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Original Article

The importance of glucose control in the intensive care unit 
(ICU) setting was first demonstrated by Furnary1 and later 
confirmed by Van den Berghe2 in a large, prospective, ran-
domized control study. However, almost all of the clinical 
studies that have been published since then have struggled to 
achieve superior glucose control while avoiding the glucose 
metrics that actually increase mortality rates—hypoglyce-
mia, hyperglycemia, variability, and low time in range.3-6 A 
Japanese study that utilized a closed loop glucose control 
system that minimized hypoglycemia while at the same time 
achieving a high percentage of time in range showed the true 
promise of effective glucose control.7 To achieve tight glu-
cose control while at the same time minimizing glucose met-
rics that increase mortality rates, a closed loop system will 
need to be created. This system should mimic the workings 
of the native system which have been previously reviewed.8

To date, most attempts at creating a closed loop glucose 
control system for use in the ICU setting have utilized the 

standard engineering control techniques of proportional inte-
gral derivative (PID) or model predictive control (MPC).9-12 
PID controllers typically control to a set point and are chal-
lenged by the fact they rely solely on insulin for control, thus 
they do not take advantage of the counter-regulatory effects 
of intravenous (IV) glucose. MPC controllers rely on a com-
plex mathematical model of the glucose-insulin system. MPC 
model parameters are refitted every 1 to 4 hours, in an itera-
tive fashion, based on the difference between the predicted 
and measured glucose level. Control recommendations are 
made from the resulting best fit model. MPC controllers can 
be designed to control to a set point or to a desired range and 
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Abstract
Background: Effective glucose control in the intensive care unit (ICU) setting has the potential to decrease morbidity and 
mortality rates which should in turn lead to decreased health care expenditures. Current ICU-based glucose controllers are 
mathematically derived, and tend to be based on proportional integral derivative (PID) or model predictive control (MPC). 
Artificial intelligence (AI)–based closed loop glucose controllers may have the ability to achieve control that improves on the 
results achieved by either PID or MPC controllers.

Method: We conducted an in silico analysis of an AI-based glucose controller designed for use in the ICU setting. This 
controller was tested using a mathematical model of the ICU patient’s glucose-insulin system. A total of 126 000 unique 5-day 
simulations were carried out, resulting in 107 million glucose values for analysis.

Results: For the 7 control ranges tested, with a sensor error of ±10%, the following average results were achieved: (1) time 
in control range, 94.2%, (2) time in range 70-140 mg/dl, 97.8%, (3) time in hyperglycemic range (>140 mg/dl), 2.1%, and (4) 
time in hypoglycemic range (<70 mg/dl), 0.09%. In addition, the average coefficient of variation (CV) was 11.1%.

Conclusions: This in silico study of an AI-based closed loop glucose controller shows that it may be able to improve on the 
results achieved by currently existing ICU-based PID/MPC controllers. If these results are confirmed in clinical testing, this 
AI-based controller could be used to create an artificial pancreas system for use in the ICU setting.
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can employ both insulin and counter-regulatory IV glucose. 
Please refer to a recent review for a more thorough under-
standing of PID and MPC control methodologies.13

Other control methodologies, however, do exist, as shown 
by the MD-Logic Artificial Pancreas System.14 This system 
has been developed for type I diabetics and uses fuzzy logic, 
which is an AI technique, to capture the “lines of reasoning” 
of the diabetes specialists who created the controller. In a 
series of studies this AI-based controller has shown excellent 
potential in its ability to control type I diabetics.15,16 In 2015 
Medtronic acquired worldwide licensing rights to this soft-
ware with the stated intention of incorporating it into all of 
their future closed loop glucose control systems.

