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Abstract

This paper presents several mechanical models of a high-strength cable-driven dexterous 

manipulator designed for surgical procedures. A stiffness model is presented that distinguishes 

between contributions from the cables and the backbone. A physics-based model incorporating 

cable friction is developed and its predictions are compared with experimental data. The data show 

that under high tension and high curvature, the shape of the manipulator deviates significantly 

from a circular arc. However, simple parametric models can fit the shape with good accuracy. The 

motivating application for this study is to develop a model so that shape can be predicted using 

easily measured quantities such as tension, so that real-time navigation may be performed, 

especially in minimally-invasive surgical procedures, while reducing the need for hazardous 

imaging methods such as fluoroscopy.

Index Terms

Cable-driven robots; kinematics; medical robots and systems; snake-like robots; underactuated 
robots

I. Introduction

Small, dexterous manipulators are becoming increasingly popular for minimally-invasive 

surgical procedures [1]–[7]. This paper is about a new type of high-strength cable-driven 

This paper has supplementary downloadable material available at http://ieeexplore.ieee.org provided by the authors. This includes 
animations in gif format, showing comparison of model and experiment for eight separate test cases. Contact matt.moses@jhu.edu for 
further questions about this work.

HHS Public Access
Author manuscript
IEEE ASME Trans Mechatron. Author manuscript; available in PMC 2016 November 03.

Published in final edited form as:
IEEE ASME Trans Mechatron. 2015 December ; 20(6): 2876–2889. doi:10.1109/TMECH.2015.2396894.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://ieeexplore.ieee.org


flexible manipulator for medical applications [8]–[10]. This is a small snake-like device that 

can be hand held, or mounted to a larger robot for positioning (see Fig. 1). The manipulator 

is designed with a large open lumen expressly for the procedure of removing diseased bone 

during hip revision surgeries, without necessitating removal of a well-fixed acetabular 

implant [8], although it is well suited for other types of minimally-invasive surgical 

interventions. Visualizing the shape of the manipulator while it is inside the body is thus an 

important goal. In addition, a good understanding of the relation between design variables 

and manipulator performance metrics (for example, the effect of cable strength on 

manipulator stiffness) is important for designing new and improved systems.

Many existing cable-driven manipulators are described well by constant curvature models 

[11]. While the constant curvature assumption describes our manipulator with good accuracy 

at small deflections, the constant curvature prediction does not match the observed shape of 

our robot at higher cable tensions and deflections. One of the main advantages of our new 

design is that it is expressly intended for operation at high forces and deflections, so it is 

important to develop a predictive model that describes the manipulator behavior in these 

regimes of operation.

The purpose of this paper is to investigate the interaction between the actuating cables and 

their guide channels, in order to determine the extent to which this interaction is responsible 

for deviation from the “ideal” constant curvature model. Further, we take a step toward 

developing a model which predicts the shape of the manipulator given only material 

properties and the time-dependent tension on the drive cables. While specifically driven by 

our own particular manipulator design, this study can be applied to a broad range of cable-

actuated flexible manipulators.

Friction between cable and manipulator plays an important role in manipulator behavior. 

While friction and stiffness effects have been relatively well-studied in the context of cable-

driven robotic hands [13]–[16], friction is not considered in many works on cable-driven 

continuum manipulators, both pioneering and recent [17]–[20]. A number of studies 

investigate the frictional interaction between a snake-like medical device and the 

surrounding tissue, e.g., [21], but few studies explicitly address the friction of internal 

actuation cables. Some recent exceptions are [22]–[25]. In [22], cable friction is studied in 

depth, and shown to be at the root of hysteretic behavior shown in cable-driven surgical 

tools. A detailed lumped-parameter model using Dahl friction is presented in [23] and [24], 

which accurately predicts the curvature and tip location, after bending, of a manipulator 

constructed with a Teflon backbone and Teflon-coated cables. In this paper, we use a similar 

dynamic model with standard Coulomb friction to accurately predict the curvature and tip 

location, after bending, of a manipulator made with a Nitinol backbone and stainless steel 

cables. Extending beyond [23], [24], we present a geometric analysis of the free motion of 

the cable within the channels, a discussion of the separate roles of cable and backbone 

elasticity in manipulator stiffness, and we report experimental data on the effect of cable 

friction on time-dependent manipulator shape.

In Section II, basic kinematic and quasi-static dynamic model is presented. This section 

addresses the kinematic relation between cable length and manipulator shape, including 
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motion of the cable within the guide channel. Section III builds on the kinematic model from 

Section II to investigate how manipulator shape and stiffness is affected by cable tension and 

material properties. Section IV addresses the problem of parameterizing the nonconstant 

curvature manipulator shape, as well as effects of friction between cable and guide channel 

on the manipulator’s shape and time-dependent behavior.

II. Kinematics of the Manipulator and Cables

This section presents a basic kinematic model of the manipulator and the drive cables (see 

Fig. 2).

