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Abstract Understanding chromatin function requires knowing the precise location of

nucleosomes. MNase-seq methods have been widely applied to characterize nucleosome

organization in vivo, but generally lack the accuracy to determine the precise nucleosome positions.

Here we develop a computational approach leveraging digestion variability to determine

nucleosome positions at a base-pair resolution from MNase-seq data. We generate a variability

template as a simple error model for how MNase digestion affects the mapping of individual

nucleosomes. Applied to both yeast and human cells, this analysis reveals that alternatively

positioned nucleosomes are prevalent and create significant heterogeneity in a cell population. We

show that the periodic occurrences of dinucleotide sequences relative to nucleosome dyads can be

directly determined from genome-wide nucleosome positions from MNase-seq. Alternatively

positioned nucleosomes near transcription start sites likely represent different states of promoter

nucleosomes during transcription initiation. Our method can be applied to map nucleosome

positions in diverse organisms at base-pair resolution.

DOI: 10.7554/eLife.16970.001

Introduction
The eukaryotic genome is compacted into chromatin (Kornberg, 1974) which is comprised of nucle-

osomes, each consisting of approximately 147 base pairs (bp) of DNA wound around a histone pro-

tein octamer (Kornberg and Lorch, 1999). The helical DNA makes direct contact with the histones

every 10 base pairs, with the major groove of DNA alternating between facing towards and away

from the histone core (Luger et al., 1997). Shifting the histones relative to the DNA sequence by a

few base pairs can change the accessibility of sequence elements to DNA binding proteins if they

are located in the linker sequences between nucleosomes, or may switch these elements between

facing towards and away from nucleosomes if they are located within nucleosomal DNA (Jiang and

Pugh, 2009b; Segal and Widom, 2009b; Zhang and Pugh, 2011).

The location of nucleosomes with respect to DNA sequences influences many biological pro-

cesses. Nucleosomes restrict the accessibility of DNA sequences to protein factors, such as transcrip-

tional regulators and the transcription machinery (John et al., 2011; Li et al., 2007; Liu et al., 2006;

Zhou and O’Shea, 2011). The positions and occupancy of nucleosomes can influence the interplay

between transcription factors (Mirny, 2010) and the level (Carey et al., 2013; Kim and O’Shea,

2008), dynamics (Lam et al., 2008), and differences in gene expression between cells
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(Dadiani et al., 2013; Raser and O’Shea, 2004; Tirosh and Barkai, 2008). Recently, nucleosome

organization has also been suggested to affect how gene promoters interpret dynamic signaling

information at the single cell level (Hansen and O’Shea, 2013; Hao and O’Shea, 2012), and hetero-

geneity in promoter nucleosome positions has been linked to differences in gene expression

(Small et al., 2014). Knowing the precise location that nucleosomes occupy with respect to DNA

sequence is crucial for understanding how these biological processes are influenced by eukaryotic

chromatin.

Genome-wide nucleosome positions are commonly mapped with micrococcal nuclease digestion

based high-throughput sequencing (MNase-seq) (Hughes and Rando, 2014). In this method, his-

tone-DNA interactions protect DNA from MNase digestion and the protected DNA fragments are

sequenced and aligned to genome sequences to infer the location of nucleosomes (Clark, 2010;

Kaplan et al., 2009; Rando, 2010; Zhang and Pugh, 2011). Although MNase exhibits sequence

preference when digesting DNA devoid of histones (Horz and Altenburger, 1981), genome-wide

analyses of nucleosomes with MNase-based methods are generally consistent with studies using

MNase-independent methods (Hughes and Rando, 2014), such as DNase I chromatin digestion

(Hesselberth et al., 2009) and chemical cleavage (Brogaard et al., 2012).

Studies that apply MNase-based methods typically report the position of a nucleosome as the

average of the bulk nucleosome population (referred to as the ’consensus center’, Figure 1A)

(Struhl and Segal, 2013; Zhang and Pugh, 2011). However, if nucleosomes have overlapping posi-

tions in a significant portion of the population, the effect of averaging over heterogeneous nucleo-

some positions can lead to discrepancy between the consensus center of nucleosomes and the most

representative nucleosome positions (Figure 1A). A variety of methods have been developed to

improve the precision of nucleosome mapping from MNase-seq data, such as peak finding of nucle-

osome occupancy (Zhang and Pugh, 2011) and filtering of single-end digestion patterns

(Weiner et al., 2010), but determining the precise locations of individual nucleosomes within a cell

population remains a challenge due to substantial variability in the mapped locations of digested

nucleosomes – the midpoints of paired-end sequenced nucleosomes or the endpoints of single-end

sequenced nucleosomes (Figure 1B). This variability may arise from a cluster of overlapping and

eLife digest Plants, animals and other eukaryotes wrap their DNA around complexes of

proteins called histones to form repeating units known as nucleosomes. The interaction between

histones and DNA is strong, and so the DNA region inside a nucleosome has limited access to other

proteins, including those that drive the expression of genes.

Moving a nucleosome slightly can change the access to its DNA and significantly impact how the

genes in the region are regulated. Nevertheless, determining the position of nucleosomes accurately

or testing how nucleosomes are different between individual cells are challenging tasks. Most

methods for identifying nucleosomes use an enzyme called micrococcal nuclease (or MNase for

short) to break down the DNA that isn’t protected in nucleosomes, followed by high-throughput

DNA sequencing to identify the DNA fragments that remain. However, this technique, known as

MNase-seq, is limited because it only measures an average location of the nucleosomes across

millions of cells.

Now, Zhou, Blocker et al. have developed a new computational approach to identify nucleosome

positions more accurately using MNase-seq data obtained from both yeast and human cells. This

approach revealed that in more than half of the yeast genome, a given nucleosome is found at

slightly different positions in different cells. Nucleosomes positioned near the beginning of a gene

mark it open or closed for binding by the cell’s gene expression machinery. Zhou, Blocker et al.

suggest that the nucleosomes’ positions influence how gene expression starts via a multi-step

process.

Following on from this work, the next step is to use the newly developed method to study how

nucleosome positions change when other regulators of gene activity bind and when genes are

activated or repressed.

