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Abstract

Accurate and complete analysis of genome variation in large populations will be required to 

understand the role of genome variation in complex disease. We present an analytical framework 

for characterizing genome deletion polymorphism in populations, using sequence data that are 

distributed across hundreds or thousands of genomes. Our approach uses population-level 

relationships to re-interpret the technical features of sequence data that often reflect structural 

variation. In the 1000 Genomes Project pilot, this approach identified deletion polymorphism 

across 168 genomes (sequenced at 4x average coverage) with sensitivity and specificity 

unmatched by other algorithms. We also describe a way to determine the allelic state or genotype 

of each deletion polymorphism in each genome; the 1000 Genomes Project used this approach to 

type 13,826 deletion polymorphisms (48 bp – 960 kbp) at high accuracy in populations. These 

methods offer a way to relate genome structural polymorphism to complex disease in populations.

Introduction

Describing genome variation in populations and identifying the alleles that influence 

complex phenotypes will require sequencing thousands of genomes. Genome sequencing 

will therefore increasingly be performed in clinical and reference cohorts of a substantial 

size 1. An important challenge will be to identify how genomes vary at large as well as fine 

scales.

Short sequence reads can reflect large variants in several ways: individual reads can span a 

variant’s breakpoints 2,3; molecularly paired sequences can flank a variant 4-6; and read 

depth is influenced by the underlying copy number of a genomic segment 7-9 (Fig. 1). 
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However, identifying large variants from short sequence reads is error-prone: molecular 

libraries contain millions of chimeric molecules that masquerade as structural variants; read 

depth varies across the genome in ways that vary among sequencing libraries; and alignment 

algorithms are misled by the genome’s internal repeats. Illustrating this challenge, the 1000 

Genomes Project found that even for deeply sequenced (> 30x) individual genomes, 14 

published and novel methods for analyzing deletions generated false discovery rates (FDRs) 

of 9-89%, such that additional experiments (array CGH, PCR) were required to identify the 

real variants among the false discoveries 1,10.

These difficulties are potentially more severe in sequence data that are generated on a 

population scale. As more genomes are sequenced, false discoveries accumulate more 

quickly than real variants do, since many real variants are simply rediscovered in more 

genomes. In addition, in population-based studies, investigators may use lower sequence 

coverage (across many more genomes) than is used for deeply sequenced personal genomes, 

as the resulting large sample size will allow studies to ascertain more low-frequency alleles 

and increase power for relating variation to phenotype. The high false discovery rate of 

structural variation algorithms in deeply sequenced individual genomes 1,10 has suggested 

that the problem of accurate inference at lower coverage will be challenging.

We hypothesized, however, that sequencing at a population scale will also enable new kinds 

of analytical approaches. True structural alleles might leave additional footprints in 

population-scale data (Fig. 1). Segregating alleles distinguish some genomes from others; 

they substitute for alternative structural alleles; they give rise to discrete allelic states in a 

diploid genome; they are often shared across genomes; and they segregate on haplotypes 

with other variants 11,12. Here we show that analysis of structural variation in populations is 

made far more accurate and powerful by apprehending patterns at a population level.

We present the results of an analysis applying these principles to map deletion 

polymorphism in the genomes of 168 individuals sequenced at low coverage (2-8x paired-

end sequencing on the Illumina platform) in the 1000 Genomes Project pilot. We focus on 

deletion polymorphism, the most numerous and validated class of structural variation, 

though the population-level analytic concepts we describe can also be used to analyze other 

forms of genome variation. We show that population-aware analysis enables structural 

inference with far greater accuracy and allows the construction of an unprecedented resource 

on human genome deletion polymorphism – with few false discoveries, ascertainment of 

variants down to sub-kilobase sizes and low allele frequencies, localization of breakpoints at 

high resolution, accurate determination of genotype (allelic state) at each locus in each 

genome, and a high-resolution map of linkage disequilibrium between single-nucleotide and 

structural alleles. The resulting data set has been validated by independent experiments. It 

comprises a substantial fraction of the deletion loci and all of the structural variation 

genotype data released by the 1000 Genomes Project pilot 1.
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Results

Coherence around shared alleles

Most of the variation in any human genome arises from alleles shared with other humans. In 

a sequencing study, allele sharing can arise in two ways. In studies of reference populations 

such as the 1000 Genomes Project, alleles that segregate in the general population at an 

appreciable frequency (>1% in the 1000 Genomes pilot) will generally be shared among 

multiple individuals sequenced. In medical sequencing studies that sequence many 

individuals with a particular phenotype, enrichment for high-risk alleles may cause such 

alleles to be present multiple times in a cohort of affected individuals, even when such 

alleles are rare in the general population.

We therefore sought to exploit shared variation wherever it exists, without filtering out rare, 

singleton variants that were private to individual genomes. We reasoned that making use of 

allele sharing would particularly increase power in low-coverage, population-scale 

sequencing, in which the evidence for a new allele in the data from any one genome may be 

insufficient to identify that variant with high confidence.

We applied this allele-sharing principle to increase power for ascertaining deletion alleles 

from discordant read pairs – paired-end reads that map to genomic locations that are 

unexpectedly far apart given a molecular library’s insert size distribution 4,6,13. Because the 

construction of molecular libraries produces millions of chimeric molecules (Fig. 2a), most 

such read pairs do not arise from real SVs. We identified sets of discordant read pairs, each 

set containing read pairs from 1-144 of the 168 genomes, that were coherent in the sense that 

all read pairs in a set could have arisen with high likelihood from the same deletion allele 

(Fig. 2b, Methods). Some 89% of the resulting sets included evidence from multiple 

genomes; the other 11% were supported by evidence from individual genomes.