A. Backbone Kinematics

The manipulator is designed to be used with a supporting robot (see Fig. 1) that actuates the 

base platform. For this reason, only the flexible backbone portion of the manipulator is 

considered in the kinematic model. The manipulator is made of two nested tubes with 

alternating slots cut in the sides. There are fourteen slots on each side of the tube, resulting 

in 27 flexure joints. Because of the symmetrical construction and small deflection of the 

flexure joints, the joints are well described by a simple kinematic revolute joint equipped 

with a torsional spring (see Section III-D for additional discussion). At each revolute joint, 

the stiffness of the flexure is represented by a nonlinear spring. Joint i connects rigid links i 
and i − 1. The base link (link 0) is fixed. The forward kinematics, written in product of 

exponentials form, are

where gst is the current configuration of the end-effector, θ is a 27 × 1 vector of joint angles, 

and gst0 is the initial end-effector configuration. See the Appendix for a brief review of this 

notation, and [26] for detailed coverage. The initial configuration of each link is given by the 

4 × 4 matrix representation

where qi = (0, 0, (i − 1)p)T. The base link is link 0; links 1 through 26 are the repeated 

subunits of the compliant backbone; and the end-effector is link 27, that is, gst = gs27. The 

spacing between links is p = 1.21 mm. The configuration of the ith link is obtained by
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The axis of rotation of each joint is in the direction of ωi = (0, 1, 0)T. The joint twists are 

given by

The manipulator Jacobian  relates joint velocities to the spatial velocity of the end-

effector

(1)

 is a 6 × 27 matrix. For a general redundant manipulator,  can have rank of at most 

6. However, since all of the joints in this manipulator are parallel,  in fact has rank of at 

most 3, corresponding to the three degrees of freedom with which the end-effector can move 

in the plane. For most configurations gst there are many corresponding θ. The set of θ 
corresponding to a given configuration is called the self-motion manifold. The manipulator 

can move freely among these θ, given that the infinitesimal motions satisfy . 

With the end-effector of the manipulator held fixed, the internal spring torque at the joints 

moves the manipulator along the self-motion manifold to a configuration of minimum 

energy.

B. Cable Kinematics

The manipulator is actuated by two cables, one threaded through each side. The length of 

each cable can be treated as a kinematic configuration variable, and the same technique of 

forward kinematics and Jacobians can be applied to gain useful insight into the functioning 

of the manipulator.

Referring to Fig. 2, consider LRi, the length of the right cable, in between link i − 1 and i 
+ 1. The length of this cable segment is the length of the vector between cable entrance 

points in link i − 1 and link i + 1. For consistency with the rest of the discussion the cable is 

represented as a line segment in three dimensions, written as a vector in ℝ3, even though the 

manipulator is assumed to lie in the xz plane. Writing this vector relative to a frame fixed on 

link i, the length of the cable segment is
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where ci = cos(θi) and si = sin(θi).

Each joint angle has limited range of motion (approx. 0.14 rad) so it is reasonable to make 

the assumptions that ci = 1 and si = θi. This simplifies the aforementioned to

The fact that rz ≪ rx and rz ≪ p (rz = 0.2 mm, p = 1.21 mm, rx = 2.5 mm) allows us to 

neglect the  term, and LRi further simplifies to

where LRSi is the approximated length of the cable segment under the aforementioned 

simplifying assumptions, and LRS is likewise the approximated length of the entire cable. 

The total length of the right cable is then given by

The length of the right cable for a given set of joint angles is

(2)

The same procedure gives the length of the left cable

(3)

where LR0 and LL0 are constant terms containing the length of the cable offset (external to 

the flexible portion of the manipulator) and a sum of other dimensions. LR0 = LRoffset+ 27p 
− 2rz, and LL0 = LLoffset + 27p − 2rz. For convenience we write the vector of cable length as 

L(θ) = (LR(θ), LL (θ))T.
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C. Cable Coupling Matrix

The coupling matrix [26] P(θ) relates joint velocities θ̇ to change in cable length

(4)

where

In general the coupling matrix may depend on θ. However, using the simplified expressions 

for cable length (2), (3) results in

(5)

This simplified coupling matrix accurately describes many cable-driven manipulators with a 

flexible backbone. While the structure of PT is trivial, it provides helpful insight into the 

manipulator. Starting at an initial θ0, any motion θ̇ in the right nullspace of PT will leave the 

cable lengths unchanged. By inspection, rank(PT) = 1, so there is a 27 − 1 = 26 dimensional 

subspace of motions in θ for which cable lengths will remain constant. By inspection of the 

manipulator kinematics, we see that the sum of the joint angles is in fact the angular 

orientation of the end-effector. The cable self-motion manifold is therefore any motion for 

which the orientation of the end-effector remains constant.

D. Comparison of Cable Length Models

In the physical manipulator, the actuating cables are free to move sideways in the guide 

channels, and the manipulator shape becomes bistable at high counter-tensions. A high-

accuracy model of cable length for this manipulator was presented in [9]. This model uses 

Dijkstra’s algorithm to find the shortest route by which a cable of nonzero thickness can 

pass through a channel. In this section, we compare the simple cable length model to the 

higher accuracy one of [9].

The ideal “zero channel width” length LRi represents the length of an ideal zero-thickness 

cable through a zero-thickness channel. This quantity is an upper bound to the length of a 

cable segment that is free to move in a wider channel, since widening the channel will only 

increase the number of possible shorter paths. The error between LRi and the simplified LRSi 

is shown in Fig. 3.
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The shortest possible length of an intersegment cable length LDMi can be found as illustrated 

in Fig. 4. A lower bound on the total length of a cable free to move in a larger channel LDM 

is found by summing the minimum possible lengths of all segments, LDM = Σi LDMi. Fig. 5 

shows the maximum error between the simple cable model (LRSi) with the upper (LRi) and 

lower (LDMi) bounds of the cable lengths predicted by the method of [9].