At their core, AI controllers seek to capture the human 
thought process by creating rules that mimic the exact rea-
soning used by humans. One example would be a logic rule 
that describes the low glucose suspend feature used by more 
advanced insulin pumps. Such a rule would take the form of: 
“if current glucose < (70 mg/dl) and current insulin flow > (0 
units/hour) then next insulin flow = (0 units/hour).” While 
this example deals with a hypoglycemic state, such a logic-
based system could be expanded on to cover all possible sce-
narios related to glucose control. This type of rule-based 
control system would be considered a Knowledge Based 
System.17

A typical knowledge-based system is created when a 
domain expert sits down with a knowledge engineer and 
explains to the engineer their lines of reasoning as to why 
they perform certain functions when trying to control the sys-
tem at hand. The engineer then turns the lines of reasoning 
into a series of if-then rules that mimic the domain experts 
thinking. This type of control is considered forward chaining 
in that available data such as the desired glucose control 
range, current glucose level, glucose rate of change, current 
insulin dose and current dextrose/glucagon dose are consid-
ered antecedents that fulfill an if clause. An inference engine 
then searches the rules contained in the knowledge base of the 
control system until the rule matching the current antecedents 

is identified. The inference engine then applies the conse-
quent or then clause of this rule, in an attempt to either main-
tain or return the system back toward the desired control 
range. Systems that are based on AI are either already in use 
or under current development and as such have already been 
accepted into the medical arena.18-20

Through utilization of 30 years of ICU experience and a 
deep understanding of the native glucose control system,8 
one of the authors (LD) has designed an AI-based glucose 
controller for use in the ICU setting. A preliminary version of 
this controller has been previously published.21 This control-
ler is a knowledge-based system, which is a form of AI. It is 
a forward chaining adaptive controller that has not been 
imparted with learning characteristics as its main use will be 
for brief periods of time (<7 days) on patients whose glu-
cose-insulin dynamics are rapidly changing. It is a multiple 
input multiple output (MIMO) system that operates with a 
10-minute cycle interval, however can switch to a 5-minute 
cycle interval during states of hypoglycemia or extreme glu-
cose dynamics. In addition, it controls to a range decided by 
the user and requires no knowledge of patient inputs such as 
IV dextrose, meals, steroid use, and so on. On initialization 
its only inputs are starting glucose, patient weight, desired 
control range and the concentrations of insulin/dextrose 
solutions that are used in the control process. Glucose data 
will be expected to come from an indwelling vascular and/or 
interstitial glucose sensor(s). The system is shown in sche-
matic form in Figure 1. In designing this system the devel-
oper served as both the domain expert and the knowledge 
engineer, thus avoiding any loss of knowledge during the 
translation process. This article presents the results of testing 
this unique AI-based glucose controller in a simulated ICU 
patient environment.

Methods

The control rules of the AI-based glucose controller were pro-
grammed in LabVIEW. In addition, an accepted mathematical 

Figure 1.  Schematic representation of control method used in the simulation study. The knowledge base is formed by the rules in the 
controller. The inference engine decides which rules apply based on the data in the first box that is presented to the controller. The 
controller functions in an iterative fashion with a cycle length of 5/10 minutes.
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model of the ICU patient’s glucose-insulin system that was 
developed by Van Herpe, et al.22 was programmed in 
LabVIEW. The controller and ICU patient’s glucose-insulin 
system model were interfaced such that exogenous flows of 
insulin and dextrose, as directed by the controller, were incor-
porated into the mathematical model. The models existing 
exogenous flow of dextrose was left intact, so that the model 
could be perturbed through variable infusions of dextrose. The 
original Van Herpe model parameters, at baseline, are set to 
coincide with those of an “obese-low glucose tolerance patient 
group,” as their insulin resistance is felt to most closely resem-
ble that seen in an ICU patient. To more closely approximate 
the real-life ICU setting, several of the model parameters were 
set to vary with time throughout each simulation.

The time variant parameters included insulin sensitivity, 
insulin half-life and insulin/glucose volume of distribution. 
A total of 4 insulin sensitivity curves, 3 insulin half-life 
curves and 3 volume of distribution curves were created 
using a cubic spline interpolation technique. In addition, 
simulations were also run whereby each of the above 3 
parameters were left unchanged throughout the simulation, 
from the original Van Herpe model. The time variable param-
eter curves were based on previously published articles, 
meaning the variation of these parameters were kept within 
previously measured physiologic bounds.23-25 Although these 
variable curves were not derived from actual ICU patients, 
the clinical situation that could account for each of these 
curves is described in the supplement. Through combining 
the resulting 5 insulin sensitivity parameters, 4 insulin half-
life parameters and 4 volumes of distribution parameters a 
total of 80 unique “patients” were created.

