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Genome-wide analysis reveals signatures of
selection for important traits in domestic
sheep from different ecoregions
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Abstract

Background: Throughout a long period of adaptation and selection, sheep have thrived in a diverse range of
ecological environments. Mongolian sheep is the common ancestor of the Chinese short fat-tailed sheep. Migration to
different ecoregions leads to changes in selection pressures and results in microevolution. Mongolian sheep and its
subspecies differ in a number of important traits, especially reproductive traits. Genome-wide intraspecific variation is
required to dissect the genetic basis of these traits.

Results: This research resequenced 3 short fat-tailed sheep breeds with a 43.2-fold coverage of the sheep genome. We
report more than 17 million single nucleotide polymorphisms and 2.9 million indels and identify 143 genomic regions
with reduced pooled heterozygosity or increased genetic distance to each other breed that represent likely targets for
selection during the migration. These regions harbor genes related to developmental processes, cellular processes,
multicellular organismal processes, biological regulation, metabolic processes, reproduction, localization, growth and
various components of the stress responses. Furthermore, we examined the haplotype diversity of 3 genomic regions
involved in reproduction and found significant differences in TSHR and PRL gene regions among 8 sheep breeds.

Conclusions: Our results provide useful genomic information for identifying genes or causal mutations associated
with important economic traits in sheep and for understanding the genetic basis of adaptation to different
ecological environments.
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Background
Sheep were initially reared mainly for meat and were
subsequently specialized for other products approxi-
mately 4000–5000 years ago. With the development of
animal husbandry and the application of directed mating
technology, phenotypic radiation under selection has re-
sulted in the spectrum of modern sheep breeds, adapted
to a diverse range of environments and specialized for
the production of meat, milk, and wool [1, 2]. China has
a long history of sheep domestication and rich resources
of sheep breeds [3, 4]. Based on tail type, the Chinese
domesticated sheep can be divided into five types: short
fat-tailed sheep, long fat-tailed sheep, short thin-tailed
sheep, long thin-tailed sheep and buttock-tailed sheep.

According to archaeological and genetic research,
Mongolian sheep is the common ancestor of Chinese
short fat-tailed sheep breeds. Mongolian sheep evolved
from the wild Argali sheep in the mountain regions of
Central Asia. More than 2000 years ago, with the de-
velopment of free trade, inter-ethnic war and the
southward migration of steppe tribes, a large number
of populations had moved south of the Great Wall. As a
result, Mongolian sheep also migrated to North China vil-
lages and were introduced into Gansu, Xinjiang, Qinghai,
Shandong and other provinces. Thus, most modern
Chinese sheep breeds have a relationship to Mongolian
sheep. Small-tailed Han sheep, Duolang sheep, Hu sheep,
Tan sheep and others are all Mongolian sheep subspecies
[5] (Fig. 1). However, from the Mongolian plateau to
various ecoregions around almost the entire country,
Mongolian sheep have experienced changes in climate,
environment and feeding conditions (from pastoral areas
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to rural areas) and been subjected to artificial selection in
different directions [6]. All of these factors have the poten-
tial to drive changes in selection and thereby cause micro-
evolution [7]. The subspecies of Mongolian sheep show
significant differences in a number of traits, especially re-
lated to reproduction, but how species differ genetically in
relation to these traits is not well understood [5]. Chinese
short fat-tailed sheep are an excellent model for genetic
studies on phenotypic evolution and adaptations to vari-
ous ecoregions.
In recent years, many studies have analyzed the genetic

changes between wild and domestic animals, between spe-
cies adapted to extreme environments and common do-
mestic species and among different local breeds with
phenotypic diversity. These studies have identified genes
with key roles in domestication [8–12], adaptation to
extreme environments [13–16] or prominent eco-
nomic traits [17–24]. Studies on the domestication of
livestock have demonstrated that genes affecting brain
and neuronal development have often been targeted
[8]. In addition, a striking selective sweep at the locus
for thyroid-stimulating hormone receptor (TSHR), which
likely affects seasonal reproduction, was identified in do-
mestic chicken [9]. A coat color locus, MC1R, was identi-
fied in wild and domestic pigs [10]. A set of genes with
key roles in starch digestion separating wolves from dogs
were identified [11]. Research on domestic horse breeds
has provided evidence of the importance of MSTN in
racing breeds and selection for gait and size [12]. In the
Tibetan Plateau, many species have become popular re-
search topics, such as the Tibetan wild boar [13], Tibetan
Mastiffs [14, 15] and ground tit [16]. A number of genes
associated with adaptation to high altitudes and hyp-
oxia have been revealed. To understand the molecular
basis underlying phenotypic variation in economically

important traits in livestock, many studies have also fo-
cused on genome-wide genetic variations among different
local breeds, such as chicken [17], pig [18, 19] and cattle
[20–24]. However, in Chinese short fat-tailed sheep, there
have been few similar studies.
In this study we performed pooled whole-genome

resequencing of 3 sheep breeds (Mongolian sheep,
Small-tailed Han sheep and Duolang sheep) distributed
over a wide range of geographical distance to examine
the genetic variation among them. This effort identified
a large number of single-nucleotide polymorphisms
(SNPs) and short sequence insertions and deletions
(indels) in sheep. Comparison of these variations defined
potential genomic regions and metabolic pathways as-
sociated with important biological functions. This
study revealed different signals of selection in the 3
sheep breeds and focused on the genetic relationships
between Mongolian sheep and the two subspecies.
Furthermore, to validate the presence of selection, we
examined the haplotype diversity of 3 regions showed
evidence of selective pressure related to reproduction
among 8 sheep breeds. The substantial genomic re-
sources provided here are useful for identifying genetic
variations for phenotypic diversity and for revealing dif-
ferent signatures of selection associated with adaptation
to various ecoregions.