The error between the ideal “zero channel width” length LRi, and the simple approximated 

length LRSi is very small—on the order of micrometers across the whole operating range 

(see Fig. 3). The error between LRSi and the bounds of method [9] is somewhat higher (see 

Fig. 5), but in both cases the error is small compared to the total length of the cable (see Fig. 

6). In many cases, this small error can be neglected and the simple length model can be used. 

However, at inflection points, that is, places along the manipulator where the joint angles θi 

change sign, it is important to consider these very small changes in cable length. Cases 

where joint angles change sign occur if there is an “S-bend” shape in the manipulator, and 

they also occur even when the manipulator is in the shape of a single circular arc, bending 

from one side to the other [9]. As the manipulator straightens, the most stable shape 

becomes a slightly buckled “S-bend” rather than a perfectly straight line. While these shape 

changes are rather small, they are accompanied by very rapid accelerations as the taught 

cable snaps from one side of a channel to another. Predicting and understanding these 

bifurcations of equilibrium state are important for a complete picture of manipulator 

behavior, but this topic is left for future work. The error analysis provides confidence that 

the conclusions we draw using the simplified length model and coupling matrix will closely 

approximate the true behavior of the physical manipulator in regions where bifurcations do 

not occur.

III. Quasi-Static Dynamic Model, Cable Tension, and Manipulator Stiffness

Equipped with the manipulator and cable Jacobians, we are now ready to address how the 

manipulator, in the absence of cable friction, responds to cable tension and to forces applied 

to the end-effector. While there are sophisticated methods for solving the equilibrium 

configurations of elastic chains (e.g., [27]), we take a more basic approach. Recall the 

familiar robot dynamics [26]

Several simplifying assumptions are made to reduce this general equation of motion to a set 

of decoupled first order differential systems. We are primarily interested in the equilibrium 

configuration, so we assume the movement of the manipulator is slow. Hence, the 

contributions of the Coriolis terms are negligible, and the joints are decoupled, i.e., C(θ, θ̇)θ̇ 

≈ 0 and M is diagonal. The constitutive behavior of the flexible links is modeled as a 

nonlinear spring in parallel with a viscous damper. These terms appear in N, i.e. N(θ, θ̇) = 

Kθ (θ)θ + Bθ̇. These same assumptions are used successfully to model continuum 

manipulators in [23], [24].
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The matrix Kθ (θ) represents the elasticity of the flexures in addition to the obstruction to 

movement caused by collisions between joint segments. Referring to Fig. 2, note that the 

presence of a collision between link i − 1 and i + 1is determined by both θi and θi+1. Precise 

conditions for collisions are cumbersome to calculate, but a simplifying assumption is to 

limit each θi to a value such that collisions are guaranteed not to occur. The flexure elasticity 

and intersegment collisions are modeled using a dual rate torsional spring for each joint, Kθ 
(θ) = diag(ki(θi)) where

The corresponding joint torque induced by this nonlinear spring constant, τi(θi) = ki(θi)θi, is 

shown in Fig. 7.

The aforementioned assumptions result in a system of n decoupled second order equations

which can be further reduced to a first order system by assuming that damping is dominant 

in the dynamic behavior

(6)

While this is not an accurate assumption to make for modeling high-speed transient behavior 

of the manipulator, it is entirely reasonable in this case because the primary quantity of 

interest is the equilibrium system configuration.

The torque induced on the joints τind is due to the combined effects of the applied wrench at 

the end effector and tension on the cables. Recall that the transpose of  relates a general 

spatial wrench, Fs, to the induced torques on the joints of the robot

(7)

The dimensions of  are 27 × 6. Wrenches in the right nullspace of , i.e., 

Fs such that  correspond to wrenches that are supported entirely by the 

structure of the manipulator, independent of joint torques. Because of the planar design of 

the manipulator,  is of rank at most 3. Basis vectors for the right nullspace (written 

in body coordinates) are F1 = (0, 1, 0, 0, 0, 0)T, F2 = (0, 0, 0, 1, 0, 0)T, and F3 = (0, 0, 0, 0, 0, 
1)T. That is, τwrench = 0 for any
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(8)

The adjoint transformation Adg is reviewed in the Appendix. In special configurations 

 can drop rank to less than 3, such as when θi = 0 for i = 0…26. In this case, the 

rank of  is 2 and the additional basis vector is F4 = (0, 0, 1, 0, 0, 0)T.

In a manner similar to (7), the coupling matrix relates cable tension to the induced joint 

torques [26]

(9)

where T = (TR, TL)T is the vector of cable tensions, with TL and TR being the left and right 

cable tensions, respectively. It is assumed TL, TR ≥ 0.

One further point regarding (9) should be mentioned. Inspection of (5) shows that cable 

tension results in the same torque being uniformly induced on all joints. In the next section, 

it is shown that this is consistent with the familiar constant-curvature assumption that is 

often used to model continuum manipulators.

The full quasi-static equations of motion are given by incorporating the induced torques (7) 

and (9) into the simplified dynamics model (6) and setting the applied joint torque τ to zero

This equation can be solved iteratively for the joint angles θ(t) by integrating

(10)

from an initial θ(t0). This results in the equilibrium shape of the manipulator given a time-

dependent application of end-effector loading and cable tensions. One example is shown in 

Fig. 8. The manipulator starts from θ = 0and then a force and moment load are applied. 