Utilizing coherence allowed our algorithm, Genome STRiP (Genome STRucture In 

Populations), to accumulate power across genomes without being misled by chimeric 

molecules or requiring multiple evidentiary read pairs in any one genome. However, it 

became clear that coherence was an insufficient criterion: the number of large putative 

deletions (coherent clusters of read pairs spanning > 10 kb) exceeded tenfold the number 

expected by extrapolation from the CNVs discovered by tiling-resolution array CGH in a 

recent study by Conrad et al. 12 of 40 of these same genomes (Supplementary Figure S1), 

though Conrad et al. had ample technical power to identify CNVs of this size. This indicated 

that additional criteria were necessary to distinguish real SVs from artifacts.

Heterogeneity in populations

A true polymorphism creates heterogeneity in a population in the sense that it is 

differentially present in the genomes of different individuals. We reasoned that, in 

population-scale sequencing, this principle could distinguish real variants from those 

molecular and alignment artifacts that can arise from any genome.

We analyzed how the evidentiary read-pairs supporting each putative deletion allele were 

distributed across the 168 genomes sequenced (Fig. 3). For each putative deletion, a chi-
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square test was used to evaluate the deviation of the observed distribution from a null model 

in which each genome was equally likely (per molecule sequenced) to yield deletion-

suggestive reads from the locus (Fig. 3a,b). To evaluate the use of this statistic, we examined 

its distribution for a set of positive control deletions (from ref 12). The heterogeneity statistic 

yielded low p-values for almost all of these positive control regions (Fig. 3c); by contrast, 

the distribution of p-values for the “coherent” clusters of sequence reads included thousands 

that appeared to arise from a uniform distribution, consistent with the presence of thousands 

of artifacts that can arise with similar probability from any genome (Fig. 3d).

We evaluated the properties of putative common deletions for which sequence data were 

coherent but did not establish heterogeneity within the population. Many of these loci were 

flanked by homologous sequences that caused alignment algorithms to locate reads in the 

incorrect copy. Subsequent analysis of array-based copy number data confirmed that few of 

these putative deletions were real, and that the real ones generally passed our heterogeneity 

test. At other loci that lacked evidence for heterogeneity, we found almost no sequence 

support for the reference genome sequence, suggesting that the reference sequence is 

incorrect or represents a rare allele.

One consequence of the heterogeneity criterion is that, while Genome STRiP evaluates the 

evidence from all genomes at once, it is more convinced by putative variants for which 

supporting data arise multiple times from the same genome(s) than by putative variants for 

which support arises from many genomes in a thinly distributed way. The heterogeneity test 

therefore becomes far more powerful at intermediate and high levels of coverage.

Allelic substitution

Because genome variation does not generally change the number of copies of a 

chromosome, alternative structural alleles at the same locus are substitutes. If structural 

allele 1 (SA1) and structural allele 2 (SA2) are inconsistent with each other – for example, if 

SA1 contains genomic sequence that is deleted in SA2 – and both alleles are segregating in 

the same population, then there should be a negative correlation (across the genomes in a 

population) between evidence for SA1 and evidence for SA2. The nature of this molecular 

evidence need not be identical between SA1 and SA2, and this provides an opportunity to 

integrate multiple attributes of sequence data (such as read depth and read pairs) that have 

orthogonal error properties.

For the putative deletions in the 1000 Genomes pilot data, we evaluated the relationship 

between the presence of read-pair evidence for a deletion allele and the magnitude of 

sequence-depth evidence for the reference allele (Fig. 3e,f). To motivate use of this criterion, 

we evaluated its behavior for a set of positive control deletions (from ref 12). Genomes with 

read-pair evidence supporting these deletions invariably had diminished average read depth 

across the putatively deleted genomic segment (Fig. 3g). However, the candidate deletions 

from read-pair alignments (even those with coherent sequence data) appeared to arise from a 

mixture of real deletions and many more loci at which read-pair and read-depth data were 

uncorrelated in the population (Fig. 3h).
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Most putative deletions for which supporting sequence data were coherent and established 

heterogeneity still failed this allelic substitution test, and turned out be false discoveries. At 

many such loci, cryptic sequence polymorphisms (often small indels) had caused sequence 

reads to misalign to nearby, paralogous sequences (Supplementary Figure S2). Another type 

of filtered site consisted of transposon insertion polymorphisms 14,15 that were not on the 

reference genome sequence; reads from such insertions often aligned to nearby transposon-

derived sequences, causing sequence data to falsely suggest the presence of large deletions 

across the intervening genomic segment.

We combined the principles of coherence, heterogeneity, and substitution to infer the 

locations of deletion polymorphisms among the 168 genomes sequenced (Methods). The 

relative influences of coherence, heterogeneity, and substitution were optimized for this data 

set, which consisted mostly of 36-bp to 50-bp paired-end reads and sequencing coverage of 

2-8x per genome (Methods). We identified 7,015 putative deletion polymorphisms, 100 bp 

to 471 kbp in size, with evidence for each deletion arising from 2–1,111 read pairs from 1–

140 genomes (Fig. 4 a,b,c). Of these 7,015 deletions, 63% were novel relative to those 

discovered by tiling-resolution array CGH in Conrad et al.

Sensitivity and specificity

The fundamental challenge in population-scale sequencing is to efficiently discover genome 

variation while making as few false discoveries as possible. While diverse methods for 

identifying SVs have been described 2-9, to date their sensitivity and specificity have not 

been measured on empirical, population-scale sequence data sets.