DOI: 10.7554/eLife.16970.002
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Figure 1. Illustration of the Template-Based Bayesian (TBB) approach for determining nucleosome positions. (A) Diagram illustrating the

heterogeneous nucleosome positions and the consensus centers of nucleosomes along a genomic region in a population of cells. Blue ovals illustrate

individual nucleosomes and dotted lines mark all nucleosome positions. (B) Example of digested nucleosome reads, their nucleosome positions and

the overall occupancy. (C) Illustration of the computational pipeline of the TBB approach. Occupancy of sequencing read midpoints indicates the

number of midpoints at every base pair for yeast Chr 8, 204, 500–206,500 bp. Blue ovals illustrate overlapping TBB nucleosome positions and are

colored according to the magnitude of their coefficients b. Two common presentations of nucleosome sequencing data are shown for comparison: the

light gray area represents the nucleosome occupancy generated by smoothing sequencing read midpoints with a Parzen window approach (band size

of 20 bp) (Albert et al., 2007; Tsankov et al., 2010); the dark gray area (Fragment extension) represents the nucleosome occupancy generated by

Figure 1 continued on next page
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stably positioned nucleosomes, as well as from effects causing different degrees of digestion of the

same nucleosome by MNase, such as nucleosome breathing and nuclease trimming – all of which

influence the distribution of the aligned reads and are difficult to disentangle (Clark, 2010).

Recently, a chemical cleavage approach that uses a genetically engineered histone H4 to chemically

cleave DNA sequences in contact with the nucleosome dyad allowed direct measurement of nucleo-

some positions with unprecedented resolution (Brogaard et al., 2012; Moyle-Heyrman et al.,

2013). However, the requirement for genetic engineering of essential histones limits its current

application to genetically tractable organisms. Therefore, novel experimental or analytical

approaches that are generally applicable in eukaryotes are still needed to determine the accurate

positions of nucleosomes in vivo. Here, we report a computational approach to determine in vivo

nucleosome positions from paired-end MNase-sequencing data.

Applying template-based deconvolution to experimental data has many applications in biology.

For example, in super-resolution fluorescence microscopy, the locations of individual fluorophores

within the diffraction limit of light can be identified by deconvoluting light intensity information with

a function describing the distribution of light intensity from individual light spots (Betzig et al.,

2006; Huang et al., 2009; Rust et al., 2006). Inspired by this, we use the size distribution of MNase

digested nucleosome fragments to infer a digestion variability template for nucleosomes, and report

a Bayesian method that makes use of these templates to identify the individual positions of nucleo-

somes at a base-pair resolution, hereafter referred to as the template-based Bayesian (TBB)

approach. This approach can be applied to data generated through both paired-end and single-end

sequencing to map chromatin structure in diverse organisms. Here we demonstrate the template-

based Bayesian approach with paired-end sequencing of MNase digested nucleosomes in yeast and

human cells. We show that the periodic occurrences of dinucleotide sequence motifs relative to the

nucleosome dyad can be directly determined from MNase based nucleosome positions and are con-

served in vivo in both yeast and human cells. Leveraging this method, we find that alternative config-

urations of nucleosomes are a common feature in both yeast and human chromatin. The alternatively

positioned nucleosomes around gene transcription start sites represent configurations that differ in

their compatibility with the assembly of the pre-initiation complex. A 3-step model for transcription

initiation can reconcile the competition between nucleosomes and the transcriptional machinery

observed from genomic analysis.

Results

A Bayesian approach based on digestion variability templates can
identify positions of nucleosomes at base-pair resolution
We reasoned that it might be possible to resolve the positions of multiple overlapping nucleosomes

if we could estimate the degree to which MNase digestion contributes to the deviation of the mid-

points from a true nucleosome center. Since the overall digestion of nucleosomes is reflected in the

length of nucleosomal DNA fragments, we tested the idea that we might be able to estimate the

variation in the midpoints from the length of digested nucleosomes (Figure 1—figure supplement

1), and use this information to infer the positions of individual nucleosomes through deconvolution.

The variability of digested nucleosomes could come from two sources: the technical variation that is

associated with nuclease cleavage, such as variable trimming at nucleosome ends, and biological

variation that directly influences the length of DNA wound around histones, such as nucleosome

Figure 1 continued

extending 73 bp on both ends from the sequencing read midpoints. (D) Histogram showing the distance between adjacent TBB nucleosome positions

in a combination of the T1 and T2 experiments.

DOI: 10.7554/eLife.16970.003

The following figure supplements are available for figure 1:

Figure supplement 1. Diagrams of nucleosome digestion variability template estimation.

DOI: 10.7554/eLife.16970.004

Figure supplement 2. Length distribution of nucleosome reads.

DOI: 10.7554/eLife.16970.005
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breathing and remodeling (Polach and Widom, 1995). While the technical effects are likely to affect

both ends of nucleosomal DNA equally, the biological effects may create bias for specific nucleo-

somes and/or a specific side of the nucleosomes. However, the biological effects are generally

believed to be transient and rare at a given genomic location within a population of cells

(Andrews and Luger, 2011); we thus assumed that the digestion variation was equivalent at both

ends of the nucleosome when averaged over the genome and population. The biological variation

at individual nucleosomes could generate large shifts in read midpoints due to length differences in

nucleosomes (likely by multiples of 10 bp due to the unwrapping of each helical turn of DNA), and

could be identified as alternative nucleosome positions if they were present in a significant fraction

of the bulk nucleosome population. Nucleosomes with substantially smaller size, such as sub-nucleo-

somes (Rhee et al., 2014), can be identified based on the sequenced fragment size (<100 bp) and

were excluded from our analysis.

The template-based Bayesian approach includes four major steps (Figure 1C, see Materials and

methods). First, we estimated the distribution of MNase digestion variability from the length distri-

bution of DNA sequencing reads, assuming that MNase digestion is not biased towards either end

of the nucleosome on average. This produced a digestion variability template, describing the overall

deviations in read midpoints relative to the true nucleosome center (Figure 1—figure supplement

1). Second, each chromosome was segmented into regions with similar sequencing coverage to

increase detection sensitivity, with a requirement to maintain sufficient segment length for estimat-

ing statistical properties of nucleosome positions. Third, within each segment, the occupancy of

read midpoints (the number of paired-end read midpoints at each base pair, Figure 1C, gray trace)

was deconvoluted with the digestion variability template to estimate the expected read occupancy

at every base pair if digestion errors had not occurred (coefficient b, Figure 1C, black trace). Finally,

the locations of nucleosomes were summarized based on this expected read occupancy and statisti-

cal thresholds. To control for falsely identified nucleosome positions arising from the sequence pref-

erence of MNase, we set the statistical thresholds using a false discovery rate (FDR�0.05) estimated

based on a simulated MNase digestion dataset that matches the experimentally observed digestion

sequence distribution. In our study, the length distribution of paired-end sequencing reads from the

gene coding and promoter regions was indistinguishable from the rest of the genome (Figure 1—

figure supplement 1–2). Therefore, a single digestion variability template was applied across the

yeast genome.