Results
Data production
In total, more than 480 million 2 X 100-bp paired-end
reads were generated and aligned to the sheep reference
sequence (USUC oar_ref_Oar_v3.1) with a genome size
of 2,587,507,083 bp. Thus, we achieved a 43.2-fold
coverage of the reference genome, with a 14.4 X average
sequencing depth for each breed. We identified

Fig. 1 Geographic distribution of Chinese short fat-tailed sheep. MG, DL, LB, BY, JZ, TA, YX, ST, LT, WD, SD, SS and HU are abbreviations for Mongolian
sheep, Duolang sheep, Luobu sheep, Buyinbuluk sheep, Jinzhong sheep, Tan sheep, Yuxi fat-tailed sheep, Small-tailed Han sheep, Large-tailed Han
sheep, Wadi sheep, Luzhong Shandi sheep, Sishui Fur sheep and Hu sheep, respectively. The 3 breeds used for whole-genome resequencing are
labeled in red, and the additional 5 breeds used for genotyping are labeled in blue. This figure has been modified from China 100.78713E 35.63718 N.jpg
(https://commons.wikimedia.org/wiki/File:China_100.78713E_35.63718N.jpg). This image is in the public domain because it is a screenshot from NASA’s
globe software World Wind using a public domain layer, such as Blue Marble, MODIS, Landsat, SRTM, USGS or GLOBE
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17,420,695 putative SNPs and 2,912,131 indels for the
three breeds (Fig. 2, Additional file 1: Table S1; Additional
file 2: Table S2; Additional file 3: Figure S1). We were able
to experimentally validate 100 out of 102 tested SNPs
(Additional file 4: Table S3).

SNP annotations
The numbers of SNPs and indels in the coding se-
quences (CDS) of the 3 breeds are shown in Additional
file 5: Table S4. Small-tailed Han sheep and Duolang
sheep both exhibit year-round estrous and prolificacy in
breeding, whereas Mongolian sheep exhibits seasonal es-
trous and singleton breeding. Thus, we identified 3105
genes that contained missense SNPs or stop gained/loss
variants in Mongolian sheep but not in Small-tailed Han
sheep or Duolang sheep. And we also identified 803
genes that contained missense SNPs or stop gained/loss
variants in both Small-tailed Han sheep and Duolang

sheep, but not in Mongolian sheep. We speculated that
these genes might contribute to the phenotypic differen-
tiation. We searched for significantly overrepresented
gene ontology (GO) terms in the above two groups of
genes respectively and identified several categories
(Additional file 6: Table S5; Additional file 7: Table S6;
Additional file 8: Figure S2). In the former group one con-
spicuous cluster related to reproduction; 59 genes
belonged to this category (13 genes were related to single
fertilization and 24 genes were related to spermatogen-
esis). Another conspicuous cluster with 284 genes was
related to response to stimulus (Table 1 and Additional
file 6: Table S5); one of these genes TRPM8 has been
shown to be a major determinant of cold perception in
the mouse [25] and was reported to be related to adap-
tation to cold climate on sheep [26]; 12 of the 284
genes were related to response to light stimulus and we
suggested these genes might had potential relationship

Fig. 2 Summary of genome-wide genetic variation in the 3 Chinese short fat-tailed sheep breeds. Chromosomes are shown in different colors in
the outermost circle, and the innermost circles show the distribution of SNPs (counted in 1-Mb windows), indels (counted in 5-Mb windows) and
pooled heterozygosity (HP) in 200-kb windows of the Small-tailed Han sheep (ST), Mongolian sheep (MG) and Duolang sheep (DL) genomes relative to
the sheep reference genome. For SNPs and HP scores, black represents Small-tailed Han sheep, red represents Mongolian sheep, and green represents
Duolang sheep. At the center of the circular map, chr. X is shown separately. A remarkably homozygous region (in gray shadow) was observed from 43
to 78 Mb in Chinese short fat-tailed sheep. This figure was created using the Circos program [60]

Liu et al. BMC Genomics  (2016) 17:863 Page 3 of 14



with seasonal estrous. In the latter group one conspicu-
ous cluster related to reproduction as well; 15 genes
belonged to this category (12 genes were related to
spermatogenesis). Ten Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathways were also significantly
enriched in the former group genes; four ones were
enriched in the latter group genes among which “Pro-
gesterone-mediated oocyte maturation” contained 7
genes (RPS6KA3, MAD2L1, CCNB2, GNAI2, ADCY5,
PIK3R5, CDC25B) that may be related to the repro-
ductive traits of short fat-tailed sheep [27] (Additional
file 9: Table S7; Additional file 10: Table S8; Additional
file 8: Figure S2). We also identified 3916 genes that
contained SNPs in promoter region (1 kb up- or
downstream of genes) in Mongolian sheep but not in
Small-tailed Han sheep or Duolang sheep and 136 genes
that contained SNPs in promoter region (1 kb up- or
downstream of genes) in both Small-tailed Han sheep and
Duolang sheep, but not in Mongolian sheep. The GO
term enrichment/KEGG analysis indicated that in the
former 3916 genes, one conspicuous cluster contain-
ing 53 genes were related to reproduction (10 genes
were related to fertilization) and another cluster con-
taining 12 genes were related to rhythmic process (9
genes were related to circadian rhythm) (Additional
file 11: Table S9; Additional file 12: Table S10; Additional
file 13: Table S11; Additional file 14: Figure S3). These
genes might be associated with the differences in

reproductive performance of short fat-tailed sheep as
well. In addition, the functional effects of missense
SNPs were further investigated with SIFT and Provean.
The result indicated 565, 490 and 320 SNPs were de-
tected in protein coding genes from Mongolian sheep,
Small-tailed Han sheep and Duolang sheep, respectively
(Additional file 15: Table S12).