To evaluate the putative deletions discovered by ten algorithms (Supplementary Table 1) 

from population-scale sequence data, investigators from the 1000 Genomes Project assayed 

thousands of these putative deletions using array comparative genome hybridization (CGH), 

hybrid SNP/CNV arrays, and PCR 1,10. In array-based analyses of several thousand deletion 

calls, deletions identified by Genome STRiP showed an estimated false discovery rate 

(FDR) of 2.9% (ref 1); this rate was confirmed (to within statistical sampling error) by 

independent PCR experiments on a randomly selected set of 100 deletion calls 1. A 

composite FDR estimate for Genome STRiP of 3.7% (obtained by applying the PCR-based 

FDR to all variants for which array-based data were uninformative) compared with rates of 

5.9% for Spanner (DA Stewart, GT Marth) and 23-70% for the eight other approaches 

evaluated on low-coverage data (Fig. 4d and ref 1). A total of 5,833 (83%) of the deletions 

predicted by Genome STRiP were explicitly validated using PCR, array data or breakpoint 

assembly 10.

In addition to producing the most accurate predictions, Genome STRiP was also the most 

sensitive of the ten algorithms evaluated by the 1000 Genomes Project, on both of the 

following criteria: (i) discovery of the deletions identified in the highest-resolution array-

based study, Conrad et al.12 (Fig. 4e); and (ii) the number of deletions explicitly validated in 

array- and PCR-based experiments (Supplementary Figure S3 and ref 1). An alternative way 

of estimating sensitivity is to use a set of CNVs ascertained in just one individual, though 

this approach heavily weights common variants because the probability of a variant being 

present in any one genome is proportional to the variant’s allele frequency. Against three 
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such individual-genome reference data sets, Genome STRiP was the most sensitive against 

two (Mills et al. 16 and Tuzun et al.13) and the second most sensitive against the third one 

(Conrad et al.12, when downsampled to one person) 10.

A particularly vexing and important challenge in low-coverage sequencing is to efficiently 

ascertain low-frequency alleles 1. To evaluate sensitivity for low-frequency alleles, we used a 

gold-standard set of deletions that had been genotyped in these same 168 genomes to 

establish allele frequency (ref 12) and evaluated the power of SV discovery as a function of 

allele frequency (Fig. 4e). Genome STRiP was again the most sensitive of the ten algorithms 

– and more so at the lowest allele frequencies – though it only partially ameliorated the 

weakness of low-coverage sequencing for detecting rare alleles (Fig. 4e). To assess how 

Genome STRiP might perform for rare alleles at higher levels of sequence coverage, we 

utilized the fact that the “low-coverage” genomes in the 1000 Genomes pilot are in fact a 

mixture of genomes with different levels of coverage, ranging from 2x to 8x span coverage 

(Methods). Genome STRiP’s power to detect rare singletons (deletion alleles present only 

once among the surveyed genomes, according to genotype data from Conrad et al.) rose 

quickly with increasing sequence depth, from less than 10% in genomes with less than 2x 

coverage to more than 80% in genomes with more than 8x coverage (Supplementary Fig. 

S4). In the 8x genomes, Genome STRiP achieved a sensitivity comparable to the most 

sensitive high-coverage algorithm in deeply sequenced (>30x) individual genomes, though 

Genome STRiP’s FDR was far lower (Supplementary Fig. S4).

Genome STRiP still showed incomplete sensitivity in absolute terms. When all ten discovery 

methods (including Genome STRiP) were used together, many more deletions were 

identified 1. The most complementary method (Pindel, ref 2), is local-assembly-based and 

identifies more small (< 300 bp) deletions; for Genome STRiP, sensitivity fell below 50% 

for deletions smaller than 300 bp (Supplementary Figure S5). Given the above observations, 

a key direction for the evolution of Genome STRiP will be to increase sensitivity for rare 

and small SVs. Ongoing technical advances will facilitate this: longer sequence reads (100+ 

bp) and gapped alignments 17 will allow Genome STRiP to take advantage of breakpoint-

spanning reads in the ab initio SV discovery step, increasing ascertainment of small and rare 

alleles.

Breakpoint localization

We estimated the breakpoint locations of common SVs, generally at 1–20 bp resolution, by 

combining data across all the individuals determined to share an SV allele in common (Fig. 

4d-f). Breakpoint locations were estimated at each locus by evaluating the likelihood of the 

sequence data (the aberrant but coherent read pairs from all genomes) given each potential 

breakpoint model, all observed read pairs, and the insert size distributions of each library 

sequenced (Fig 2b, 4f). The resulting confidence intervals were generally tight, particularly 

for common deletions, since each informative read-pair contributed information (Fig. 4f,g). 

Comparison to validated breakpoints1 confirmed the accuracy of these predictions (Fig. 4g).

With this breakpoint localization and breakpoint-spanning reads from many genomes, it was 

often possible to assemble unmapped sequence reads into a precise breakpoint sequence 

(Fig. 4h). A comprehensive breakpoint assembly analysis was undertaken by the 1000 
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Genomes Project 1; in the genotyping analyses below we use this larger breakpoint library 

and the complete set of deletions discovered by all algorithms in high- and low-coverage 

sequence data.

Genotyping structural polymorphism in populations

To evaluate the relationship between structural variation and phenotypic variation, studies 

will need to go beyond variation discovery – making lists of alternative structural alleles that 

are observed in at least one genome – to population genotyping, precisely determining the 

allelic state (or genotype) of every SV in every genome (Fig. 1b).