We represented the locations of nucleosomes using two metrics: the consensus centers of nucleo-

somes and the TBB positions of nucleosomes (Supplementary file 1). The consensus centers of

nucleosomes were defined to represent non-overlapping nucleosomes with a minimum size of 147

bp (Figure 1C, blue bars), by applying a Gaussian window smoothing method to the expected read

occupancy (coefficient b) from our model – they are equivalent to the nucleosome positions com-

monly described in the literature (Albert et al., 2008; Jiang and Pugh, 2009b; Struhl and Segal,

2013) (hereafter termed ‘consensus centers’). The TBB nucleosome positions describe the center

locations of individual nucleosomes across the genome without limitation on minimum spacing

(Figure 1C, red dots and blue ovals) (hereafter termed ‘TBB nucleosome positions’), which represent

individual stably positioned nucleosomes over a statistical threshold.

Accurate estimation of nucleosome positions at base-pair resolution
We titrated MNase to digest yeast chromatin and selected for analysis two nucleosome samples that

were digested to different sizes (‘T1’ and ‘T2’, Figure 2—figure supplement 1). Both samples were

digested to primarily mono-nucleosomes without generating over-represented sub-nucleosome

fragments. We generated paired-end data sets of ’T1’ and ’T2’, each with a coverage of ~2.8 read

midpoints per base pair; as an average between these two data sets, we identified ~61,800 consen-

sus centers of nucleosomes and ~125,000 TBB nucleosome positions, covering at least 75.5% of the

S. cerevisiae genome. The spacing between adjacent TBB nucleosome positions peaked at 11 and

21 bp (Figure 1D), consistent with the rotation of DNA sequence by one or two helical turns around

histone cores (Albert et al., 2007; Brogaard et al., 2012), and suggesting that the same nucleo-

some commonly occupies overlapping configurations in different cells.

The consensus centers of nucleosomes identified by the template-based Bayesian approach were

consistent with the published methods employing Gaussian smoothing algorithms (often referred to

as ’Parzen window’) (Albert et al., 2007, 2008; Clark, 2010; Tsankov et al., 2010) (Figure 2A),
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Figure 2. Genome-wide evaluation of the TBB approach and alternative nucleosome positions. Histogram of the nearest distance: (A) between the

consensus centers of nucleosomes determined by the TBB approach and by the Parzen window approach; (B) between the consensus centers

determined by the TBB approach and the reference MNase nucleosome positions (Jiang and Pugh, 2009a); (C) between the TBB nucleosome

positions and the nucleosome positions mapped by the chemical approach (Brogaard et al., 2012); (D,E) between the consensus centers of

nucleosomes (D) and the TBB nucleosome positions (E) mapped in two independent experiments. The median of the distance between matched

consensus centers or TBB nucleosome positions is reported for each comparison. (F) Example of stable TBB positions that are tolerant to MNase

digestion, chr 8, 341651 – 341771. Randomly selected reads fragments are shown to represent the locations of sequenced tags.

DOI: 10.7554/eLife.16970.006

The following figure supplements are available for figure 2:

Figure supplement 1. Titration of MNase digestion.

DOI: 10.7554/eLife.16970.007

Figure supplement 2. Cumulative distribution of the nearest distance analysis in Figure 2A.

DOI: 10.7554/eLife.16970.008

Figure supplement 3. Cumulative distribution of the nearest distance analysis in Figure 2B.

DOI: 10.7554/eLife.16970.009

Figure supplement 4. Cumulative distribution of the nearest distance analysis in Figure 2C.

DOI: 10.7554/eLife.16970.010

Figure supplement 5. Cumulative distribution of the nearest distance analysis in Figure 2D.

DOI: 10.7554/eLife.16970.011

Figure supplement 6. Cumulative distribution of the nearest distance analysis in Figure 2E.

DOI: 10.7554/eLife.16970.012

Zhou et al. eLife 2016;5:e16970. DOI: 10.7554/eLife.16970 6 of 28

Tools and resources Computational and Systems Biology Genomics and Evolutionary Biology

http://dx.doi.org/10.7554/eLife.16970.006
http://dx.doi.org/10.7554/eLife.16970.007
http://dx.doi.org/10.7554/eLife.16970.008
http://dx.doi.org/10.7554/eLife.16970.009
http://dx.doi.org/10.7554/eLife.16970.010
http://dx.doi.org/10.7554/eLife.16970.011
http://dx.doi.org/10.7554/eLife.16970.012
http://dx.doi.org/10.7554/eLife.16970


with more than 90% of the nucleosomes matching within a single base pair (Figure 2—figure sup-

plement 2). These consensus centers also showed general agreement with the published nucleo-

some reference maps (Jiang and Pugh, 2009a) (Figure 2B and Figure 2—figure supplement 3),

validating the overall biological relevance of our data sets. We then evaluated the accuracy of our

identified TBB nucleosome positions by comparing them to individual nucleosome positions mapped

through a recently reported chemical approach (Brogaard et al., 2012), which provides a reference

that is independent of MNase cleavage specificity. The nucleosome positions identified by these two

approaches were consistent (Figure 2C and Figure 2—figure supplement 4), demonstrating that

the TBB approach can precisely map the positions of individual nucleosomes. Further, we assessed

the absolute precision of the TBB approach by using it to map nucleosome positions from in silico

generated MNase-seq data sets where the simulated nucleosome positions are known. We system-

atically tested the precision of the TBB approach with varying sequencing coverages, relative nucleo-

some population abundance and spacing among overlapping nucleosomes (Figure 3 and Material

and Methods). The majority of the TBB nucleosome positions identified in these simulated data sets

were within 2–3 bp of the originally simulated nucleosome positions, even for the cases where nucle-

osome positions were separated by only 10–15 bp or differ by more than 3-fold in their relative

occupancy (Supplementary file 2).