Each “patient” was simulated for a period of 5 days, 
which is equivalent to an average length of stay in an ICU 
setting. To perturb the model and thoroughly test the control-
ler the following different test scenarios were used: (1) 3 dif-
ferent starting glucose values of 55, 120, and 200 mg/dl, (2) 
7 different glucose control ranges of 70-110, 80-120, 85-125, 
90-130, 95-135, 100-140, and 80-140 mg/dl, (3) 5 different 
variable exogenous dextrose infusions, (4) 3 glucose sensor 
errors (SEs) of ± 5, 10, and 15%, and (5) 5 glucose sensor 
bias of −10, –5, 0, 5, and 10 mg/dl. SE was applied by sam-
pling every 5 to 10 in silico minutes from a Uniform e e−[ ],
probability density function, 26 where e denotes the SE for 
that particular trial, expressed as a decimal. The resulting 
pseudorandom number was added to unity and multiplied by 
the “true” value G t( ) ,  then added to the given bias for that 
trial to attain the upcoming input for the controller. This 
approach is not quite as sophisticated as the zero-mean resid-
ual and glucose-level-based approaches taken in Wilinska 
and Hovorka,27 though it can be shown that this approach 
sufficiently obfuscates the signal to demonstrate the resil-
iency of the AI controller to an imperfect input. The dextrose 
infusion, insulin sensitivity, insulin half-life and volume of 
distribution graphs/curves used to create the simulations are 
available in the supplementary material. During each of the 

unique simulations the SE and bias were not time variant. 
This testing resulted in 126,000 unique 5-day simulations, 
producing over 15 million hours of simulation time and 
approximately 107 million glucose values for analysis. The 
final altered Van Herpe model is noted in equations 1-4.
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i ts ( )  denotes the insulin sensitivity multiplier; i ts ( ) <1  
means a decreased sensitivity and i ts ( ) >1  means an 
increased sensitivity to insulin as compared to the original 
model.
V t( )  denotes the volume of distribution multiplier; 

V t( ) <1  means a decreased volume of distribution and 
V t( ) >1  means an increased volume of distribution as com-
pared to the original model.
i th ( )  denotes the insulin half-life multiplier. It behaves in 

an inverse fashion; i th ( ) >1  means a decreased half-life, and 
i th ( ) <1  means an increased half-life as compared to the 
original model.
FCG  is the dextrose flow from the controller, adjusted to 

units of mg

min
.

FEG  is the exogenous dextrose flow into the body used to 
perturb the system, for example from TPN or a meal. FEG  is 
not announced to the controller in any fashion.

The sum of these 2, F FCG EG+ , is analogous to FG  in the 
original model.
FCI  is the insulin flow from the controller, adjusted to 

units of U

min
. FCI  is analogous to FI  in the original model.

The parameters in the above model were not altered from 
the original Van Herpe model. Time variant insulin sensitiv-
ity, volume of distribution and insulin half-life are not 
accounted for in the original model, thus the i ts ( ) , V t( )  
and i th ( )  factors were added as a means to impose a time 
variant effect on these parameters. For a more thorough 
review of the Van Herpe model, including parameter values, 
please refer to the original article.22

In addition to the above analysis, the AI-based controller 
was compared to no control in a smaller scale simulation.

Statistical Methods

For each of the unique 126,000 simulations the mean glucose 
value and coefficient of variation (CV) were determined. 

µ
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These 2 values are thus presented as median of the means with 
25-75% interquartile range (IQR), as recommended by a prior 
publication.28 CV is used as a measure of dispersion. 
Hyperglycemic data are presented as percentage time in range. 
Hypoglycemic data are presented as percentage time in range 
and a cumulative distribution function graph. Percentage in 
range is the percentage of all glucose values, for the particular 
control range and SE, that resided within the control range 
being tested. All values are rounded to the nearest one-tenth, 
except for hypoglycemic percentages which are rounded to the 
nearest one-hundredth. For purposes of this study hypoglyce-
mia is defined as blood glucose < 70 mg/dl and hyperglycemia 
as blood glucose > 140 mg/dL. Dextrose infusion number 5 is 
nonclinical in nature and was included only to “stress” the 
controller, thus its results will be presented independently.