Many sources of information in population-scale sequence data – paired-end alignments, 

read depth, and breakpoint-spanning reads – could in principle each supply partial 

information about the allelic state of each SV in each genome. We reasoned that combining 

such information might enable a powerful way to genotype SVs of all sizes, and developed a 

Bayesian framework for integrating all of this information into a calibrated measurement of 

genotype likelihood (Fig. 5).

To utilize read depth, we normalized measurements of locus-specific read depth for each of 

the 168 genomes, then clustered these measurements in a Bayesian mixture model (Fig. 5b, 

Methods). Importantly, genomes were clustered with and therefore calibrated to other 

genomes (Fig. 5b). The mixture model was used to estimate the relative likelihood of each 

potential underlying copy number (Fig. 5c).

To utilize breakpoint-spanning reads and read pairs, we aligned all unmapped reads to a 

breakpoint library that contained sequences of all alternative structural alleles identified by 

the 1000 Genomes Project pilot 1,10. At each locus in each genome, we determined the 

number of sequence reads corresponding to the reference and deletion alleles, and estimated 

the likelihood that this combination of read counts and read pairs could arise from each 

possible SV genotype (Fig. 5d).

Our Bayesian framework combined these three sources of information into an integrated 

measurement of the relative likelihood that the sequence data from each genome arose from 

each potential combination of structural allele at that locus (Fig. 5e, Methods). To assess the 

calibration of the resulting genotype likelihoods, we compared to CNV genotypes from the 

largest array-based study (ref 12). The calibrated confidence of each sequencing-based 

genotype call matched the concordance of such genotypes with array-based genotypes 

(Supplementary Table 2). For small (< 328bp) deletions, only a minority of genotypes could 

be inferred at high confidence; we therefore sought to extend genotype calling by drawing 

upon another population-based source of information, the haplotypes formed by SNPs and 

SVs together.

Most of the common SVs genotyped to date have been found to segregate on specific SNP 

haplotypes, reflecting the haplotype background on which each structural mutation 

occurred 11,12. We reasoned that a population-genetic haplotype model, such as that 

embedded in imputation algorithms 18-21, could help resolve the genotype uncertainty that 

remained for many genomes (Fig. 5e). We integrated the SV genotype likelihoods together 
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with SNP genotypes in the same genomes 22 into SNP/SV haplotype models using the 

BEAGLE software 20, and used this to extend genotyping to more genomes (Fig. 5f). 

Intuitively, this used high-confidence genotypes to build models of the haplotypes 

segregating in a population, which were then used to resolve uncertainty about lower-

confidence genotypes. This approach yielded genotypes that were consistent with all 

features of the sequence data (Fig. 5g) and also with the haplotype structure of the 

population. We generated genotypes for 13,826 of the deletion polymorphisms (48 to 

959,782 bp in size) identified by the 1000 Genomes Project, with an average call rate of 

94.1% (median 99.4%) (Methods). The genotyped loci included 1,123 mobile-element 

insertion polymorphisms, which have been refractory to genotyping by earlier, array-based 

methods. The remaining loci, for which we were unable to obtain high-quality genotypes, 

were mostly short deletions with less than 200 bp of uniquely mappable sequence and no 

assembled breakpoints.

To evaluate the accuracy of our genotype calls, we took several approaches. Across 1,970 

common deletions for which high-quality genotype data existed (from ref 12), concordance 

of our genotypes with the array-based data was 99.1% (98.9% for homozygous deletions, 

99.8% for homozygous reference allele, and 95.6% for heterozygous sites). Because this 

analysis included relatively few short deletions (< 1 kb) due to the resolution of the array-

based genotyping used for comparison, we evaluated the linkage disequilibrium (LD) 

between our entire set of deletion genotypes and SNP genotypes from the same genomes. 

The LD properties of the full set of deletions (Supplementary Fig. S6, Supplementary Table 

3) closely matched the known LD properties of SNPs 23 and multi-kilobase deletions 11, a 

relationship that was extremely unlikely to arise by chance or in data with a high genotyping 

error rate.

These data comprise the structural variation genotype data release of the 1000 Genomes 

Project pilot 1.

Discussion

We have described a new analytical framework for analyzing sequence data that arise from a 

large number of genomes. Our results show that re-interpreting the technical features of 

sequence data at a population level improves the quality and extends the power of inferences 

from sequence data. There are in principle many more ways in which these ideas could be 

combined with technical features of sequence data (Fig. 1) to ascertain and accurately type 

other forms of genome variation in populations.

We envision several ways in which our approach will be used. One will be to construct maps 

of the genome polymorphism that is segregating in populations. Such populations will 

include the human reference populations being analyzed in the 1000 Genomes Project, other 

human populations such as population isolates, and populations drawn from other species. 

Genome STRiP’s ability to discover polymorphisms efficiently and accurately, and to 

produce accurate genotypes – the substrate for haplotypes, measurements of allele 

frequency, and population genetic analysis – will increase the utility of genome variation 

data resources.
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Another application of Genome STRiP will be in studies to uncover genome variation 

underlying complex phenotypes. Genome STRiP can be used in such studies in two ways. 

First, Genome STRiP can uncover structural alleles that are present among individuals with 

a particular phenotype but rare in the general population and therefore absent from resources 

such as 1000 Genomes. The low-coverage 1000 Genomes data analyzed here presented a 

more stringent test than will be presented by most disease studies, many of which will use 

intermediate or higher levels of sequence coverage that support greater sensitivity for rare 

variants. Second, Genome STRiP can be used to accurately determine the allelic state or 

genotype of each variant in each genome analyzed, allowing variation to be accurately 

correlated with phenotypes. The 13,826 deletion polymorphisms for which Genome STRiP 

produced genotypes here exceeds 10-fold the number of CNVs genotyped in our earlier 

efforts to develop hybrid SNP/CNV arrays for genome-wide association studies 11.