The accuracy and reproducibility of MNase-based mapping of nucleosomes may be limited by

MNase digestion variability. The degree to which chromatin is digested by MNase depends on the

DNA sequence and the preparation of nucleosomal DNA samples (Dingwall et al., 1981; Horz and

Altenburger, 1981), and may differ significantly between experiments even when experimental pro-

tocols have been carefully followed. To evaluate the tolerance of the TBB nucleosome positions to

different levels of MNase digestion, we compared the consensus centers and TBB nucleosome posi-

tions in the ‘T1’ and ‘T2’ data sets that represent digestion to different fragment sizes (Figure 2—

figure supplement 1). Both the consensus centers and the TBB nucleosome positions were in agree-

ment between these two experiments (Figure 2D–E, Figure 2—figure supplements 5–6), with a

median difference of 2 bp across the genome; in comparison, randomly generated consensus cen-

ters and nucleosome positions gave rise to a median difference of 49 bp and 36 bp, respectively.

Individual nucleosome positions can be reliably detected regardless of the differences in MNase

digestion (Figure 2F), demonstrating the robustness of the determined nucleosome positions to

digestion variability. Overall, these results demonstrate that the positions of nucleosomes can be

reliably and accurately detected at base-pair resolution with paired-end MNase-seq coupled with

the template-based Bayesian approach.

Several methods have been developed to determine the genome-wide locations of nucleosomes,

each of which addresses different experimental and computational issues (Albert et al., 2007a;

Brogaard et al., 2012; Polishko et al., 2012; Schep et al., 2015; Tirosh, 2012; Tsankov et al.,

2010; Valouev et al., 2011; Weiner et al., 2010; Zhong et al., 2016). We briefly summarized the

approaches, performance and limitations of these methods for reference (Supplementary file 3).

Dinucleotide periodicity is a conserved determinant of in vivo
nucleosome positioning
Nucleosomes in vivo are thought to be enriched for genome sequences that show a pattern of peri-

odic AA/AT/TA/TT or CC/CG/GC/GG motifs that oscillate every 10 bp with opposite phases

(Albert et al., 2007a; Brogaard et al., 2012; Gaffney et al., 2012; Kaplan et al., 2009;

Mavrich et al., 2008; Satchwell et al., 1986; Segal et al., 2006). This dinucleotide sequence pat-

tern matches the bending property of preferred nucleosomal DNA sequences, as the double

stranded DNA is twisted and bent to maintain contact with the histone cores (Drew and Travers,

1985). However, this periodic pattern was not observed around the consensus centers of nucleo-

somes determined using MNase based mapping methods (Valouev et al., 2011) (Figure 4—figure

supplement 1) and only emerged from nucleosome fragments selected to be exactly 147 bp (Fig-

ure 4—figure supplement 2) (Albert et al., 2007a; Gaffney et al., 2012; Kaplan et al., 2009), per-

haps due to the imprecision of the determined nucleosome centers.

In contrast, when we aligned DNA sequences at the TBB nucleosome positions in yeast, the dinu-

cleotide AA/AT/TA/TT and CC/CG/GC/GG motifs displayed 10 bp periodicity across almost the full

length of the nucleosome core (Figure 4A and Figure 4—figure supplement 3), illustrating the

power of the TBB approach to precisely map nucleosome positions from MNase-based methods. To
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Figure 3. Nucleosome detection from in silico MNase-seq datasets. (A) Plots summarizing the distance between

the detected TBB nucleosome positions in the in silico datasets and the nearest simulated primary and alternative

nucleosome positions. (’C’, total sequencing coverage of all overlapping nucleosomes; ’E’, the effective

magnitude (relative occupancy of neighboring nucleosomes); and ’O’, the offset (spacing between nearby

nucleosome positions). (B) Examples of nucleosome detection in the simulation at different coverage, effective

magnitude and offset (different values are highlighted in red). Sequencing read midpoints (gray) were distributed

randomly around the simulated nucleosome positions (blue dots) according to the digestion variability template.

The coefficients (blue trace) and nucleosome positions (red dots) determined by the TBB approach are shown for

comparison.

DOI: 10.7554/eLife.16970.013
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control for the influence of MNase digestion bias, we simulated MNase digestion based on its

observed sequence preference (Gaffney et al., 2012), and identified nucleosome positions from the

in silico MNase digestion data set. We used these in silico nucleosome positions to normalize the

bias that was merely a result of MNase digestion (Figure 4—figure supplement 4). After these cor-

rections, we observed dinucleotide AA/AT/TA/TT and CC/CG/GC/GG motifs displaying 10 bp peri-

odicity (Figure 4C), consistent with the dinucleotide frequency around the chemically determined

nucleosome positions in yeast (Brogaard et al., 2012). Randomly shifting the determined TBB

Figure 4. Dinucleotides frequency of nucleosome positions. (A–C) Normalized frequency of AA/AT/TA/TT and CC/CG/GC/GG dinucleotides of DNA

sequences aligned at the centers of nucleosomes, for all TBB nucleosome positions in yeast, both before (A) and after (C) correction for MNase

digestion bias, and for all TBB nucleosome positions on human chromosome 12, position 38,000,000 bp to 48,000,000 bp, a 10 Mbp region randomly

chosen in the human genome (B). (D) The frequency of AA/AT/TA/TT for 62,035 randomly selected TBB nucleosome positions (blue trace), and for

genome locations with an average distance of either 2 bp (orange trace) or 5 bp (black trace) from these selected TBB nucleosome positions. The

distance was randomly perturbed by between 0–4 bp or 0–10 bp for each nucleosome positions, respectively.

DOI: 10.7554/eLife.16970.014

The following figure supplements are available for figure 4:

Figure supplement 1. Dinucleotides frequency of nucleosome consensus centers.

DOI: 10.7554/eLife.16970.015

Figure supplement 2. Dinucleotides frequency of selected 147 bp nucleosome reads.

DOI: 10.7554/eLife.16970.016

Figure supplement 3. Dinucleotides frequency of TBB positions.