To assess which control range produces the best overall 
results, a novel closed loop glucose controller scoring system 
was created. The total score ranges from −40 to 100. Negative 
scores are allowed to significantly penalize glucose values < 
50 mg/dl. The elements of this scoring system are: (1) per-
centage values in range 70-140 mg/dl, (2) CV, (3) percentage 
values > 140 mg/dl, (4) distribution of values < 70 mg/dl. 
The entirety of the scoring system is available in the supple-
mentary material.

One of the authors (JD) was responsible for programming 
the AI-based controller and ICU patient mathematical model 
in LabVIEW, and interfacing this with a Microsoft SQL data-
base for purposes of running this large scale simulation. The 
glucose SE and bias produced inaccurate glucose values that 
were then fed into the glucose controller at each time step, 
throughout the course of each simulation. During the simula-
tions the mathematical model was updated every 60 seconds. 

However, the models glucose value was only fed into the 
controller for purposes of adjusting the exogenous flows of 
insulin and/or dextrose as determined by the controller, after 
adjusting for SE and bias, every 5 to 10 minutes depending 
on whether the controller was in a 5- or 10-minute cycle 
interval.

Results

Figure 2 shows the percentage of values within the desired 
control range for each SE. Data are presented as median and 
IQR. With a SE of 10%, which is an accuracy rate 2 CE 
marked continuous blood-based glucose sensors have already 
achieved,29,30 the AI controller achieves rates in the range of 
92.6-97.2%.

Figure 3 shows the CV as delineated by control range and 
SE. Data are presented as median and IQR. As would be 
expected, the CV increases within each control range as the 
SE increases. Note that the nadir of the CV, for each SE, 
occurs with control range 100-140 mg/dl.

Figure 4 shows the percentage of values in the hypergly-
cemic range. As would be expected this value increases as 
the upper limit of the control range increases toward 140 mg/
dl. The hyperglycemic rates were mostly <3%, except in 
cases where the upper limit of the control range was at or 
near 140 mg/dl and the SE was 15%.

Figure 5 shows the percentage of values in the hypoglyce-
mic range. As would be expected this value increases as the 
lower limit of the control range decreases toward 70 mg/dl, 
with the maximal value of 0.63% achieved with a control 
range of 70-110 mg/dl and SE of 15%. The majority of the 
values are <0.1%.

Figure 2.  Data are median values with IQR (25-75).
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Figure 6 shows the cumulative distribution function plot 
of all hypoglycemic values. The median of all hypoglycemic 
values was 67.73 mg/dl (65.55-69.05).

Figure 7 shows the percentage of values in the range of 
70-140 mg/dl. For a SE of 10% the range was 95.1-98.8%.

Figure 8 shows a histogram of glucose values for control 
range 70-110 mg/dl for all simulations run for this range. The 
controller’s extreme avoidance of hypoglycemia is mani-
fested by the steep slope on the left side of this plot.

Figure 9 shows the cumulative distribution function plot 
of time to range when the starting glucose value was 200 mg/

dl. Within 2 hours of starting the AI controller, 88% of the 
simulated patients were brought into range, regardless of the 
range being controlled to.

Table 1 contains some of the above results for the fifth 
exogenous dextrose infusion, which is considered to be non-
clinical in nature, and is utilized as a “stress test” of the glu-
cose controller under study.

Figure 10 shows the results of the closed loop glucose 
controller scoring system as applied to all of the control 
ranges. Although all elements of this scoring system have 
been shown to correlate with clinical outcomes, this 

Figure 3.  Median values with IQR (25-75).

Figure 4.  Percentage of all values for a given simulation that are in the hyperglycemic range (>140 mg/dl).
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particular composite scoring system has not been shown to 
correlate with clinical outcomes.

Table 2 shows the comparison of the AI controller to no 
control.

The controller was in a 5 minute cycle interval 30.2% of 
the time for all simulations combined. The controllers mean 
exogenous insulin dose across all simulations was 0.098 
units/kg/hr. The controllers mean dextrose dose was 0.27 
mg/kg/min, versus 3.2 mg/kg/min from the dextrose infu-
sions used to “perturb” the system.

Figures 11 and 12 are screen shots from the simulator 
used in this study, and are presented for informational pur-
poses only.