For common deletion alleles, many relationships to human phenotypic variation can be 

identified immediately by analyzing genome-wide association data together with the LD 

relationships identified here. Such relationships could be identified via tagSNPs 

(Supplementary Table 3) or imputation 18-20. To assess the potential yield of such 

approaches, we identified 70 reported phenotype-SNP associations (involving 56 unique 

phenotype-CNV pairs) that appear to be in LD (r2 > 0.8) with one or more of these variants 

(Supplementary Table 4), extending earlier efforts 12,24,25 that have identified 14 such 

relationships at this r2 threshold to date.

We have described ideas that could form the basis for new kinds of analytical approaches as 

sequencing-based studies are extended to large populations. Together with methods for 

analyzing single-nucleotide variation and small indels 26, these approaches will help realize 

the scientific potential of sequence data that are generated at a population scale.

Methods

Sequence data requirements

Genome STRiP requires paired-end sequence data that is generated from at least 10 

genomes, at high, low, or intermediate levels of sequence coverage.

Sequence data used

Structural variation discovery was performed using the low-coverage Illumina sequence data 

for 168 individuals from the 1000 Genomes Project, including six higher-coverage genomes 

down-sampled to ~4x coverage for one CEU and one YRI trio. Two genomes were excluded 

due to data quality issues. The average genome-wide sequence coverage from the mapped 

Illumina data ranged from 0.8x to nearly 7x across different genomes, with 16 genomes 

sequenced at 2x or less average coverage. The “span coverage” – the amount of sequence 

physically flanked by paired-end reads (a better measurement of power for structural-

variation methods that utilize paired ends, as Genome STRiP does) – ranged from 0.8x to 

nearly 9x. Of the 168 genomes, 24 had no paired-end data, which reduced the effective size 

of our discovery population to 144 genomes. Sequence reads were aligned by the 1000 

Genomes Project to the hg18 reference human genome using the MAQ alignment 
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algorithm 27. We reprocessed the data with Picard MarkDuplicates to achieve uniform 

removal of potential molecular duplicates.

Coherence and clustering

Candidate deletions were first identified as genomic clusters of at least two read pairs that 

were each “aberrant” in the sense that the left and right read aligned to the genome with 

unlikely (excessive) spacing, based on the empirical insert size distribution for each read 

group (corresponding to one sequencing lane). Each insert size distribution was 

characterized by the median value and a variance estimate (robust standard deviation, RSD) 

calculated as the width of the middle 68.2% of the distribution. Median insert sizes ranged 

from 108 to 469 (median 163) with RSD values ranging from 3% to 34% (median 11%) of 

the median insert size. Read pairs were used for clustering if they had correct orientation, a 

MAQ mapping quality of at least 10 on both ends and if the nominal insert size (measured 

by mapping to the reference genome) exceeded the median expected insert size by at least 

ten RSD. This threshold was motivated by the extremely large size of the data sets analyzed.

Clusters of aberrant read-pairs were formed using a connected components algorithm. Two 

read-pairs were considered connected if it was possible for them to share a breakpoint 

location such that the fragment length implied by the shared breakpoint was within the lower 

~99% (median + 2.33 RSD) of both insert size distributions. Note that these criteria involve 

an implicit estimate of pairwise coherence.

After read-pair clustering, coherence was evaluated at the cluster level by first determining 

the most likely deletion length (dopt) that would explain the spacing and location of the read 

pair alignments, based on their insert size distributions (Supplementary Note).

Using dopt , we calculated an “incoherence” metric FC(dopt) where

This metric captures the degree to which a deletion event of length dopt would explain the 

observed cluster of read pairs. We tested by simulation the deviation of this metric from the 

null model

where u is uniformly distributed.

Assessment of population heterogeneity

To measure the heterogeneity in the distribution of evidence for each candidate deletion, we 

counted the number of evidentiary read pairs observed in each genome and then computed a 

chi-square test statistic
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where Oi is the observed number of evidentiary read pairs for genome i and Ei is the 

expected number of evidentiary read pairs under a null model in which each genome is 

equally likely (per molecule sequenced) to produce an evidentiary read pair. Ei was 

calculated based on the genome-wide coverage depth and empirical insert size distribution 

of the reads for genome i. We estimated a p-value for this test statistic by Monte Carlo 

simulation.

Assessment of allelic substitution

An allelic substitution statistic was calculated for each candidate deletion by comparing 

average read depth (across the putatively deleted segment) for genomes containing 

evidentiary read pairs that supported this putative deletion (group A) to average read depth 

for genomes lacking such evidentiary read pairs (group B). A depth ratio DR was calculated 

as DA / DB. We additionally tested whether the numbers of reads (at the deletion versus 

elsewhere in the genome) differed between group A and group B genomes, using a 2x2 

contingency table chi-square test on the number of reads in each category.

Integration of coherence, heterogeneity and substitution criteria

For identifying deletions in the 1000 Genomes pilot data, we evaluated different 

combinations of thresholds based on the metrics described above; our evaluation criteria 

included the ability to ascertain known, positive-control SVs (from ref 12) and homozygosity 

for array-based SNP genotypes (from ref 22). We produced our call set for the 1000 

Genomes Project pilot by applying the following thresholds: incoherence metric > 0.01; 

substitution p-value < 0.01; depth ratio <= 0.63, or depth ratio <= 0.8 and heterogeneity p-

value < 0.01; and median normalized read depth of samples with observed evidentiary pairs 

< 1.0 (this last filter was used to remove calls in regions of unusually high sequence 

coverage across many samples). In general, the optimal choices of parameters and thresholds 

for this step in Genome STRiP analysis will be a function of the sample size, sequence 

coverage, read length, and insert size used in a study, and should therefore be optimized for 

each study using a gold standard SV data set (we used the data from ref 12; future studies 

may wish to use the much larger data set from the 1000 Genomes Project pilot 1) and the 

expectation of a realistic number of novel discoveries.