DOI: 10.7554/eLife.16970.017

Figure supplement 4. MNase-digestion correction for dinucleotides frequency of TBB positions.

DOI: 10.7554/eLife.16970.018
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nucleosome positions by an average of 2 bp greatly reduced the observed dinucleotide periodicity

and shifting the positions by an average of 5 bp completely eliminated the periodic pattern

(Figure 4D), demonstrating the importance of precisely mapping nucleosome positions in vivo.

Paired-end nucleosome sequencing has been used to map chromatin structure in higher eukar-

yotes (Gaffney et al., 2012), but a base-pair resolution nucleosome map has been lacking for organ-

isms other than yeast. We applied the TBB approach to determine the positions of human

nucleosomes from a recent paired-end MNase-seq study (Gaffney et al., 2012). The frequency of

AA/AT/TA/TT and CC/CG/GC/GG motifs displayed clear 10 bp periodicity relative to human TBB

nucleosome positions, which was comparable to the motif periodicity observed in yeast (Figure 4A

and B, Figure 4—figure supplement 2). In contrast, when DNA sequences were aligned at the con-

sensus centers of human nucleosomes, the frequency of these dinucleotide motifs did not exhibit a

clear periodicity with respect to the consensus centers (Figure 4—figure supplement 1). With the

template-based Bayesian approach, we demonstrated that nucleosome positions determined from

MNase-based methods indeed present periodic dinucleotide frequency globally, and that this fea-

ture may be a conserved signal for nucleosome positioning in vivo.

Heterogeneous nucleosome positions at the TSS
Positioning of nucleosomes over yeast transcription start sites (TSSs) is influenced by promoter

sequence signals and trans acting factors (Jiang and Pugh, 2009b; Radman-Livaja and Rando,

2010; Segal and Widom, 2009b). This observation, together with our finding that overlapping posi-

tions are commonly observed in yeast and human chromatin, motivated us to examine the relation-

ship between TSSs and overlapping nucleosome positions (resulting from alternative positions). We

identified all TBB nucleosome positions that were closely associated with TSSs (Jiang and Pugh,

2009a) and organized them into groups consisting of either unique or overlapping TBB nucleosome

positions for each gene (Figure 5A and B). If a group contained several overlapping TBB nucleo-

some positions, the center of this group was defined as the numeric average of these positions. All

groups were aligned at their centers and ranked by the spacing between TBB nucleosome positions

within the groups (Figure 5C). The TBB nucleosome positions exhibited a bimodal shape for at least

three quarters of the genes with nucleosome-covered TSSs (Figure 5C, ‘positions’), suggesting that

alternative positioning is a common feature of nucleosomes near TSSs. The number of sequenced

read midpoints showed the same bi-furcating shape and was highly consistent between two experi-

ments (Figure 5C, ‘T1 midpoints’ and ‘T2 midpoints’). The occupancy of nucleosome midpoints at

each gene correlated well between two experiments (T1 and T2), indicating alternative nucleosomes

can be reliably observed (Figure 5D). The distribution of read midpoints was symmetric along the

direction of gene transcription (Figure 5—figure supplement 1), and could not be explained by the

sequence bias of MNase digestion (Figure 5C). When we examined the midpoints attributed to

each nucleosome position within each group (Figure 5—figure supplements 1–2), we found that

most groups showed less than 2-fold variation in the read occupancy between alternative TBB nucle-

osome positions, suggesting that the different positions are significantly represented in the cell pop-

ulation and therefore are likely of biological relevance. These alternative positions were not a

consequence of differential digestion at nucleosome edges (Weiner et al., 2010), as both ends of

paired-end sequencing reads showed two peaks that match the edges of alternatively positioned

nucleosomes (Figure 5E). Differential digestion at nucleosome edges would produce two peaks of

read ends on one side and just one peak on the other read end (Weiner et al., 2010). Of the genes

with their TSSs covered by nucleosomes, approximately one quarter contain more than two TBB

nucleosome positions at TSSs, suggesting that chromatin structure at the transcription initiation site

is complex and heterogeneous.

Alternative chromatin states and transcription initiation
Alternative positions of nucleosomes around the TSS may allow the transcription start site of a gene

to be exchanged between accessible and inaccessible states. To determine if this is the case, we

analyzed the location of transcription start sites with respect to the alternative TBB nucleosome posi-

tions. We defined the nucleosome with its center position closer to the TSS as the ’proximal’ nucleo-

some, and the nucleosome with its center position further away from the TSS as the ’distal’

nucleosome (Figure 6A). The unique, proximal and distal nucleosomes were digested by MNase to
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Figure 5. Alternatively positioned nucleosomes at transcription start sites. (A,B) Examples of a uniquely positioned nucleosome (A), and alternatively

positioned nucleosomes at the TSS (B). Blue and magenta traces show the sequencing read midpoint occupancy and fitted coefficient b from

experiments ‘T1’ and ‘T2’, respectively. Ovals indicate the TBB nucleosome positions and are colored based on coefficients b. (C) Heat map showing

the TBB nucleosome positions (’Positions’), the occupancy of read midpoints from two experiments (T1 and T2), and the occupancy of read midpoints

Figure 5 continued on next page
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similar sizes, further suggesting that the alternative nucleosome positions are not a result of MNase

digestion bias (Figure 5F).

Among uniquely positioned nucleosomes, TSSs weree enriched ~10 bp inside the boundary of

the nucleosome core (Figure 6A, magenta curve). Among the alternatively positioned nucleosomes,

the proximal nucleosomes were located much closer to the TSS where the nucleosome core restricts

the accessibility of these factors and therefore competes for active transcription (Figure 6A, cyan

curve). For the distal nucleosomes, TSSs were aligned near the edge of the nucleosome core

(Figure 6A, red curve), making these sites and the upstream regulatory elements accessible to other

DNA binding factors. Alternatively positioned nucleosomes at TSSs gave rise to different accessibil-

ities of the promoter elements within a population of cells, which may reflect the different activities

in gene transcription. If one focused only on the average centers of these nucleosomes (essentially

the consensus centers of the +1 nucleosomes), one would draw the conclusion that nucleosomes

occlude the TSSs of most genes (Figure 6A, black line).