Selective sweep analysis
To search genomic regions under selection during the
migration of the short fat-tailed sheep, we measured the
pooled heterozygosity (HP) in 200-kb windows, with
half-step sliding along the genomes of the three breeds,
and the fixation index (FST) between any two breeds also
in 200-kb windows with half-step sliding. The distribu-
tions of HP and FST values, as well as the Z transforma-
tions of these values, Z(HP) and Z(FST), for the 3 sheep
breeds are plotted in Fig. 3, Additional file 16: Figure S4
and Additional file 17: Figure S5 (the Z transformation
of HP in Mongolian sheep, Small-tailed Han sheep and
Duolang sheep are Z(HP)M, Z(HP)S and Z(HP)D for short,
respectively; the Z transformation of Z(FST) between
Mongolian sheep and Small-tailed Han sheep, between
Mongolian sheep and Duolang sheep as well as between
Small-tailed Han sheep and Duolang sheep are Z(FST)M-

S, Z(FST)M-D and Z(FST)S-D for short, respectively). The
skewed distributions of the HP and FST scores indicated
the existence of selection on these sheep breeds. The
windows with Z(HP) < -4 or (and) Z(FST) > 4 were con-
sidered the target windows because these windows were
at the extreme ends of the distribution (Fig. 3). Figure 3
shows intuitive evidence of different selection signals in
each autosome among the 3 breeds. For example, on
chromosome (chr.) 10, there were several windows with
a low Z(HP)M, and high Z(FST)M-S and Z(FST)M-D, sug-
gesting that a high selection signal was located on this
chromosome. This finding is consistent with a previous
study in which the genome-wide distribution of global
FST for 49,034 SNPs from 75 sheep breeds all over the
world revealed the highest selection signal detected on
chr. 10 [2]. The highest ranked SNP was located at Mb
position 29.54 near Relaxin/insulin-like family peptide
receptor 2 (RXFP2), which is linked to the absence of
horns (poll) in sheep [2]. In our research, RXFP2 was
also found in the selection region of Small-tailed Han
sheep (FST = 0.514, Z(FST)M-S = 4.08).
We identified regions of selection in the genomes of

the two subspecies Small-tailed Han sheep and Duolang
sheep. As a result, in the autosomes of Small-tailed Han
sheep, 108 regions with extremely high levels of homo-
zygosity and 65 regions with increased genetic distance
to Mongolian sheep were identified. In total, 134 regions
containing 774 protein-coding genes were identified
(Additional file 18: Table S13). Interestingly, the highest

Table 1 Enriched gene ontology terms related to response to
stimulus among genes containing unique missense SNPs or
stop gained/loss variants in Mongolian sheep

Gene ontology term Gene count P value

Response to stress; 140#1222 3.06488E-11

Response to external stimulus; 85#633 4.65E-11

Response to wounding; 61#423 1.46E-09

Response to chemical stimulus; 73#589 1.39E-07

Response to hypoxia; 13#48 0.000115

Response to stimulus # regulation
of response to stimulus;

9#35 0.003204

Response to biotic stimulus; 33#289 0.007919

Response to radiation; 15#101 0.010492

Response to abiotic stimulus; 21#165 0.014159

Response to drug; 11#63 0.017014

Response to lipopolysaccharide; 3#5 0.018798

Response to bacterium # response
to molecule of bacterial origin;

4#10 0.019823

Response to fungus # response to
molecule of fungal origin;

2#2 0.027385

Response to protein stimulus; 10#59 0.027385

Response to unfolded protein; 10#59 0.027385

Response to light stimulus; 12#81 0.028201
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HP and the lowest FST were located in the same window:
53.3–53.5 Mb on chr. 13 (FST = 0.692, Z(FST) = 8.158;
HP = 0.0597, Z(HP) = -14.091). This window harbors 10
protein-coding genes, ZBTB46, ZGPAT, ARFRP1, RTEL1,
STMN3, GMEB2, C20orf195, SRMS, PTK6 and EEF1A2,
of which RTEL1 and EEF1A2 are related to the inhib-
ition of apoptosis and programmed cell death. On chr.
X, 9 regions containing 24 protein-coding genes were
identified by applying a threshold of Z(HP) < -3 or (and)
Z(FST) > 3 (Additional file 18: Table S13). One of these
genes, AR, which encodes the androgen receptor, is
essential for prostate gland development, urogenital
system development and reproductive development. In
the whole genome, 143 regions with a total length of
45.7 Mb accounted for 1.77 % of the entire genome.
Similarly, in the genome of Duolang sheep, 143 regions
(134 autosomal regions and 9 regions on chr. X) with a
total length of 51.7 Mb accounted for 2.0 % of the entire
genome (Additional file 19: Table S14). There were 74
regions that overlapped each other between the 2 breeds,
accounting for 25.1 Mb.