Evaluation of accuracy (specificity)

Experimental evaluation of SV discovery data sets was performed by a group of 

investigators for the 1000 Genomes Project and is described in detail in Supplementary Note 

and ref 1,15.

Evaluation of sensitivity

We evaluated sensitivity using multiple reference data sets to better understand the 

relationship of sensitivity to allele frequency and deletion size. (i) In Fig. 4e, which shows 
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how sensitivity relates to allele frequency of the underlying SV, we used the largest array-

based copy number data set for which genotype (and therefore allele-frequency) information 

are available (Conrad et al.). (ii) In Supplementary Fig. S4, which shows how sensitivity 

relates to the size of the underlying deletion, we used a reference data set (from ref 15) that 

was enriched for small deletions (<1 kb) and called most sub-kilobase variants at basepair 

resolution; these data consisted of deletions identified from a single genome (NA12156) by 

earlier analyses of fosmids, capillary sequence traces and tiling-resolution array CGH. 

Consistent with analyses of SNP-discovery sensitivity in ref 1, we considered the genomes 

as a set and did not require that the 1KG discovery arise specifically from NA12156. In 

these analyses, we considered a reference variant “discovered” if a callset variant overlapped 

with it. (iii) In Supplementary Fig. S3, which shows how FDR relates to the total number of 

experimentally validated discoveries from each method, we utilized data on the number of 

variants (predicted by each sequencing-based method) that validated at high stringency by 

array-based analysis, PCR or assembly of a breakpoint sequence; the raw data are reported 

in Supplementary Table 8 of ref 1.

Genotyping

Genotyping of deletion polymorphisms was attempted for 22,025 loci discovered by the 

1000 Genomes Project. Genotyping was performed on loci discovered in both high-coverage 

and low-coverage sequencing and was not limited to SVs discovered by Genome STRiP. 

Genotyping was performed using the low-coverage Illumina sequencing data from the 1000 

Genomes project for 168 individuals, including downsampled data at ~4x coverage for the 

CEU and YRI trios. Data curation and pre-processing steps were the same as for the 

sequencing data used for discovery, as described above.

Input to genotyping in Genome STRiP consisted of (i) a list of putative deletion loci with 

optional confidence intervals on the breakpoint locations, and (ii) a breakpoint sequence for 

each alternate structural allele, where available. Genotypes for each individual were 

determined by first calculating genotype likelihoods from three different sources of evidence 

from sequencing data (read depth, discordant read pairs and breakpoint-spanning reads, each 

described in subsequent sections) and then combining these likelihoods into a joint initial 

likelihood for each individual. Genotyping was performed independently for each putative 

deletion in the 1000 Genomes call set, even when there were other physically overlapping 

deletion calls. BEAGLE was used to combine these initial likelihoods with genotypes from 

nearby SNPs to arrive at final genotypes that benefit from taking into account LD between 

the deletions and nearby SNPs.

Utilization of read depth in genotyping

For each deletion locus, the number of sequenced fragments falling within the deleted region 

was counted for each sample, requiring a minimum mapping quality of 10, and correcting 

for the effective length of the deletion locus. The effective length excludes all base positions 

where less than half of the overlapping 35-mers were not unique (as defined by an 

alignability mask generated by the 1000 Genomes Project 1). The expected number of 

fragments for each sample was estimated based on the genome-wide sequencing coverage, 

the alignability mask and the effective length of the deleted region.
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The read depth within the deletion locus was used to estimate the copy number at the locus 

using a constrained Gaussian mixture model applied to the observed and expected read 

counts for each sample (Supplementary Note). Based on the estimated model parameters and 

the observed read depths, we calculated the relative likelihood of each copy number class for 

each genome and converted this to genotype likelihoods (e.g. copy number zero corresponds 

to a homozygous deletion).

Utilization of discordant read pairs in genotyping

Discordant read pairs that spanned each deletion were utilized when the strand orientation 

was normal and the fragment length implied by the deletion was within the median expected 

insert size + 3 RSD. Discordant read pairs were not used as evidence of the alternate allele if 

they had a plausible alternative mapping (<= 0.25 mismatches/base after performing a 

quality-aware Smith-Waterman realignment) to the reference for either end of the read that 

would correct the nominal insert size to within the median expected insert size +/- 5 RSD. 

We used these stringent filters to select only read pairs that were (a) highly likely under the 

model of an intervening deletion and (b) unlikely to arise from mis-alignment, one important 

source of artifactual discordant read pairs that we were able to mitigate. Likelihoods from 

discordant read pairs were generated based on the mapping quality and the likelihood of the 

nominal insert size given the original mapping, in a model that implicitly made copy number 

0 or 1 equiprobably much more likely than copy number 2 given a discordant pair 

observation.