To explore how alternative TBB nucleosome positions might influence transcription, we focused

on the initial steps of this process: the assembly of the transcription pre-initiation complex (PIC),

which generally requires binding of TBP (TATA-binding protein); and the subsequent recruitment of

general transcription factors and RNA polymerase II (Pol II) (Buratowski et al., 1989; Green, 2000;

Orphanides et al., 1996; Roeder, 1996). Recently, it was suggested that the +1 nucleosome down-

stream of the TSS assists in the assembly of the PIC (Rhee and Pugh, 2012). However, the binding

of the PIC extends into the boundary of the +1 nucleosomes (Rhee and Pugh, 2012), presenting a

physical conflict between PIC binding and nucleosomes. To test if the resolution of alternatively posi-

tioned nucleosomes would provide a better understanding of the interplay between nucleosomes

and the assembly of the PIC, we analyzed the occupancy of the PIC (determined with the ChIP-exo

method (chromatin immunoprecipitation with lambda exonuclease digestion) by Rhee and Pugh

[Rhee and Pugh, 2012]) around the identified distal and proximal nucleosomes, respectively. Most

subunits of the PIC, including TBP, TFIIA, TFIIB, TFIIE, TFIIF, TFIIH and TFIIK, showed peak enrich-

ment at the edge of the distally positioned nucleosome (Figure 6B, cyan), suggesting that the +1

nucleosome in the distal position marks a boundary for the assembly of the PIC. This boundary may

be provided by the positioned nucleosomes or by binding of one or more components of the tran-

scription complex. In contrast, the proximally positioned nucleosome covered most of the regions

enriched for PIC binding (Figure 6B, red), suggesting that the +1 nucleosome in the proximal posi-

tion is not compatible with the binding of transcription machinery. Intriguingly, TATA-box and

TATA-like sequences were enriched in front of the proximal nucleosomes (Figure 6C), suggesting

that proximal nucleosomes do not block recognition of most TATA elements. Thus, the proximal

nucleosome may represent a promoter state that is not associated with active transcription and is

populated prior to the assembly of the PIC (Figure 6D, Proximal state). The distal nucleosome may

Figure 5 continued

from the two MNase bias simulations (’T1 DG control’ and ’T2 DG control’). All data are aligned by the centers of selected unique or alternative

nucleosome positions (essentially the consensus center of +1 nucleosomes) that overlap with the transcription start site (TSS) (4672 open reading frame

in total). The order of transcripts is ranked by the maximum space between TBB nucleosome positions within each group, as illustrated by the diagrams

on the left. The positive direction of the x-axis indicates 5’ to 3’ for all transcripts. (D) Correlation coefficient of the sequencing read midpoint

occupancy (un-smoothed) in experiment T1 and T2 for each gene in panel C. (E) Graph showing the end location of paired-end sequencing reads of

the upstream and downstream nucleosomes in panel C (later defined as the proximal and distal nucleosomes, respectively). The ends are aligned at the

position of upstream nucleosomes (proximal nucleosomes). (F) Length distribution of paired-end sequencing reads in the unique, proximal and distal

nucleosomes at gene promoters. In both (E) and (F), if the midpoint of a sequencing read is within 5 bp of the position of a nucleosome, it is counted

as a read of this nucleosome.

DOI: 10.7554/eLife.16970.019

The following source data and figure supplements are available for figure 5:

Source data 1. Source data for Figure 5C, with arrays of positions, midpoints from T1 and T2 used for generating the graph.

DOI: 10.7554/eLife.16970.020

Figure supplement 1. Reads occupancy between alternatively positioned nucleosomes.

DOI: 10.7554/eLife.16970.021

Figure supplement 2. Heat map showing the TBB nucleosome positions and the midpoint read occupancy.

DOI: 10.7554/eLife.16970.022
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Figure 6. Alternatively positioned nucleosomes and transcription pre-initiation complex. (A) Plots (left) showing the locations of TSSs relative to the

average centers of all overlapping TBB nucleosome positions shown in Figure 3C (’All’, black) to uniquely positioned nucleosomes (magenta) and to

the distally (red) and proximally (cyan) positioned nucleosomes. The gray area marks the region covered by the nucleosome core. The cartoon diagrams

on the right illustrate the location of the TSS relative to the nucleosome dyad. (B) Area showing the average occupancy of subunits of the pre-initiation

complex (TBP, TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH, TFIIK and RNA polymerase II (Pol II); determined by ChIP-exo) (Rhee and Pugh, 2012) aligned at

the center of the proximal (cyan) and the distal nucleosomes (red), determined by the TBB approach. (C) Bar graph showing the distribution of TATA

box and TATA-like sequences of all genes (Rhee and Pugh, 2012) aligned at the dyad of the proximal nucleosomes. (D) Illustration of the 3-step model

for transcription initiation mediated by alternatively positioned nucleosomes.

DOI: 10.7554/eLife.16970.023

The following source data is available for figure 6:

Source data 1. Source data for Figure 6, with genes and coordinates of TSSs, unique, proximal and distal nucleosome positions.

DOI: 10.7554/eLife.16970.024
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represent a promoter state in the process of transcription initiation (Figure 6D, Distal state). Once

transcription begins, the barrier of nucleosomes no longer hinders Pol II as its occupancy extends

through the region covered by the +1 nucleosome (Figure 6B).

The location of uniquely positioned nucleosomes relative to TSSs was similar to that of the distal

nucleosomes (Figure 6A, magenta and red curves), suggesting that the binding and assembly of PIC

may encounter less competition from chromatin at these genes. We found that genes with uniquely

positioned nucleosomes at their TSSs were enriched in highly expressed genes (Newman et al.,

2006) (top 500 genes, p = 0.001, Fisher’s exact test). More strikingly, we found that 73% of the

genes encoding ribosomal proteins had TSSs with uniquely positioned nucleosomes (p<0.00001,

Fisher’s exact test), highlighting a connection between the configuration of nucleosomes (unique vs

alternative) and gene expression.