We divided all of the protein-coding genes residing in
the genomic regions with a Z(HP) < -4 into 3 groups: I,
Z(HP)M < -4 (605 genes); II, Z(HP)S < -4 (567 genes); and
III, Z(HP)D < -4 (605 genes) (Fig. 4a), and then analyzed
significantly enriched GO terms among these groups. In
the 208 genes belonging to all the 3 groups, nervous sys-
tem development, reproductive processes and other bio-
logical functions were enriched (Fig. 4b). These findings
were in agreement with the notion that genes affecting
brain and neuronal development have often been tar-
geted during animal domestication [8]. In addition, 5
genes involved in ear development were pinpointed in
the 3 sheep breeds: OTX1 and SOD1, in both group II
and III (Fig. 4c), and LHFPL5, HOXA2 and GJB6, in
group I (Fig. 4d). This result indicated that Chinese indi-
genous sheep breeds might have been subjected to dif-
ferent selection for ear development than Texel sheep,
which were sequenced for the sheep reference genome.
In relation to adaptation to different ecoregions, the
three Chinese short fat-tailed sheep breeds show differ-
ent selection signals. Among the subspecies, Small-tailed

Fig. 3 Selection analyses identified selection signals in 3 Chinese short fat-tailed sheep breeds. The distributions of Z-transformed average pooled
heterozygosity (HP) as well as the average fixation index between any two breeds for autosomal 200-kb windows (σ, standard deviation; μ, average)
are shown on the left. The Z-value distribution plotted along sheep autosomes 1–26 (chromosomes are separated by red and blue coloring) is shown
on the right. The dashed horizontal line indicates the cut-off (Z > 4 or Z < -4) used for extracting outliers
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Han sheep and Duolang sheep both show signals of se-
lection for immune system development and regulation,
reproduction, muscle contraction and stress responses
(Fig. 4c). The stress responses could be divided to two
kinds: first, superoxide metabolic processes including
genes ALOX12 and SOD1 in both group II and III
(Fig. 4c); second, DNA repair including genes POLH and

UBE2N only in group II (Fig. 4e) and the response to
chemical stimuli including genes TGM7 and OXSR1 only
in group III (Fig. 4f ).
The protein-coding genes in the regions of selection

with a Z(FST)M-S > 4 or (and) Z(FST)M-D > 4 were also
compared and used to detect significantly enriched GO
terms. A total of 361 genes located in regions with a

Fig. 4 Biological processes enrichment of genes located in regions with a Z(HP) < -4. a All of the genes in regions with a Z(HP) < -4 were divided
into 3 groups: I, Z(HP)M < -4 (605 genes); II, Z(HP)S < -4 (567 genes); and III, Z(HP)D < -4 (605 genes). b, c, d, e and f indicate the biological process
enrichment of genes belonging to all 3 groups; belonging to both group II and III; belonging to only group I; belonging to only group II and
belonging to only group III. Important enriched terms are color coded to reflect the relatedness of biological processes. Orange, nervous system
development; red, reproductive process; yellow, muscle contraction; blue, various processes related to stress responses; green, ear development;
grey, immune system development and regulation; pink, regulation of multicellular organism growth
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Z(FST)M-S > 4 and a Z(FST)M-D > 4 were related to ner-
vous system development, ear development, fatty acid
biosynthetic and metabolic processes, regulation of
growth, sexual reproduction and other biological pro-
cesses (Additional file 20: Table S15). Additionally, 91
genes located in regions with a Z(FST)M-S > 4 were re-
lated to vesicle-mediated transport, protein digestion,
regulation of protein polymerization, chemical homeo-
stasis, reproductive processes and other biological pro-
cesses (Additional file 21: Table S16), while 43 genes
located in regions with a Z(FST)M-D > 4 were related to
spermatogenesis, single fertilization, post-translational
protein modification, regulation of protein kinase activ-
ity, regulation of fatty acid beta-oxidation, blastoderm
segmentation, cell proliferation and other biological pro-
cesses (Additional file 22: Table S17).
Interestingly, gene HOXA10 met both Z(FST)M-S > 4

and Z(HP)M < -4 (Z(FST)M-S = 4.168, Z(HP)M = -5.39), and
also contained missense SNPs in both Small-tailed Han
sheep and Duolang sheep, but not in Mongolian sheep.
In previous reports HOXA10 is a well-known transcrip-
tional factor gene, shown to be one of the most promis-
ing candidate genes that play major roles in endometrial
differentiation and development, establishing the condi-
tions required for implantation and normal pregnancy
maintenance [28] and have been widely studied in hu-
man, mouse and other species [29–33]. In this research,
HOXA10 showed strong selection signatures in Chinese
short fat-tailed sheep breeds. We suggested this gene is
an important factor causing the differences in repro-
ductive performance among Chinese short fat-tailed
sheep breeds.
On chr. X, we found that the average HP score was

lower (HP-chrX = 0.371 <HP-chrA = 0.386) and the
average FST score was higher (FST-chrX = 0.427 > FST-
chrA = 0.337) than the autosomes (Additional file 16:
Figure S4 and Additional file 17: Figure S5). Further-
more, we noted that the distributions of the standard
deviations of HP (σX = 0.049 > σA = 0.023) and FST
(σX = 0.089 > σA = 0.043) were larger on chr. X. As
shown in Additional file 17: Figure S5, a larger pro-
portion of the windows resided in the tails of the dis-
tributions on chr. X compared to the autosomes.