Utilization of breakpoint-spanning reads in genotyping

Genotyping made use of a library of assembled breakpoints for 10,455 loci generated as part 

of the 1000 Genomes Project 1,15 by the algorithms TIGRA (L. Chen, unpublished) and 

Pindel 2. A non-redundant set of breakpoint sequences was extracted from this library and 

preprocessed to remove any alleles with inconsistent annotations and any mismatches to the 

reference sequence in the flanking regions of the alternate alleles. We also performed an 

automated procedure to detect inconsistencies in the mapping of the alternate allele 

assemblies to the breakpoints by testing whether small shifts in the alignment to the 

reference sequence reduced the number of mismatches. Assemblies with inconsistent 

annotations were not used. Reads from the unmapped BAM files from the 1000 Genomes 

Project were aligned to these alternate alleles using BWA 17 version 5.5 with default 

parameters.

For genotyping, we utilized any read that aligned across a breakpoint junction and would 

discriminate between the alternative alleles. Breakpoint-spanning reads were ascertained 

from three sources: (a) alignments to the breakpoint locations in the original BAM files, 

which were realigned against the alternate allele for comparison; (b) unmapped mates of 

paired reads that aligned near the breakpoints, which were aligned against the alternate allele 

for comparison; and (c) reads from the unmapped BAM files that aligned to the library of 

alternate alleles using BWA. The likelihoods for the three genotype classes (homozygous 

reference, heterozygote, homozygous alternate) for each read were determined based on the 

sum of base qualities of the mismatches to the reference and alternate alleles, the estimated 

mapping quality to both alleles, and the insert size distribution for paired reads. We 

Handsaker et al. Page 13

Nat Genet. Author manuscript; available in PMC 2016 November 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



corrected for the reference having two deletion breakpoint junctions, while the alternate 

allele has only one, taking into account both sequence homology at the junction and read 

length.

Genotype likelihood estimation

The likelihoods from these three sources of evidence (read depth, read pairs and breakpoint-

spanning reads) were combined into joint initial likelihoods for the genotype of each sample. 

Likelihoods from breakpoint-spanning reads were computed only when an alternate allele 

sequence was available. Likelihoods from read depth were included only when the uniquely 

alignable (“effective”) length of the deletion exceeded 200 bp.

To improve the genotype calls, LD between the deletion events and nearby SNPs was 

utilized. The initial genotype likelihoods were combined with SNP genotype data from the 

International Hapmap Project 22 (for 156 of the 168 samples for which SNP genotypes were 

available in Hapmap Phase III, release 2) using BEAGLE 20 3.1. The SNP genotypes were 

input to BEAGLE assuming a genotyping error rate of 0.1%. BEAGLE was run separately 

on each population (CEU, YRI and CHB+JPT). The trio parents and children were run 

separately. The BEAGLE output was converted back to normalized relative likelihoods of 

the three genotype classes for each genome.

Genotyped loci

A set of genotypable deletions for the 1000 Genomes Project was selected that met the 

following two criteria: (a) at least 50% of the genomes had a genotype call that was >95% 

confident; and (b) the genotype calls were in Hardy-Weinberg equilibrium in each of the 

three populations (p > 0.01, trio offspring excluded).

Overall, 10,742 of 15,893 deletion sites discovered in the low coverage samples met these 

criteria, as did 6,317 of 11,248 sites discovered in the high coverage trios. This yielded 

13,826 sites out of 22,025 after merging discoveries that were determined by the 1000 

Genomes analysis to be redundant between the low- and high-coverage discovery sets. Our 

genotyping analysis also suggests that some of the 1000 Genomes deletion calls are 

potentially redundant with other, physically overlapping 1000 Genomes deletion calls, as 

revealed by their yielding identical genotypes across the genomes analyzed; this reflects that 

these deletions were discovered by different algorithms with varying levels of resolution 15, 

and that efforts in the 1000 Genomes pilot to combine potentially redundant calls from 

different algorithms were not completely successful. We have reported all supplementary 

data and statistics here in a way that is synchronized with the 1000 Genomes pilot data sets 

and analyses as reported in ref 1,10.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A population-aware analytical framework for analyzing Genome STRucture in Populations 

(Genome STRiP).

(a) Population-scale sequence data contain two classes of information: technical features of 

the sequence data within a genome, and population-scale patterns that span all the genomes 

analyzed. Technical features include breakpoint-spanning reads 2,3, paired-end 

sequences 4-6, and local variation in read depth of coverage 7-9. Genome STRiP combines 

these with population-scale patterns that span many genomes, including: the sharing of 

structural alleles by multiple genomes; the pattern of sequence heterogeneity within a 

population; the substitution of alternative structural alleles for each other; and the haplotype 

structure of human genome polymorphism.
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(b) Goals of structural variation (SV) analysis in Genome STRiP. Variation discovery 
involves identifying the structural alleles that are segregating in a population. The power to 

observe a variant in any one genome is only partial, but the evidence defining a segregating 

site can be derived from many genomes at once. Population genotyping requires accurately 

determining the allelic state of each variant in every diploid genome in a population.
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Figure 2. 
Identifying coherent sets of aberrantly mapping reads from a population of genomes.

(a) Millions of end-sequence pairs from sequencing libraries show aberrant alignment 

locations, appearing to span vast genomic distances. Almost all of these observations derive 

not from true structural variants but from chimeric inserts in molecular sequencing libraries. 

Data shown: paired-end alignments on chromosome 5, from 41 initial genome sequencing 

libraries from the 1000 Genomes Project.

