozonation

and/or UV light treatment of wastewater as currently prac-
ticed in water treatment plants, which prepare drinking
water in Switzerland and Germany, reduced the amount of
ACE by only 30 % [10, 41, 48]. The detection of a signifi-
cant amount of unexpected compounds in the wastewater
system, in particular the anomolous level of acesulfame
removal suggests the need for a detailed assessment.
Further investigation of these should use improved
analytical protocols.

Our findings also raise questions with regard to the im-
pact of the remaining ACE and its water-soluble degrad-
ation products on the environment as well as downstream
users of the surface waters. However, degradation of ACE
depends on the decomposition process and conditions
and many transformation products that have been identi-
fied from different processes [9, 10, 48]. It is important to
investigate whether the degradation products of ACE
under conventional WWT in SE-QId conditions are iden-
tical to the intermediates and products found in these
studies and to assess their toxicological impact on humans
and the environment.

While ACE has been substantially tested for its lack of
adverse effects to humans before its registration as food
additive, only limited data are available about its eco-
toxic potential. Ecological toxicity tests using duckweed,
Lemna minor, green algae, Scenedesmus vacuolatus, and
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water fleas, Daphina magna, revealed very high Lowest
Observed Effect Concentrations (LOEC) for ACE [49].
In recent years, detection of micropollutants in wastewa-
ter and surface waters has inspired the search for practical-
ities beyond monitoring of their discharge into ecosystems.
Monitoring the use of specific drugs, including illicit drugs,
through wastewater analysis in regions and countries has
become common, for example to estimate illicit drug use
per capita or to monitor increases over holiday periods

Table 3 Inlet wastewater quality

[50, 51]. Individual micro-constituents, such as the
drugs valsartan acid, carbamapezine and the artificial
sweetener acesulfame, were identified to have physico-
chemical properties, which makes them resistant to
degradation in wastewater treatment plants. This persist-
ence has led to the concept of using them as tracers and
markers in water bodies e.g., for identification of ground-
water contamination with urban wastewater [52]. In fact,
removal rate of carbamazepine in our study was also poor

Date pH NH3 NOx-N ortho-PO,-P TP N TSS TKN CoD BOD Alkalinity
mg/L mg/L mg/L mg/L mag/L mg/L mg/L mag/L mag/L mag/L
(CaCo3)
3/09/2012 75 66 0.2 7.7 87 71 330 71 760 460 340
5/09/2012 7. 74 0.1 77 82 76 370 76 800 440 350
10/09/2012 79 49 04 70 70 73 560 73 750 620 330
12/09/2012 75 54 02 80 1.0 87 580 87 1180 700 370
17/09/2012 76 46 0.1 6.8 100 70 390 70 830 480 340
19/09/2012 76 58 0.1 74 79 83 950 83 950 618 370
24/09/2012 77 50 0.1 6.9 100 69 420 69 810 540 370
26/09/2012 75 63 0.1 77 100 80 510 80 960 540 370

TN total nitrogen, TP total phosphorus, TSS total suspended solids, TKN total Kjedahl nitrogen, COD chemical oxygen demand, BOD biochemical oxygen demand
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Table 4 Quality of treated effluent after clarification

Date NHs NOx ortho PO,-P pH  TSS TP
mg/L mg/L  mg/L mg/L  mg/L

3/09/2012 2.1 0.7 32 76 4 34
5/09/2012 1.7 08 3.7 76 5 39
10/09/2012 08 0.7 29 78 6 3.1
12/09/2012 0.7 0.7 43 76 6 46
17/09/2012 09 0.7 4.1 7.7 7 42
19/09/2012 0.1 1.8 56 7.5 3 58
24/09/2012 04 04 26 7.7 7 2.8
26/09/2012 03 0.7 34 77 7 36

TN total nitrogen, TP total phosphorus, TSS total suspended solids

(~20 %). In light of our results with acesulfame it appears
relevant to consider environmental conditions on local
removal efficiencies of such tracers for appropriate
interpretation of quantitative results in particular.

Conclusions

The presence of 95 common micropollutants of domestic,
industrial and agricultural, including pharmaceuticals, per-
sonal care products (PCPPs) and food components was
determined in the wastewater influent and effluent of a
particular WWTP in SE-QId. Thirty eight compounds were
found in the influent. Although this is a relatively simple
conventional wastewater treatment, the levels of most
of these chemicals were reduced similarly to the extent
in more sophisticated WWTP, particularly regarding
anti-inflammatory drugs, analgesics and antibacterials.
Surprisingly, more than 90 % of the artificial sweetener
acesulfame was removed in this WWTP. This anomo-
lous level of acesulfame removal suggests the need for a
detailed assessment.

Nine of the compounds in the categories of analgesic,
anti-inflammatory, alkaloid and lipid/cholesterol lowering
drugs were undetectable (100 % removed) in the effluent.
They were: Analgesic: Paracetamol, Salicylic acid, Oxy-
codone; Anti-inflammatory: Naproxen + ve, Atorvastatin,
Indomethacin, Naproxen; Alkaloid: Caffeine; Lipid/chol-
esterol lowering: Gemfibrozol.
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