Three putative sweeps related to reproductive traits
Reproductive traits showed the most significant pheno-
typic differences among the Chinese short fat-tailed sheep
breeds. Therefore, we chose 3 genomic regions related to
reproduction to validate the different signals of selection
among 8 sheep breeds. TSHR showed evidence of selective
pressure in both Small-tailed Han sheep and Duolang
sheep (Z(HP)S = -6.55; Z(HP)D = -4.9; Z(HP)M = 0.6) and
has been reported to have pivotal roles in metabolic regu-
lation and photoperiod control of reproduction in

vertebrates [9, 34] (Fig. 5a; Additional file 23: Figure S6).
We studied haplotype diversity across the partial gene re-
gion (89.35–89.48 Mb on chr. 7) to validate its selection
and genotyped 19 randomly selected SNPs in 95 individ-
uals from 8 sheep breeds. These 95 tested individuals
carried 123 copies of a 119-kb haplotype (Fig. 5b). The
haplotype frequency of Mongolian sheep was significantly
lower than those of the other 7 breeds (p < 0.01; Fig. 5c).
This remarkable genetic diversity indicated that TSHR
showed strong evidence of selective pressure. In selec-
tion signal analysis of sheep breeds from all over the
world, positive selection was also detected surround-
ing TSHR [2, 26].
In addition to haplotype diversity, we identified 8

missense variants in the TSHR genic region, 7 of which
were unique to Mongolian sheep (Duolang sheep also has
p. 315Ala > Thr). As shown in Fig. 5d, p.423Phe > Val,
p.424Val >Met, p.425Ser > Arg, p.426Leu > Val, p.431Gly >
Ser and p.434Phe > Ile were located in the Conserved
Protein Domain 7TM_GPCR_Srx (Serpentine type
seven-transmembrane G-protein-coupled receptor class
chemoreceptor Srx) and close to 7tm_1 (7-transmembrane
receptor (rhodopsin family)). The seven-transmembrane
structure has a decisive effect on the biological function of
TSHR. Thus, these 6 missense variants were considered
candidate causal mutations for the TSHR sweep. It is pos-
sible that selection for these variants could be associated
with photoperiod control of reproduction in Chinese short
fat-tailed sheep.
PRL (Z(HP)S = -4.16; Z(HP)D = -0.91; Z(HP)M = -0.93)

and HMGCR (Z(HP)S = -5.14; Z(HP)D = -2.42; Z(HP)M
= -1.57) showed evidence of selective pressure in Small-
tailed Han sheep only (Additional file 24: Figure S7A
and S7B). PRL encodes prolactin and is essential for fe-
male pregnancy and lactation. In sheep, the luteinizing
hormone-secretory response to gonadotropin-releasing
hormone is completely suppressed by the combined ac-
tions of PRL and dopamine in the nonbreeding season
[35]. To characterize haplotype diversity among different
sheep breeds, we genotyped 17 randomly chosen SNPs
in this selection region and identified a 38.2-kb region
(34.22–34.26 Mb on chr. 20) spanning the PRL section
and the entire LOC443319 encoding placental lactogen,
which was highly divergent among the 8 tested sheep
breeds (Additional file 24: Figure S7C). As shown in
Additional file 24: Figure S7E, the haplotype frequencies
of Small-tailed Han sheep, Luzhong Shandi sheep and
Hu sheep were significantly higher than those of Mon-
golian sheep and Duolang sheep (p < 0.05). This result is
in agreement with the HP scores of the 3 resequenced
breeds in this region and may demonstrate the selection
of PRL in Small-tailed Han sheep. HMGCR encodes 3-
hydroxy-3-methylglutaryl-CoA reductase and is a key
enzyme in cholesterol biosynthesis. This gene is related

Liu et al. BMC Genomics  (2016) 17:863 Page 7 of 14



to germ cell migration and gonad development. We
screened 16 SNPs across the HMGCR region (6.53–
6.57 Mb on chr. 7) using 95 individuals from 8 breeds.
However, no significant difference was found among the
haplotype frequencies of the 8 tested breeds (Additional
file 24: Figure S7F). We speculated that the selection on
HMGCR might be due to genetic variation in other
regulatory regions and sequences.

Discussion
In this study, we performed whole-genome resequencing
of 45 sheep from 3 Chinese short fat-tailed breeds. We
catalogued millions of SNPs from each breed to advance
evolutionary and genetic research. This is the first whole-
genome study to characterize genetic polymorphisms in
Chinese short fat-tailed sheep breeds. Our selection ana-
lyses revealed that Mongolian sheep, Small-tailed Han

sheep and Duolang sheep contain many common selec-
tion signatures unique to the Chinese short fat-tailed
sheep and also many different selection signatures
among their genomes. The 3 Chinese indigenous sheep
breeds were suggested to have experienced differential
selection for nervous system development, ear develop-
ment and reproductive processes compared with Texel
sheep, which were sequenced for the sheep reference
genome. The regions of selection identified in Small-
tailed Han sheep and Duolang sheep harbor different
protein-coding genes with important biological func-
tions, including roles in development, reproduction,
growth and stress responses. Furthermore, we used
WaferGen Genotyping to genotype 53 randomly chosen
SNPs in 95 additional individuals from 8 sheep breeds
across 3 genomic regions related to reproduction to
validate the selection of these regions.