Discussion

The majority of efforts around glucose control are centered 
around developing an artificial pancreas for use in type I dia-
betic patients, however effective glucose control in the ICU 
setting also has the potential to significantly impact people’s 
lives given that there are tens of millions of ICU patients 
admitted annually throughout the world. In the U.S., ICU 
admissions account for 13.4% of inpatient dollars spent and 
0.66% of the gross domestic product.31

Although the recently updated and FDA approved UVA-
PADOVA simulator32 allows for expedited in silico testing of 
glucose controllers for type I diabetics, no similar FDA 

Figure 5.  Percentage of all values for a given simulation that are in the hypoglycemic range (< 70 mg/dl).

Figure 6.  All simulations. For all hypoglycemic values, 95% are > 61 mg/dl. Time 0 values are excluded.



1366	 Journal of Diabetes Science and Technology 10(6) 

approved ICU simulator has been created which has ham-
pered ICU glucose control efforts. However, given the enor-
mous burden that ICU patients place on the national economy, 
the importance of such a simulator becomes self-evident. 
Through adaptation of the Van Herpe ICU minimal model 
we sought to create an early prototype of an ICU simulator, 
which we then used to test a novel AI-based glucose control-
ler designed for use in the ICU setting.

Although the model used in this simulation is not as 
sophisticated as the S2013 UVA-PADOVA simulator model, 
in some sense it more closely mimics what occurs in a real-
life ICU setting as the insulin sensitivity, insulin half-life and 
insulin/glucose volumes of distribution were set to be time 
variant in each patient. It should be noted that the range of 

the time variant curves for each of these 3 parameters were 
consistent with clinically relevant ranges, and that each curve 
was based on a clinically relevant situation as outlined in the 
supplementary material.

This early stage ICU model is deficient in many senses 
including lack of hepatic, renal, gut absorption, glucagon and 
endogenous glucose production related subsystems, and 
through use of simplistic glucose SE settings whereby the 
degree of SE and bias were fixed with each simulation, 
which is not consistent with a recent analysis of interstitial-
based continuous glucose sensors.33 In addition, the starting 
glucose was chosen from 3 values instead of being randomly 
chosen from a probability distribution curve created from a 
large sample of actual ICU patients.34 Future modifications 

Figure 7.  Percentage of all values for a given simulation that are in the 70-140 mg/dl range.

Figure 8.  Distribution of 11.6 million values for all 3 SEs combined. Peak occurrence is at 87 mg/dl. Time 0 values are excluded.
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to the model will seek to incorporate those changes that are 
relevant to ICU patients and maintain consistency with the 
S2013 UVA-PADOVA simulator. Once a more complete 
model is developed it can be validated against a data set from 
ICU patients.

The AI-based controller that was tested in silico in this 
study shows potential promise toward achieving the goal of 
maximizing time in range while minimizing hypoglycemia, 
hyperglycemia and glucose variability.

This controller is especially suited toward eliminating 
severe hypoglycemia, as shown by no glucose values <45 
mg/dl being recorded in 107 million values, and a typical 
rate of hypoglycemia (<70 mg/dl) of <0.1%. In addition, the 

rate of hyperglycemia (>140 mg/dl) with an SE of 10%, 
which should be achievable with current sensor technology, 
was < 3%.

The CVs were all typically <15%, with those measured 
with a glucose SE of 10% ranging from 10.3 to 12.7%. It has 
been shown in a prior study that CVs in this range can reduce 
mortality rates by at least 34% in both nondiabetic and dia-
betic patients, in the control ranges used in this study.35

When looking at averages across all 7 control ranges with 
an SE of 10%, the time in control range was 94.2% and the 
time in the 70-140 range was 97.8%. A recent clinical study 
showed that time in range of 70-140 mg/dl that was as high 
as seen in this in silico study reduced mortality rates by 

Table 1.  Results of “Stress Test” of Controller Using a Highly Variable Glucose Infusion to Perturb the System.

Control range (mg/dl) % time in range CV

% time in 
hypoglycemic range 

(<70 mg/dl)
% time in range 
of 70-140 mg/dl

% time in 
hyperglycemic range 

(>140 mg/dl)

70-110 84.8 (81.8-87.3) 16.6 (15.7-17.8) 1.59 96.5 2
80-120 83.6 (81.4-85.1) 15.7 (14.9-16.6) 0.41 96.7 2.9
90-130 81.8 (79.5-83.3) 14.6 (14-15.4) 0.04 95 5
100-140 80.8 (78.6-82.2) 13.5 (12.9-14.1) 0 90.2 9.8

Representative statistics for 4 control ranges when controller attempts to control a nonclinical, highly variable, exogenous dextrose infusion (#5 in 
supplement) with an SE of 10%. Percentage time in range and CV reported as median (25-75%), others as percentage of all glucose values in particular 
range.