Sequence determinants of unique and alternative chromatin states
DNA sequence features, such as periodic occurrence of dinucleotides (AA/AT/TA/TT or CC/CG/GC/

GG) and consecutive dA or dT sequences (poly(dA:dT)), can influence nucleosome positions

(Struhl and Segal, 2013). We therefore tested the possibility that DNA sequence determinants may

underlie the difference between uniquely, proximally, and distally positioned nucleosomes around

TSSs. The frequency of dinucleotides occurred periodically ~10 bp from the positions of either proxi-

mal or distal nucleosomes and resembled the periodic feature of nucleosomes in yeast genome (R2

= 0.75, Figure 7A). This periodicity was less pronounced in the uniquely positioned nucleosomes (R2

= 0.40 between dinucleotide frequency in uniquely positioned nucleosomes and all nucleosomes in

yeast genome; Figure 7A). Autocorrelation analysis of the dinucleotide frequency revealed a lack of

periodicity in DNA sequences around the uniquely positioned nucleosomes, further highlighting the

difference between uniquely and alternatively positioned nucleosomes (Figure 7B).

Poly(dA:dT) tracks are important for nucleosome depletion and correlate with transcriptional

activity (Hughes et al., 2012; Iyer and Struhl, 1995; Raveh-Sadka et al., 2012; Segal and Widom,

2009a; Struhl, 1985). When we examined the occurrences of poly(dA:dT) sequences at least 6

nucleotides in length, we found that the uniquely positioned nucleosomes were flanked by a strong

enrichment of poly(dA:dT)6 sequences (Figure 7C). A similar but weaker enrichment of poly(dA:dT)6
sequences was also observed flanking both the proximally and the distally positioned nucleosomes

(Figure 7D). In comparison, no enrichment of poly(dA:dT)6 sequences was observed in randomly

selected DNA sequences (Figure 7C and D, gray curve). Overall, uniquely positioned nucleosomes

and alternatively positioned nucleosomes presented different DNA sequence features, suggesting

that these sequence determinants may contribute to the different configurations of chromatin states

at gene promoters.

Discussion
Knowing the precise location of nucleosomes in vivo is key to understanding how diverse biological

processes are regulated (Jiang and Pugh, 2009b). Although MNase-seq methods have been widely

used for mapping nucleosomes in many organisms, the commonly reported consensus centers of

nucleosomes do not precisely reflect the location of nucleosomes with respect to DNA sequence.

We developed a new computational method to accurately determine the positions of nucleosomes

at base pair resolution based on paired-end sequencing data, providing a general and accessible

approach to accurately map the basic chromatin structure in eukaryotes.

The periodicity in the frequency of dinucleotide AA/AT/TA/TT and CC/CG/GC/GG motifs has

been observed in vivo in several organisms, including unicellular fungi (Albert et al., 2007a;

Brogaard et al., 2012), insects (Mavrich et al., 2008), chicken (Satchwell et al., 1986) and human

(Gaffney et al., 2012), and was thought to strongly influence the positioning of nucleosomes

(Kaplan et al., 2009; Struhl and Segal, 2013). However, this feature was only obvious when the

sequences of nucleosomal DNA fragments exactly 147 bp in length were selected for analysis

(Albert et al., 2007a; Gaffney et al., 2012; Mavrich et al., 2008; Segal et al., 2006), and was

much weaker or even disappeared around the consensus centers of nucleosomes that were deter-

mined with an entire data set (Brogaard et al., 2012; Valouev et al., 2011). Thus, differences in

the selection and analysis of MNase-seq data may result in different conclusions about nucleosome

positioning in vivo (Gaffney et al., 2012; Valouev et al., 2011). With the high-precision nucleosome
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Figure 7. Sequence features of uniquely and alternatively positioned nucleosomes. (A) Plots showing the frequency of AA/AT/TA/TT and CC/CG/GC/

GG dinucleotides of DNA sequences aligned at the TBB nucleosome positions of either unique, proximal or distal nucleosomes at gene promoters

(illustrated by the diagrams). (B) Plots showing the normalized dinucleotide frequency (smoothed with a 3 bp window) of DNA sequences aligned at

unique nucleosomes, alternative nucleosomes (proximal + distal) at gene promoters or all TBB nucleosome positions, and the autocorrelation analysis

(performed in MATLAB) of the dinucleotide frequency within nucleosome core (�73–73 bp). (C,D) Plots showing the frequency of poly(dA:dT)6

Figure 7 continued on next page
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position maps generated by TBB, we directly demonstrated that the DNA sequences around the

mapped nucleosome positions exhibited 10 bp periodicity in the frequency of dinucleotide motifs in

both yeast and human cells, arguing that this sequence feature is a universal signal for positioning

nucleosomes in vivo at the whole genome level.

Positioning of nucleosomes is dynamic and linked to many biological processes. Identifying over-

lapping nucleosome positions that cannot co-exist on the same DNA molecule at the same time pro-

vides a snapshot of possible chromatin states in dynamic processes. We observed at least two states

of chromatin where gene transcription is initiated: a state where a nucleosome covers the transcrip-

tion start site and competes with transcription machinery, but leaves the core promoter sequences

mostly accessible (’proximal state’); and another state where a nucleosome barely covers the tran-

scription start site and seems poised for the assembly of the pre-initiation complex (’distal state’).

We propose a 3-step model (Figure 6D) to describe the transcription initiation steps influenced by

nucleosomes, including a state where RNA polymerase transcribes through the nucleosome covered

sequence (’open state’). The transition from the ’proximal state’ to the ’distal state’ and to the ’open

state’ could be actively driven by the assembly of the PIC; in this case, different nucleosome states

may reflect rate-limiting steps during transcription initiation. Alternatively, this transition could be

controlled by transcription factors, chromatin modulators and even the preference of DNA sequen-

ces as a means to regulate and assist gene transcription. Interestingly, we found that TSSs of highly

expressed genes are enriched with uniquely positioned nucleosomes, which resemble nucleosomes

in their ’distal state’. It is possible that the +1 nucleosomes of these most highly expressed genes

are oriented in a way that allows constitutive assembly of the PIC and therefore frequent transcrip-

tion activity. Further genomic analysis and mechanistic studies will shed light on the generalization

and the underlying principles of this model.