Fig. 5 The haplotype diversity and candidate mutations of TSHR. a Pooled heterozygosity, HP (in blue), and average fixation index between
Mongolian sheep and Small-tailed Han sheep, FST (in red), plotted for 200-kb windows spanning the region harboring TSHR (in pink shadow) on
chr. 7. b Genetic variation in the region 89.35–89.48 Mb on chr. 7 across partial TSHR. Individual sheep (95 from 8 breeds) were genotyped using
WaferGen genotyping. Dashed horizontal lines separate the 8 breeds. At the bottom of the figure, short tick marks represent individual SNPs. Long
tick marks indicate the position in Mb. Red color: homozygous A-allele; green color: heterozygous; purple color: homozygous a-allele; yellow color:
missing genotype call. c The haplotype frequencies of the 8 sheep breeds. The haplotype frequency of Mongolian sheep was significantly less than
those of the other 7 breeds (p < 0.01). d A total of 8 missense variants in TSHR were identified by an amino acid sequence comparison (300–450) from
6 species: Ovis aries, Capra hircus, Equus caballus, Bos Taurus, Homo sapiens and Sus scrofa. Asterisks, double dots, and single dots denote fully, strongly,
and weakly conserved residues, respectively. Conserved Protein Domain: 7TM_GPCR_Srx and 7tm_1 are both underlined
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The most significant phenotypic difference between
Mongolian sheep and the 2 subspecies was related to
reproduction. In the recent large scale selection signa-
ture studies on sheep, reproduction has been identified
as one of the selected targets and candidate genes asso-
ciated with reproduction are detected in selection re-
gions [2, 26, 36]. Kijas (2012) reported 31 genome
regions with extreme differentiation among 74 world-
wide sheep breeds by computing the globe FST at all
SNP in the genome, which included candidate genes re-
lated to coat pigmentation, skeletal morphology, body
size, growth, and reproduction [2]. Fariello (2014) used a
new approach FLK/hapFLK to re-scan the sheep genome
for selection based on the Sheep HapMap dataset among
7 broad geographical groups and also identified 71 new
selection signatures, with candidate genes related to col-
oration, morphology or production traits [26]. The can-
didate gene related to reproduction TSHR were both
detected in the above two studies and identified as an-
cestral signatures of selection in the latter one. TSHR
and other genes such as HOXA10, PRL and HMGCR
were also located in the selection regions identified in
this research. Besides, we identified genes containing
SNPs causing missense mutations or stop gained/loss
variants and genes with SNPs located in promoter re-
gions in Mongolian sheep but not in Small-tailed Han
sheep or Duolang sheep and vice-versa. The GO term
enrichments and KEGG analysis both showed evidences
for selection in reproduction and provided important
additional candidate genes and pathways associated with
reproduction such as genes related to single fertilization,
spermatogenesis, response to light stimulus and circa-
dian rhythm and the pathway “Progesterone-mediated
oocyte maturation”. For the past several decades,
there has been increasing interest in the identification
and utilization of major genes for prolificacy in sheep.
Genes with mutations that increase the ovulation rate
(BMPR-1B, BMP15 and GDF9) and related to seasonal
reproduction (MTNR1A) have been discovered in sheep
[37–44]. However, in this study, we found that only GDF9
showed evidence of selective pressure in Duolang sheep
(Z(HP)D = -4.103). The other genes appeared to not be
under selection in Small-tailed Han sheep, Mongolian
sheep or Duolang sheep. We checked the HP and FST
within genes BMPR1B and MTNR1A (the number of
SNPs within BMP15 and GDF9 is less than 10) and the re-
sults showed the same conclusion (Additional file 25:
Table S18). In contrast, according to recent research, the
BMPR1B gene showed strong evidence of selection in
highly prolific breeds, Hu sheep and Large-tailed Han
sheep [3].
Besides reproductive performance, we also paid atten-

tion to the adaptation of sheep to different environ-
ments. The subspecies of Mongolian sheep have adapted

to various ecoregions during the domestication process.
Correspondingly, we detected several genes located in
the selection regions or containing unique function-
altering mutations with potential relationship with
adaption such as the genes in Table 1. In the precious
research, the selection near the TRPM8 gene was re-
ported to be related to adaptation to cold climate [26]
and this gene also showed selection evidence in this
study. The adaption process is complex and the poten-
tial role of many selection signatures in the adaptation
of sheep breeds remains unclear. In the meantime se-
lection response for adaptation and welfare traits may
be expected to continue [2]. The findings in this re-
search confirmed the existence of selection during the
adaption of Chinese short fat-tailed sheep and provided
a large number of variants to be further investigated.
FST is widely used in the selection signature detec-

tion of the whole genome of the domestic animals
[2, 11, 19, 36, 45]. However, this approach was reported
to have potential limitations: first, when applied to hier-
archically structured data sets, FST analysis may lead to a
large proportion of false positives and false negatives;
second, the heterogeneity of effective population size
among breeds implies that some breeds are more prone
to contribute large locus-specific FST values than others
[26, 46, 47]. In view of these limitations, a new strategy
to evaluate the haplotype differentiation between popu-
lations was proposed to increase the detection power of
selective sweeps and also enable to detect soft or in-
complete sweeps, FLK/hapFLK [26]. In this study, we
performed pooled whole genome resequencing and
used three approaches to detect the selection signature
on the Chinese short fat-tailed sheep genome, unique
function-altering mutations, the pooled heterozygosity
(HP) and the average FST between breeds. We expect
the combination of these three approaches could break-
through the limitation of the single method to a certain
extent. The detection results of the three approaches all
confirmed that reproduction is important selection tar-
get of Chinese short fat-tailed sheep.
Chr. X differs from autosomes in several aspects of

population genetics, including reductions in effective
population size and recombination rate. Due to genetic
drift, these differences on chr. X are expected to cause a
greater reduction in the level of genetic variation and in-
creased genetic differentiation among different sheep
breeds compared to the autosomes [11]. On chr. X of
Chinese short fat-tailed sheep, a remarkably homozygous
region (43–78 Mb) was observed in which the number
of SNPs and indels was significantly less than other re-
gions (Fig. 2).
Large-tailed Han sheep has a long history, and its ori-