Different equilibrium solutions are reached depending on the order of application of force 

and moment, even though the final loading conditions are the same. Note that applying a 

pure moment to the end-effector, i.e. Fs = a(0, 0, 0, 0, 1, 0)T is exactly equivalent to applying 

cable tension, TL − TR ≠ 0. In each case torques are induced uniformly over all joints. For 

this reason, the example shown in Fig. 8 is also valid if a cable tension were applied instead 

of a moment to the end-effector.
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A. Constant-Curvature Regime

In the absence of external load, i.e., when Fs = 0, the equilibrium configuration is

(11)

Using the simplified coupling matrix generated with small angle approximations (5), and 

assuming the joints are in their linear regime, i.e. ki(θi) = k1, the equilibrium configuration is

Every joint angle is the same, so the joint axes are located along the arc of a circle with 

radius R = p/θi. Thus, the model is consistent with a constant curvature approximation, and 

the curvature is given by

(12)

B. Cable Length as Control Inputs

The equations of motion in (10) use cable tension T as a control input. In some cases it is 

convenient to consider the length of the cables as the control input instead. Let u(t) = (uR(t), 
uL(t))T be the controlled positions of the ends of the cables. Cable elasticity is modeled as a 

single spring element (external to the manipulator) in series with an ideal inelastic cable (see 

Fig. 9). Elongation of the cables, defined as the difference between the actual and the 

unstretched lengths, is given by

(13)

where d = (dR, dL)T and L0 = (LR0, LL0)T. In general, the cable tension is some function of 

the elongation

(14)

The expressions for T and d can be substituted directly into (10) for the equations of motion 

using cable lengths as the control input. It is assumed that u is chosen such that dR, dL, TR, 
TL ≥ 0.
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In the upcoming discussion on stiffness, it is necessary to find the change in cable tension in 

response to a small perturbation in the manipulator shape. This can be done by linearizing 

the tension about some operating point d0 = L(θ0) − L0 + u0. Noting that for a fixed control 

input u0, an infinitesimal displacement in joint angles δθ results in an elongation of δd = PT 

(θ0)δθ, the linearized tension is

(15)

where the partial derivatives are evaluated at θ0, u0. When the cables are modeled as linear 

springs, this expression simplifies to

(16)

where Kc = diag(kc) is the tensile spring constant of the cables. A simple approximation for 

cable spring constant is

where E is Young’s modulus and A is the cable cross-sectional area. Approximate values for 

the stainless steel cables used in this manipulator are E = 1.8 × 1011 N/m2, A = 5.1 × 10−8 

m2, L0 = 2.2 × 10−1 m, resulting in kc = 4.1 × 104 N/m.

C. Manipulator Stiffness

Once the manipulator attains an equilibrium configuration, it will to some degree maintain 

that configuration in response to disturbances from the environment. This behavior can be 

modeled as a general stiffness matrix. Because a high stiffness is desirable, it is useful to 

consider the contributions of various design parameters to this stiffness. In this section, we 

address the effects that various design parameters have on manipulator stiffness.

1) Km—Jointspace Stiffness—Assume that we start with an unloaded manipulator and 

then move the cables to some location specified by u0. The manipulator will attain an 

equilibrium configuration θ0. We assume that θ0 places the backbone flexures in their linear 

regime, i.e. Kθ (θ0) = Kθ = diag(k1). Holding u0 constant, suppose the backbone is displaced 

by an infinitesimal virtual motion δθ. The resultant torque appearing on the flexure joints is 

due to deformation of both the backbone and the cables. This torque is given by
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(17)

It is a reasonable assumption that P(θ0 + δθ) = P(θ0) = P, as it was shown in Section II-C 

that a constant P matrix is a very close approximation of the true P(θ). Expanding (17) and 

making use of (16) we have

Note from (11) that Kθ θ0 = −P(θ0)T(θ0, u0), so we have now

The quantity Km is a 27 × 27 symmetric positive definite matrix representing the combined 

stiffness of the backbone and cables, in jointspace coordinates. The matrix PKcPT is equal to 

a constant times the matrix of ones, that is, every element is equal to . Further, PKcPT 

has rank one, and the eigenvector corresponding to its only nonzero eigenvalue is (1, 1, 1, 
…, 1)T.

2) Kw—Workspace Stiffness—We define workspace stiffness as a natural extension to a 

linear spring, except for full 3-D motion, as described in [15], [16], [28]

where Fs is a six-element wrench applied to the end-effector, δt is an infinitesimal timestep, 

 is an infinitesimal displacement of the end-effector, composed of a small rotation about 

an arbitrary axis and small translations along three orthogonal axes. Ks is a 6 × 6 stiffness 

matrix.

For the purposes of this discussion, only the “flexible” degrees of freedom are considered in 

the stiffness analysis. The manipulator is assumed to be effectively rigid in response to 

forces of the form in (8). Stiffness resisting forces in the directions of F1, F2, F3 will not be 

considered, as the stiffness in these is much higher than that in the intentionally flexible 

modes. With this assumption, parameterizing the end effector configuration as X = (x, z, ϕ)T, 

the Jacobian mapping between these coordinates and the joint velocities is

(18)
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where JX is a 3 × 27 matrix. Note that the Jacobian JX is neither the spatial nor body 

manipulator Jacobian [see (27)]. The distinction between these three types of Jacobian 

mappings is described in detail in [26]. The kth entry of Jx is

(19)

The kth entry of Jz is

(20)

where p is the spacing between links (see Section II-A), and the kth entry of Jϕ is simply 

equal to 1, i.e. Jϕk = 1.