(b) A set of “coherently aberrant” end-sequence pairs from many genomes. At this genomic 

locus, paired-end sequences (sequences of the two ends of the inserts in a molecular library) 

fall into two classes: (i) end-sequence pairs that show the genomic spacing expected given 
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the insert size distribution of each sequencing library, such as the three read-pair alignments 

for genome NA07037; and (ii) end-sequence pairs that align to genomic locations 

unexpectedly far apart, but which relate to their expected insert size distributions by a shared 

correction factor (red arrows). A unifying model in which these eight read pairs from five 

genomes arise from a shared deletion allele (size of red arrows) converts all of these aberrant 

read pairs to likely observations. (In right panel, black tick marks indicate genomic distance 

between left and right end sequences; black curves indicate insert size distributions of the 

molecular library from which each sequence-pair is drawn.)
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Figure 3. 
Evaluating the population-heterogeneity and allele-substitution properties of population-

scale sequence data.

(a) At a candidate deletion locus, the distribution across genomes of “evidentiary reads” 

(read-pairs suggesting the presence of a deletion allele at a locus) (blue bars) is compared to 

a null model under which genomes are equally likely, per molecule sequenced, to give rise to 

such evidentiary reads (green curve). For the locus shown, the distribution of evidentiary 

reads across genomes differs from the null distribution (p = 1 × 10-4), confirming that 

evidentiary sequence data appears differentially within the population at this locus.

(b) At another genomic locus, putative SV-supporting read pairs arise from many genomes 

but in a pattern that does not significantly differ from a null distribution based on equal 

probability per molecule sequenced. Subsequent assays confirmed that this is not a true 

deletion.

(c) Distribution of a population-heterogeneity statistic (from a,b) for read-pair data at 1,420 

sites of known deletion polymorphism.

(d) Distribution of the same population-heterogeneity statistic from read-pair data at 45 

thousand candidate deletion loci nominated by read-pair analysis.

(e,f) If a putative deletion is real, then genomes with molecular evidence for the deletion 

allele would be expected to have less evidence for the reference allele (“allelic 

substitution”). A simple test of allelic substitution is to compare average read depth (across a 

putative deletion segment) between two subpopulations – the genomes with read-pair 

evidence for the deletion (blue curve), and the genomes lacking such evidence (black trace). 
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The locus in (e) was subsequently validated as containing a real deletion; the locus in (f) was 

not.

(g) Distribution of this “subpopulation depth ratio” statistic (e,f) for sequence data at 1,420 

sites of known deletion polymorphism.

(h) Distribution of the same statistic for sequence data at 45 thousand candidate deletion 

loci.
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Figure 4. 
Deletion polymorphisms identified by Genome STRiP in low-coverage sequence data from 

168 genomes.

(a) Size distribution. Sensitivity for large deletions (>10 kb) is similar to that of the array-

based approaches applied in large, population-scale studies (red); sensitivity for deletions 

smaller than 10 kb is much greater. A strong peak near 300 bp arises from ALU insertion 

polymorphisms; a smaller peak near 6 Kb arises from L1 insertion polymorphisms.

(b,c) Number of evidentiary sequence reads (b) and genomes (c) contributing to each 

deletion discovery in population-scale sequence data. 1,033 of these deletions (14.7%) were 

identified with evidentiary pairs from individual genomes.
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(d) Specificity: false discovery rates of ten deletion discovery methods evaluated by the 

1000 Genomes Project in the Project’s population-scale low-coverage sequence data.

(e) Sensitivity: power of the same ten discovery methods for identifying known deletions, as 

a function of the allele frequency of the deletion.

(f) Localization of the breakpoints of a common deletion allele using read-pair data from 

many genomes. The difference between (i) the genomic separation of each read-pair 

sequence and (ii) the insert-size distribution of the molecular library from which is it drawn 

(Fig. 2b) allows a likelihood-based estimate of deletion length from each read pair (blue 

curves). Combining this likelihood information across many genomes (black curve) allows 

fine-scale localization of the breakpoint.

(g) Resolution of breakpoint estimates from Genome STRiP, as estimated using Genome 

STRiP confidence intervals (red) and comparison to molecularly established breakpoint 

sequences (blue).

(h) Fine-scale localization of an SV breakpoint facilitates directed local assembly of the 

deletion allele from sequence data derived from many genomes.
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Figure 5. 
Determining the allelic state (genotype) of 13,826 deletions in 156 genomes.

(a) Four of the 13,826 deletion polymorphisms analyzed, representing diverse properties in 

terms of size and alignability of the affected sequence. Grey vertical rectangles indicate 

sequence that is repeat-masked or otherwise non-alignable. The locus in the bottom row is 

an ALU insertion polymorphism.

(b) Population-scale distribution of read depth across genomes, at each of the deletion loci in 

(a). For each locus, normalized measurements of read depth (across the deleted segment) 

from 156 genomes are fitted to a Gaussian mixture model. Colored squares represent 

genomes for which genotype could be called at 95% confidence based on read depth.
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(c) Genotype likelihood from read depth. Each horizontal stripe (corresponding to one of the 

156 genomes) is divided into three sections with length proportional to the estimated relative 

likelihood of the sequence data given each genotype model (blue: copy-number 2; green: 

copy-number 1; orange: copy-number 0).

(d) Genotype likelihood based on evidence from read pairs (RP) and breakpoint-spanning 

reads (BR). At the third locus from top, the absence of an established breakpoint sequence 

limits inference to read pairs.

(e) Genotype likelihood based on integrating evidence from read depth (RD), read pairs (RP) 

and breakpoint-spanning reads (BR).

(f) Genotype likelihood based on integrating evidence from (c-e) with flanking SNP data in 

a population haplotype model.

(g) Population-scale sequence data at each locus, as resolved into genotype classes. Traces 

indicate average read depth for genomes of each inferred genotype. Orange and green 

rectangles indicate evidentiary read pairs and breakpoint-spanning reads, colored by the 

genotype determination for the genome from which they arise.
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