gins might lie in the fat-tailed sheep in Ancient Central
Asia and West Asia, which were imported to China via
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the Silk Road [5]. Due to the high reproductive perform-
ance of Large-tailed Han sheep, we compared it to 7
breeds of Chinese short fat-tailed sheep in this study.
The results indicated that the haplotype frequencies of 3
tested gene regions related to reproduction were not sig-
nificantly different between Large-tailed Han sheep and
Small-tailed Han sheep. We speculate that Large-tailed
Han sheep and Small-tailed Han sheep might have been
affected by similar selection during the long period of
microevolution.
With the advance of high-throughput sequencing tech-

nologies, the detection of variants in domesticated animals
on a large scale offers great opportunities to study genome
evolution in response to phenotypic selection. The present
study provided genome scan for selection in Chinese na-
tive sheep breeds and is an attempt to investigate unique
evolution direction and gene resources. Full use of these
resources and searching the valuable genes for sheep gen-
etic improvement will become the targets of future re-
search. In the meantime, more extensive range of breeds,
larger population size, more in-depth sequencing, and
more advanced statistical methods are the directions of
our improvements in this study.

Conclusions
In summary, this study detected large amounts of gen-
etic variations and different genomic regions under se-
lection in 3 Chinese short fat-tailed sheep breeds.
Small-tailed Han sheep is a valued local Chinese var-
iety, famous for its high reproduction performance and
strong adaptability. Genome-wide comparison studies
revealed genes with unique selective signals that are as-
sociated with reproduction and other traits of this
sheep breed. Our results are a valuable resource for fu-
ture studies of genotype-phenotype and for the im-
provement of sheep breeding.

Methods
Animals
We obtained genomic DNA samples from whole blood
from 8 sheep populations, with 20 female individuals

from each population. Three breeds were used for rese-
quencing: Mongolian sheep from Siziwang Banner in
Inner Mongolia province, Small-tailed Han sheep from
Jiaxiang in Shandong province, and Duolang sheep from
Maigaiti in Xinjiang province. The environment, body
size and reproductive performance of these three breeds
were shown in Table 2. These three breeds came from
different ecoregions distributed over a wide range of
geographical distance with different climate and feeding
conditions. WaferGen genotyping was performed on all
8 breeds. Except the three breeds used for resequen-
cing, the other five breeds were: Luzhong Shandi sheep
from Pingyin in Shandong province, Wadi sheep from
Zhanhua in Shandong province, Sishui Fur sheep from
Sishui in Shandong province, Large-tailed Han sheep
from Linqing in Shandong province and Hu sheep from
Huzhou in Zhejiang province.

DNA extraction and sequencing
DNA was extracted from EDTA-preserved blood using a
QIAamp DNA Blood Mini Kit (Qiagen). We performed
pooled whole-genome resequencing of three sheep
breeds. We pooled DNA from 15 individuals of each
breed into one pool before library construction (six
paired-end sequencing libraries with an insert size of
200–500 bp, two for each breed) and sequencing of
100-bp paired-end reads with a HiSeq2000 instrument
(Illumina, USA). The raw sequence reads were filtered
by removing the index sequences and low-quality paired
reads. Specifically, we filtered sequences in which the
single-ended N content exceeded 10 % of the length of the
entire read or the single-ended number of bases with
less than 5X depth exceeded 50 % of the entire read.
Clean reads were mapped to the Ovis aries (sheep) gen-
ome (USUC oar_ref_Oar_v3.1; http://www.livestock-
genomics.csiro.au/sheep) using the Burrows-Wheeler
Alignment tool [48]. Duplicate reads were removed.

SNP identification and annotation
SNPs are small differences but have a great impact on
variation in genomes and biological traits [49]. Therefore,

Table 2 Comparison of the environment, body size and productive performance of the breeds used for resequencing

Mongolian sheep Small-tailed Han sheep Duolang sheep

Ecoregion Mongolian-Manchurian grassland Huang He Plain mixed forests Tarim Basin deciduous forests and steppe

Coordinates 41°10′–43°22′N 110°20′–113°E 35°11′–35°38′N 116°06′–116°27′E 38°25′–39°22′N 77°28′–79°05′E

Climate Plateau sub temperate continental monsoon Warm temperate monsoon Temperate continental dry

Feeding conditions Grazing Drylot Drylot

Male adult weight (kg) 51.3–71.1 78.2–129.6 80.6–112

Female adult weight (kg) 44.4–55.2 56–72.8 61.6–86.6

Estrous characteristics Seasonal Annual Annual

Lambing rate (%) 103 267.1 250

The data shown were collected from Animal genetic resources in China: Sheep and Goats
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we investigated SNP annotations in detail and paid special
attention to those in genic regions. To detect genomic re-
gions under selection in Chinese short fat-tailed sheep, we
identified SNPs from the 3 pools of resequenced breeds
relative to the sheep reference genome, respectively, using
SAMTools. Firstly SAMTools collects summary informa-
tion from the input BAM files (Binary Alignment/Map)
and computes the likelihood of data given each possible
genotype and stores the likelihoods in the BCF (Binary
Variant Call Format). Secondly Bcftools applies the
prior and does the SNP calling and converts BCF to
VCF (Variant Call Format) which can be used in the
following analysis [50]. Additional filters were applied
as follows: minimum read depth = 5, minimum read
depth for SNP identification = 2, and VarQuality ≥ 30.
After SNP identification, we annotated and predicted the
effects of the SNPs using SnpEff toolbox [51] and furtherly
predicted whether the amino acid substitutions affect pro-
tein function using SIFT and Provean [52].