Assume that we start with an unloaded manipulator and then move the cables to some 

location specified by u0. The manipulator will attain an equilibrium configuration θ0. We 

assume that rank JX (θ0) = 3 and that θ0 places the backbone flexures in their linear regime, 

i.e. Kθ (θ0) = Kθ = diag(k1). We are interested in determining the 3 × 3 stiffness matrix Kw 

that describes the reactive force of the end-effector in response to infinitesimal disturbances 

in position

Holding u0 constant, suppose the end-effector is displaced by an infinitesimal motion δX. In 

jointspace coordinates, this deflection by δX corresponds to an infinitesimal motion δθ away 

from the equilibrium joint angles θ0. We can solve for δθ by minimizing the potential 

energy of the mechanical system, subject to the constraint δX = JX (θ0)δθ. Taking the zero 

point of the potential energy to be the value at equilibrium (i.e., θ = θ0) the potential energy 

is given by

(21)

The constrained minimization problem can then be formulated as a linear system of 

equations using the method of Lagrange multipliers
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(22)

where λ is a 3 × 1 vector of Lagrange multipliers. Provided that the three rows of JX are 

linearly independent, the matrix of constraint equations can be inverted as

where

(23)

With the inverted matrix, we may solve (22) for δθ

(24)

Substituting (24) into (21) verifies that the potential energy as a function of δX is

(25)

and the reactive force at the end effector is therefore

(26)

3) Stiffness Discussion—The structures of Km and Kw provide us with useful insight 

into manipulator stiffness. When cable elasticity is linear, the stiffness does not depend on 

cable tension. This runs somewhat counter to our intuition, because we are familiar that 

tensioning both the agonist and antagonist cables usually results in a stiffening of the 

manipulator (a person can demonstrate this with their own limbs). However, it is known that 

this stiffening effect of cable counter-tension is in fact due to the cables themselves 

exhibiting a nonlinear spring constant [29], [30].

When cable stiffness is nonlinear, the manipulator stiffness can be controlled, to some 

extent, by changing the elongation of the cables. For example, if cable stiffness is 
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proportional to the square of the elongation, , then the cable stiffness 

matrix depends linearly on d, Kc = diag(kcdR, kcdL). A change in Kc will therefore influence 

Km and Kw. However, the effect is limited by the span of PKcPT. Motions in jointspace that 

lie within the nullspace of PKcPT are not affected by the cables at all. The consequence of 

this is that there is a two-dimensional subspace of motions in the workspace (corresponding 

in this case to translations in x and z that leave ϕ unchanged) for which stiffness is 

independent of Kc and determined only by Kθ. The addition of more actuation cables to the 

manipulator increases the rank of P and allows stiffness control in additional degrees of 

freedom. For example, additional pairs of cables can be attached to adjacent pairs of 

segments, evenly spaced along the length of the manipulator. This is essentially the same as 

concatenating multiple two-cable-actuated manipulators together end-to-end.

An intuitive counting argument illustrates how many cables are needed to control joint 

angles as well as stiffness. As derived in [31] and clearly summarized in [32], a n × n 
stiffness matrix K is determined by n(n + 1)/2 parameters. If n joint torques must also be 

controlled, then to fully control the joint angles and full stiffness matrix, a minimum of n(n 
+ 3)/2 cables are required. Thus, at least nine cables are needed to fully control (x, z, ϕ) and 

Kw. As pointed out in [32] it is common to neglect off-diagonal terms in Kw, which results 

in a requirement of 2n cables. Assuming we are concerned only with the diagonal terms of 

the stiffness matrix, at least six cables would be needed to control all three degrees of 

freedom (x, z, ϕ) and their corresponding stiffnesses (kxx, kzz, kϕϕ). Since the manipulator 

only has two cables, it is clear that at most two of these six quantities are controllable. The 

two variables that are fully controllable are the angle of the tip ϕ and the corresponding 

stiffness kϕϕ.

D. Validity of Modeling Flexures as Revolute Joints

It is common to model flexure joints in a segmented continuum manipulator as kinematic 

revolute joints (e.g., [10], [23], [24], [33], [34]), however in certain circumstances it is 

necessary to model additional degrees of freedom in the system. For example, in [19] the 

axial compression of a continuum manipulator is modeled in addition to the bending mode 

of deformation. In some applications, individual flexures may need to be modeled as more 

than one kinematic joint. For example, a planar parallel manipulator described in [35] 

required three of its nine flexure joints to be modeled as a combination of revolute and 

prismatic joints. In order to support our assertion that the flexure joints in our manipulator 

are accurately modeled as revolute joints, a segment of the manipulator was studied using 

finite element analysis (FEA) in Solidworks (see Fig. 10). Representative material 

parameters for Nitinol were chosen (E = 60GPa, ν = 0.3) and typical loads were applied. 

The case of axial compression results in negligible deformation (maximum 0.015 mm). 