Figure 9.  All simulations with a starting glucose value of 200 mg/dl. For all simulations, 95% enter the given control range by 170 
minutes.
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46%.36 Effective glucose control, if ever achieved at the level 
shown in this study, will decrease mortality rates and save 
health care resources.37-44

When compared in silico to no control the AI-based con-
troller shows superior results, which is not unexpected given 
the history of ICU patient hyperglycemia that was ignored 
prior to the Van den Berghe article,2 which raised the concept 
of even attempting glucose control.

Most traditional control experts are Electrical Engineers 
who tend to gravitate toward PID or MPC control method-
ologies. They tend to dismiss expert system controllers as 
they are not mathematically derived, but rather rely on heu-
ristic reasoning. This study shows that when an AI-based 
controller is carefully designed by a domain expert8 who 
also has decades of clinical experience, that it may have the 
potential to improve on the results achieved by either PID or 
MPC controllers,45,46 although strictly speaking it is not 
valid to compare in silico results with clinical studies. 
Specifically, this simulation shows that this AI-based con-
troller may be capable of achieving exceptional results, 
including (1) time in control range > 90%, (2) time in range 

70-140 mg/dl > 95%, (3) severe hypoglycemia (<40 mg/dl) 
rate of 0, (4) hypoglycemia (40-69 mg/dl) rate < 0.1%, (5) 
CV < 13%, and (6) hyperglycemia (>140 mg/dl) rate < 3%.

Previous AI-based controllers have been based on fuzzy 
logic, which often employs look-up tables to determine partial 
truths. To our knowledge this is the first glucose controller that 
is based off of pure logic, with the basis for the logic being an 
in-depth study of the native glucose control system.8

While the results of this in silico study are encouraging, 
they will have to be confirmed in future studies in both ani-
mals and ICU patients to see if this AI-based glucose control-
ler holds up to real-world settings.

Conclusion

An in silico analysis of a novel AI-based glucose controller 
designed for the ICU setting demonstrates its potential to 
maximize glucose time in range while at the same time mini-
mizing the glucose metrics that increase mortality rates. Both 
animal and clinical testing will be required to validate these 
results.

Figure 10.  A composite score based on time in range 70-140 mg/dl, CV, time in hyperglycemic range (>140 mg/dl), and distribution of 
hypoglycemic values < 70 mg/dl.

Table 2.  Results of Comparison Study of No Control Versus AI Controller.

Control method % time in range CV

% time in 
hypoglycemic range 

(<70 mg/dl)
% time in range 
of 70-140 mg/dl

% time in 
hyperglycemic range 

(>140 mg/dl)

No control 5.1 (0.4-7.7) 14.6 (12.3-16.5) 0.19 20.4 79.4
AI controller 94.2 (92.1-96.9) 11.6 (10.7-13) 0.13 98.4   1.5

Representative statistics of no control versus AI controller for the following test scenario: control range 80-120 mg/dl, starting glucose 200 mg/dl, SE 10%, 
bias 0, all 4 clinical dextrose infusions (#s 1-4 in supplement) in all 80 in silico “patients.” Percentage time in range and CV reported as median (25-75%), 
others as percentage of all glucose values in particular range. See supplement for full explanation of this comparative study.
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Figure 12.  Screen shot of simulation with control range 80-120 mg/dl, starting glucose 200 mg/dl, SE 10%, bias 0, and dextrose infusion 
that starts at 0.5 mg/kg/min and increases by 0.5 mg/kg/min every 3 hours. In the upper panel the white line is glucose and the red line is 
insulin infusion. In the lower panel the white line is dextrose infusion and the green line is X(t) from Van Herpe model.

Figure 11.  Screen shot of simulator control panel. Although all of the Van Herpe model parameters can be adjusted in either a fixed or 
time variant fashion, for the purposes of this study only insulin sensitivity, insulin half-life, and volume of distribution were adjusted from 
the baseline parameters.22
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