Selection analysis
Two approaches were used to search the sheep genome for
regions that may have been affected by selection during
the migration of Chinese short fat-tailed sheep. First, we
calculated the average pooled heterozygosity (HP) in 200-
kb windows sliding 100 kb at a time, following the formula
described in Rubin et al. [9, 11]. We Z-transformed the dis-
tribution of HP and extracted putatively selected windows
at the extreme ends of the distribution by applying a
Z(HP) < −4 cut-off. We divided the protein-coding genes in
the putative regions of selection that met this cut-off of
Small-tailed Han sheep into 3 groups: Z(HP)S < -4, Z(HP)M
< -4 and Z(HP)D < -4. Genes belonging to one (2 or 3) of
the 3 groups were considered under selection in the corre-
sponding breed(s). Second, we calculated FST values be-
tween any two breeds for individual SNPs [53, 54]. We
averaged FST values across 200-kb windows, sliding 100 kb
at a time, and Z-transformed the distribution. Putative se-
lection targets were extracted from the extreme ends of
the distribution by applying a Z(FST) > 4 cut-off.
Due to the single-window pass cut-off Z(HP) < −4 and

the no-windows pass Z(FST) > 4 on chr. X, we performed
extraction by applying Z(HP) < −3 or Z(FST) > 3 for this
chromosome.

Gene ontology functional enrichment and KEGG analysis
Ensembl gene annotations were used to identify protein-
coding genes located in target regions [55] (extending
100 kb up- and downstream). All of these genes were clas-
sified into the categories of molecular function in the GO
database using the GOstat program (P-Value Cutoff: 0.1,
GO-Cluster Cutoff: -1 and Correct-Method: Benjamini)
[56] and were mapped to the KEGG database using DA-
VID Bioinformatics Resources [27, 57].

Genotyping validation
We used WaferGen genotyping, targeting 53 SNPs located
in regions showing a high level of homozygosity or popu-
lation differentiation. A total of 95 sheep, representing 8
different breeds, were genotyped using standard protocols
provided by the manufacturer (WaferGen, USA). Haplo-
types were phased using PHASE software [58].

Multiple sequence alignment and conserved domain
analysis
DNAman software was used to perform multiple se-
quence alignments. Conserved domains in TSHR were
detected using the NCBI bioinformatics tools [59].
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gained/loss variants in Mongolian sheep but not in Small-tailed Han
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tailed Han sheep and Duolang sheep, but not in Mongolian sheep.
Biological processes and KEGG pathway related to reproduction are
labeled in red. (DOC 955 kb)

Additional file 9: Table S7. Enriched KEGG pathways among genes
containing missense SNPs or stop gained/loss variants in Mongolian
sheep but not in Small-tailed Han sheep or Duolang sheep. (DOC 44 kb)

Additional file 10: Table S8. Enriched KEGG pathways among genes
containing missense SNPs or stop gained/loss variants in both Small-tailed
Han sheep and Duolang sheep, but not in Mongolian sheep. (DOC 34 kb)

Additional file 11: Table S9. Enriched GO terms among genes
containing missense SNPs in promoter regions in Mongolian sheep but
not in Small-tailed Han sheep or Duolang sheep. (DOC 570 kb)

Liu et al. BMC Genomics  (2016) 17:863 Page 11 of 14

dx.doi.org/10.1186/s12864-016-3212-2
dx.doi.org/10.1186/s12864-016-3212-2
dx.doi.org/10.1186/s12864-016-3212-2
dx.doi.org/10.1186/s12864-016-3212-2
dx.doi.org/10.1186/s12864-016-3212-2
dx.doi.org/10.1186/s12864-016-3212-2
dx.doi.org/10.1186/s12864-016-3212-2
dx.doi.org/10.1186/s12864-016-3212-2
dx.doi.org/10.1186/s12864-016-3212-2
dx.doi.org/10.1186/s12864-016-3212-2
dx.doi.org/10.1186/s12864-016-3212-2


Additional file 12: Table S10. Enriched KEGG pathways among genes
containing missense SNPs in promoter regions in Mongolian sheep but
not in Small-tailed Han sheep or Duolang sheep. (DOC 50 kb)

Additional file 13: Table S11. Enriched GO terms among genes
containing missense SNPs in promoter regions in both Small-tailed Han
sheep and Duolang sheep, but not in Mongolian sheep. (DOC 71 kb)

Additional file 14: Figure S3. Biological processes and KEGG pathway
enrichment in genes containing SNPs in promoter regions. A, Biological
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Mongolian sheep but not in Small-tailed Han sheep or Duolang sheep. B,
Biological processes enrichment in genes containing SNPs in promoter
regions in both Small-tailed Han sheep and Duolang sheep, but not in
Mongolian sheep. C, KEGG pathway enrichment in genes containing
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chr. X. (DOC 124 kb)

Additional file 18: Table S13. Genomic regions under selection in
Small-tailed Han sheep. (DOC 126 kb)
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Duolang sheep. (DOC 127 kb)

Additional file 20: Table S15. Enriched GO terms among genes located
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Additional file 21: Table S16. Enriched GO terms among genes
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Additional file 23: Figure S6. Pooled heterozygosity of Duolang sheep,
HP (in blue), and average fixation index between Mongolian sheep and
Duolang sheep, FST (in red), plotted for 200-kb windows spanning the re-
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Additional file 24: Figure S7. Haplotype diversities of genomic regions
harboring PRL and HMGCR. A and B indicate the HP of the 3 resequenced
breeds, plotted for 200-kb windows spanning the region harboring PRL
and HMGCR. C and D indicate the genetic variation in the region 24.22–
24.26 Mb on chr. 20 across PRL and LOC443319 and the region 6.53–
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were genotyped using WaferGen genotyping. Dashed horizontal lines
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