When compared with a segmented model made of rigid links connected by revolute joints, 

deformation due to a pure moment applied at the tip is consistent with constant joint angles, 

θ1…4 = 0.129 rad, while that due to a transverse load at the tip is consistent with uniformly 

decreasing joint angles, θ1…4 = (0.096, 0.074, 0.053, 0.032) rad. All three cases produce 

results consistent with our model, indicating that no additional degrees of freedom need to 

be incorporated.
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In addition to validating the kinematic assumptions, the same FEA results can be used to 

estimate an equivalent torsional stiffness for the flexure joints. Simple statics is used to 

determine the torque induced at each joint given the loading conditions. Joint stiffness is 

then estimated as the ratio of torque to angle. Values derived from the FEA results are 

compared with values derived from experimental measurements in Table I. The “cable-

driven bending” experiments and the method for determining the associated stiffness are 

described in Section IV-B4. In the case of the “0.2-N transverse load” experiment, a 

transverse load was applied to the tip of an isolated manipulator backbone without cables, 

the tip deflection was measured using calibrated image processing, and then the model of 

(10) was used to find a value of k1 such that the model tip deflection matched the observed. 

The discrepancy between the two experimental cases may be due in part to differences in 

dimension and material properties between the two different manipulator backbones used in 

the test. The discrepancy between FEA results and between FEA and experiment may be 

due in part to inaccurate material properties and excessive deformations. Improving the 

accuracy of these estimates is a topic for future work.

IV. Modeling Shape at High Strain and Nonnegligible Cable Friction

The model presented in Section III works well for small loads and deflections, but it is not 

accurate at higher deflections. This section includes cable friction in a model that more 

accurately predicts behavior at high deflections. The problem can be divided into two parts. 

First, we want to find a way to represent the shape of the manipulator with a small number 

of parameters. Second, we want to relate the shape parameters to quantities that are easy to 

measure, namely cable length and cable tension.

A representative dataset underlying the construction of this model is shown in Fig. 11. For 

this experiment, a light counter-tension was maintained on the right cable, while tension on 

the left cable was gradually increased and then decreased. An automated actuation system 

(for additional details see [8]) was used to control the manipulator during the test. The 

manipulator was moved slowly between sample points, and at rest when the sample data 

were taken. The typical time between sample points was about five seconds. At each sample 

point an image of the manipulator was also recorded. The cable tension was recorded with 

load cells (Honeywell 060-1426-04) that have an accuracy of ±0.11N. The cable 

displacement was controlled with a linear actuator (Haydon Kerk 35H4A-12) with a 

resolution of 0.0079mm per motion step.

The data from eight different experiments are uploaded as supplemental material to this 

paper. Fig. 11 shows results of one such test. Tension and displacement for the left cable is 

plotted for each sample point. Fig. 12 shows one example configuration during the test. This 

image shows the manipulator from underneath, so the “left” cable is actually on the right 

side of the image, and the corresponding angles θj for the configuration shown are negative.

There are three regimes of bending during the experiment. In regime I the cable is 

tightening, and the manipulator bends in a predictable manner. This corresponds to a roughly 

linear increase in cable displacement (although the slope will increase as notches begin to 

close at high deflections, and there can be a small discontinuity if the manipulator passes 
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through θ = 0). In regime II, the tension in the left cable is decreasing, but the cable length is 

remaining close to constant and the overall shape of the manipulator is not changing 

dramatically. There is a sudden transition from regime II to III, when the cable to starts to 

move a substantial amount and the manipulator returns to its equilibrium shape. This 

behavior is repeatable over many tests and follows a similar pattern for different values of 

counter-tension, as can be seen by viewing the supplemental information.

A. Parameterizing Manipulator Shape

Each image taken during a test is processed by manually digitizing the location of corner 

points on the notches of the manipulator body. The location of these “notch points” is used 

as a baseline ground truth for the shape of the manipulator. The maximum error in point 

location using the manual digitization process is 0.15 mm [10]. Fifty-eight notch points (Qi) 

are selected, numbered sequentially from the lower left, as seen in Fig. 12, and proceeding 

anticlockwise around the manipulator (for additional details see [8], [10]). A variety of 

parameterized shape models can then be fit to the 58 selected points (additional shape 

models are presented in [10]).

A constant curvature assumption is not adequate to describe manipulator shape at high 

deflection, as shown in Fig. 12. Virtual notch points (Q̃
i) generated using the kinematic 

model described in Section II are overlaid on actual images of the manipulator. An error 

metric ||Qi − Q̃
i|| between the model and the manually digitized points is defined by the sum 

of Euclidean distance from each model point to the actual location of its corresponding 

point. A “best fit” set of θj can be defined by minimizing this error metric.

Fig. 12 shows the manipulator for the last point in regime I. While the constant curvature 

model is fairly close, a “linear model” given by θj = a + bj provides a much closer 

agreement. Fig. 13 shows the pointwise error for all 58 notch points and all 18 samples in 

regime I, for both the constant curvature and linear model.

Fig. 14 shows pointwise error for the linear model in bending regimes II and III. The arrows 

in Figs. 13 and 14 indicate the progression of time through the sample set. Over the 

complete range of configurations, the maximum error using the linear fitting is 0.35 mm, 

compared to 3.36mmfor the constant curvature fitting.

In regime I, the manipulator starts with close to constant curvature. As tension is increased, 

the joints at the base begin to deflect more than those toward the tip. In regime II, as tension 

is released, the manipulator remains deflected overall, but the reduction in b shows that the 

shape is becoming more circular. The base joints, which are deflected most and therefore 

experiencing the highest force from the flexure joints, move before the other joints that are 

toward the tip. In regime III the manipulator becomes almost circular as the last of the 

tension in the cable is released.

B. Physics-Based Model of Bending With Friction

Fig. 15 shows the best-fit shape parameters a and b for the manipulator at each tension 

during the bending-unbending test shown in Fig. 11. This section presents a simple physical 
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model that captures this behavior. The manipulator is modeled as a series of rigid segments 

connected by pin joints equipped with torsion springs.

First order dynamics (i.e., overdamped motion) is assumed because we are primarily 

interested in the equilibrium state of the manipulator. The tension cable and backbone 

segment are lumped together, with the cable tension propagation dependent on a simple state 

machine model that represents sliding and static friction between cable and segment. 

Relative to a given segment, the cable has three states: sliding toward base, sliding toward 

tip, sticking. Fig. 16 shows the assumed geometry of the cables. Importantly, each cable is 

parallel to the link opposite it. This assumption is consistent with the geometry discussed in 

Section II-B. The dynamic modeling algorithm has four steps. Initially, the manipulator is 

placed at θj = 0, all tension values are set to zero, and at each segment the cable is sticking. 

The simulation begins when tension is applied to the first two segments.

1) Step 1—Tension Propagation—The normal force acting on the cable at each 

segment is

For each segment, progressing from the base (j = 1) to the tip (j = 27) the tension is 

propagated as

where μd is the coefficient of sliding friction between cable and backbone segment.

2) Step 2—First Order Dynamics—Summing the dominant forces and moments on a 

segment provides the first order dynamic model

where τjs = k(θj+1)θj+1 − k(θj)θj and b is a first order damping coefficient.

3) Step 3—Determine Cable Speed—Given the joint angle speeds θ̇i computed in Step 

2, the velocity of the cable through each segment is given by
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where j ≤ 26 and a positive vcj indicates the cable is sliding through segment j toward the 

base.

4) Step 4—Determine Stick/Slip State—A simple state machine determines the 

transitions between three conditions for the cable stick/slip state in each segment. For the jth 

segment, if the present state is “cable sliding toward base” or “cable sliding toward tip” and 

the following conditions are met:

the new state is “cable sticking”. If the present state is “cable sticking” and the following 

condition is met:

the new state is “cable sliding toward base.” If the present state is “cable sticking” and the 

following condition is met:

the new state is “cable sliding toward tip.” In all other cases the cable state is unchanged. 

The parameter vcj is a threshold speed below which the cable is assumed to stick, and μs is 

the static coefficient of friction, μs > μd.

Performance of the model is compared with measured data in Figs. 18 and 19. The only 

input to this model is cable tension. A value of b = 0.03 Nms/rad is used for the damping 

term (the results are not especially sensitive to this parameter). The friction terms are μd = 

0.29 and μs = 0.30, with vthr = 5× 10−5 m/s. A piecewise linear torsional spring was used, 

shown in Fig. 17. The spring rate in the linear region where |θi | < 0.07 rad is equal to 0.4829 

Nm/rad. The midrange spring rate for 0.07 ≤ |θi | < 0.14 rad models the “softening” behavior 

of the superelastic nitinol in high strain. This was necessary for obtaining a good fit to the 

data in the bending regime.

The model performs well in the bending regime across many different tests using different 

counter-tensions, as can be seen in the animated plots in the supplemental material. The 

model captures some of the hysteresis behavior, as seen clearly in Fig. 18, however the 

actual manipulator exhibits a much stronger hysteresis.
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V. Conclusion

In Section II, a kinematic model of the backbone and cables was presented. The effect of 

side to side motion of the cable within the guide channel was considered geometrically, and 

it was shown that the upper and lower bounds of cable length are very closely approximated 

by a simple coupling matrix PT of rank 1. While the cable channel width plays an important 

role in shape bifurcations at high tension, the effects are not important when the joint angles 

θj are all of the same sign.

In Section III, it was shown that, in general, stiffness is dependent on material properties and 

not cable tension, at least when neglecting cable friction. Cables with nonlinear stiffness 

characteristics can allow adjustable stiffness, but only in workspace directions that do not lie 

in the nullspace of the coupling matrix. Neither the stiffness properties of the backbone nor 

the cable contribute to the manipulator’s deviation in shape from constant curvature.

In Section IV, it was shown that the manipulator shape was well described by the relation θj 

= a + bj. Experimental data taken on the manipulator during bending and unbending showed 

three distinct regimes of behavior (I–III). A physics-based model was presented which 

works well for the bending in regime I. While the model captures some of the hysteresis 

shown in the actual robot, it underestimates the duration of sticking of the cables. Additional 

work is required to develop an improved friction model that captures this behavior.
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Appendix

A detailed treatment of this material is given in [26]. This Appendix reviews the background 

material and notation that is of most importance for the study presented in this paper. Given 

an element g ∈ SE(3) represented by a 4 × 4 matrix

where R is a rotation matrix and p is a translation vector, the 6 × 6 adjoint matrix is
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The “hat”∧ and “vee” ∨ operators are used to rearrange vector and matrix representations. 

Hat is used to map 3 × 1 vectors ω = (ω1, ω2, ω3)T to 3 × 3 skew matrices as

and 6 × 1 twists ξ = (v, ω)T to 4 × 4 matrix elements of se(3) as

The vee performs the inverse operations of the hat, i.e., (ω̂)∨ = ω and (ξ̂)∨ = ξ. The spatial 

manipulator Jacobian is constructed by

where

and

The body manipulator Jacobian is related to the spatial Jacobian by the adjoint

(27)

Suppose the end-effector configuration is gst = g(Rst, pst) and we represent a load applied to 

the manipulator end-effector as two three-element vectors, expressed relative to the world 
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frame: a force f = (fx, fy, fz)T and a torque τ = (τx, τy, τz)T (see Fig. 8). These quantities 

must be expressed in the end effector frame in order to represent them as a body wrench Ft

The spatial wrench Fs used in (7) is related to the body wrench by the adjoint transpose

(28)

where

(28) then evaluates to

Importantly, note that neither the body wrench Ft nor the spatial wrench Fs are equal to (fT, 
τT)T.
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Fig. 1. 
High strength dexterous manipulator with large open lumen [8] mounted on a LARS surgical 

robot. The LARS is a 7-DOF robot designed to assist in surgical procedures [12].
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Fig. 2. 
Geometry for determining cable length. Link 0 is the base, and link numbering proceeds 

sequentially up the manipulator. The links shown in the inset are links 3, 4 and 5 (i = 4). 

Positive values of θ correspond to the configuration shown.
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Fig. 3. 
Contour map of the error between the ideal “zero channel width” length of one cable 

segment LRi, and the approximate length LRSi, where error = LRi − p + (θi + θi+1)rx + 2rz. 

The error is less than five micrometers over nearly the entire range of operation (nominal 

segment length is 810 micrometers). Contour units are micrometers.
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Fig. 4. 
Lower bound on the length of a cable that is free to move within a channel can be found by 

summing the minimum possible length of individual segments. LDMi is the minimum 

possible length of a cable segment between two sections. The minimum length of a cable 

segment within a manipulator section is simply p + 2rz. A cable segment can move sideways 

within a channel by a distance of ±(rchannel − rcable).
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Fig. 5. 
Contour map of the worst case error between the simple length model and upper and lower 

bounds of the high-accuracy length model reported in [9]. The plot shows max(||LRSi − 

LRi)||, ||LRSi − LDMi||). Contour units are micrometers.
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Fig. 6. 
Contour map of intersegment cable length using the simplified expression LRSi = p − (θi + 

θi+1)rx −2rz. Compare these values to the errors shown in Figs. 3 and 5. Contour units are 

micrometers.
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Fig. 7. 
Nonlinear dual rate spring used to model flexure elasticity and intersegment collisions. k1 = 

0.36 Nm/rad, k2 = 10 Nm/rad, θthresh = 0.135 rad.
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Fig. 8. 
Path-dependent solutions to the quasi-static dynamic model. In solution A, the moment is 

applied first, followed by the force. In solution B, the force is applied first and the moment 

second.
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Fig. 9. 
Each cable is modeled as an inelastic ideal cable in series with a spring. The position of the 

spring ends, uL and uR, are the control inputs.
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Fig. 10. 
FEA results for deformation of a manipulator segment in response to different applied loads. 

Color scale indicates magnitude of displacement. Left: 10 N axial compression, deformation 

scale = 100. Center 0.1 Nm moment, deformation scale = 1. Right: 10 N transverse load, 

deformation scale = 1.
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Fig. 11. 
Cable tension and displacement during bending and unbending of the manipulator. A 

constant counter-tension of 0.45 N is applied to the opposite cable. There are three regimes 

of operation (I–III).

Moses et al. Page 36

IEEE ASME Trans Mechatron. Author manuscript; available in PMC 2016 November 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 12. 
Image of the actual manipulator bending under high cable tension. Left: Virtual notch points 

(Q̃
i) for the best fit constant curvature fitting (θj = cons) are shown overlaid in red dots. 

Right: (Q̃
i) using the fitting θj = a + bj.
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Fig. 13. 
Best fit joint angles using constant curvature (left) and linear (right) assumptions, for 

bending regime I.
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Fig. 14. 
Best fit joint angles using linear curvature assumption, for regime II (left) and regime III 

(right).
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Fig. 15. 
Manipulator shape parameters corresponding to the data in Fig. 11. The fitting model is θj = 

a + bj. Arrows indicate progression with time. See supplemental material for additional test 

results.
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Fig. 16. 
Right: Free body diagrams of link segments in a model that considers cable friction. Cable 

tension T, backbone compression force F, torsional spring constant k, joint angle θ, and 

radius to cable rx.
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Fig. 17. 
Piecewise linear torsional spring used to model Nitinol flexure joints and intersegment 

collisions.
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Fig. 18. 
Comparison of measured and predicted backbone joint angles. Top: model prediction. 

Bottom: best fit to image data using two parameter model θj = a + bj.
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Fig. 19. 
Comparison of measured and predicted shape parameters. Solid lines: measured data. 

Dashed lines: predicted. See supplemental material for more results.
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TABLE I

Estimated Joint Stiffness Values

Configuration k1 (Nm/rad)

Experiment, 0.2-N transverse load 0.36

Experiment, cable-driven bending 0.48

FEA, 10-N transverse load 0.57

FEA, 0.1-Nm moment 0.77
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