DNA sequences may play a role in determining whether nucleosomes have unique or alternative

positions. Unique nucleosome positions may result from the combination of the strong nucleosome

boundary signal from poly(dA:dT) sequences and the lack of a rotational positioning signal from

periodic dinucleotide motifs. Conversely, alternatively positioned nucleosomes may be a conse-

quence of a weak boundary signal and a strong rotational positioning signal that allows nucleosomes

to interconvert between multiple equivalent positions. The exact positions of these nucleosomes

and how alternative nucleosomes are positioned relative to each other may be further controlled by

other factors associated with promoters, such as chromatin modifiers, remodelers and transcription

factors. The configurations of nucleosomes (unique vs. alternative) may influence the transcription of

a gene; if promoter DNA sequences contain information that helps to specify the nucleosome con-

figurations, eukaryotic genome could use nucleosome configurations as a means to encode tran-

scriptional programs.

It is worth noting that the template-based Bayesian approach does not capture all possible posi-

tions of nucleosomes within the cell population – it identifies the nucleosome positions that are rep-

resented with strong statistical confidence (Materials and methods), reflecting the different

configurations of nucleosomes that are likely to be relevant in biological processes. Revealing these

heterogeneous configurations of nucleosomes in cells will provide new insights into how chromatin

regulates or is influenced by biological processes. Furthermore, mutually exclusive positions of pro-

tein-DNA complexes can imply dynamic information. As an example, the alternatively positioned

nucleosomes at TSSs suggest a change in chromatin structure during transcription initiation. Similar

analytic approaches can be applied to other systems to reconstruct dynamic processes.

Figure 7 continued

sequences aligned at unique nucleosomes or the average centers of alternatively positioned nucleosomes. The positive direction of the x-axis indicates

5’ to 3’ for all transcripts. Black arrows mark the enriched poly(dA:dT)6 signals. Overall, 1172 genes contain unique nucleosomes and 3469 genes contain

proximal and distal nucleosomes at their promoters. Gray traces present the analysis for a random permutation control of selected promoters and the

location of nucleosome positions (A,C,D). The number of these random locations matches the number of nucleosomes in each plot.

DOI: 10.7554/eLife.16970.025
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Materials and methods

Nucleosomal DNA preparation
Detailed conditions of cell culture, chromatin isolation, MNase digestion and DNA extraction have

been previously described (Zhou and O’Shea, 2011). Briefly, 100 OD600 units of yeast cells (EY57;

genotype K699, ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3 GAL+) growing in synthetic com-

plete medium at 30˚C with shaking were harvested at OD600 ~0.5 for each experiment. Cells were

crosslinked with 1% formaldehyde for 15 min at room temperature and quenched with 125 mM gly-

cine for 5 min. Collected cells were lysed mechanically with glass beads at 4˚C with Mini-Bead-

beater-24 (Biospec) in lysis buffer (50 mM HEPES, pH 7.5, 150 mM NaCl, 2 mM EDTA, 1% Triton

X-100, 0.1% Sodium-Deoxycholate) and the chromatin pellet fraction was digested with either 0.5, 1,

2 or 4 U MNase (Worthington Biochemical) at 37˚C for 30 min. DNA fragments corresponding to

mono-nucleosomes were extracted from an agarose gel after electrophoretic separation.

Sequencing library preparation and read mapping
For each experiment, 0.5 mg of mono-nucleosomal DNA (~5 pmol) was used for sequencing library

construction according to the Illumina Truseq paired-end protocol. ~1 pmol of paired-end ligated

library was recovered from the agarose gel for each experiment before PCR amplification. Since the

amount of ligated library was sufficient for sequencing, we only performed 4 cycles of PCR amplifica-

tion with the Illumina primer cocktail to obtain a double stranded sequencing library. The number of

sequencing clusters generated on the flow-cell represented at most 1/10,000 of the amplified

library, such that the chance was very small to have more than one copy of duplicated library mole-

cules clustered on the flow-cell (p<1.8 � 10–5, binomial distribution). Therefore, we treated each

paired-end read as an individual nucleosome from a single cell. Libraries were sequenced with an

Illumina Hiseq 2000 and the paired-end sequencing reads were aligned to the S. cerevisiae genome

Scer02 with bowtie 2.0 (Langmead et al., 2009). We mapped reads with two or fewer mismatches,

and insert lengths were restricted to sizes between 100 bp and 300 bp. Reads with multiple report-

able alignments were randomly assigned to one such alignment. The midpoints of all sequenced

DNA fragments were randomly rounded to an integer genomic coordinate and used to generate

sequencing read midpoint occupancy maps.

We obtained 33.7 million and 34.3 million mappable paired-end reads for the T1 and T2 experi-

ments, respectively. All analyses presented in this work were done with the T1 dataset unless

specified.

Detection of consensus centers and TBB nucleosome positions
The consensus centers of nucleosomes were determined based on the fitted coefficient b with a

standard Parzen window peak calling method (Tsankov et al., 2010). TBB nucleosome positions

were determined at FDR � 0.05, where the null distributions of nucleosome positions were esti-

mated from randomly sampled nucleosome reads distributed based on the local read density. We

developed two different null distributions: a random null distribution where simulated sequencing

reads were assumed to be uniformly distributed within each region, and an MNase digestion-aware

null where the simulated sequencing reads were sampled to match the observed dinucleotide end

frequency of the paired-end reads. We applied the digestion-aware null to identify TBB nucleosome

positions with a threshold of FDR � 0.05, resulting in 62,035 consensus centers and 120,347 TBB

nucleosome positions in the T1 experiment, and 61,532 consensus centers and 129,505 TBB nucleo-

some positions in the T2 experiment. When we attempted to identify possible nucleosome positions

that were entirely due to the sequence bias of MNase digestion, we analyzed the simulated MNase

digestion data though our TBB pipeline and applied the random null distribution with a threshold of

FDR � 0.05. This allowed us to identify 49,739 and 50,076 positions to analyze and correct for influ-

ence of MNase digestion bias.

Human nucleosome analysis
Analyses on human nucleosomes were performed using paired-end sequencing reads with length

between 126 bp and 184 bp (Gaffney et al., 2012). We randomly selected a 10 Mbp region on

human chromosome 12, position 38,000,000 bp to 48,000,000 bp, to test the TBB approach. In total,
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we identified 43,991 consensus centers of nucleosomes and 251,948 TBB nucleosome positions in

this selected region. All the identified positions were used in our analysis.

Dinucleotide frequency analysis
All TBB nucleosome positions determined in T1 were used for the dinucleotide frequency analysis

unless specified. DNA sequences from 100 bp upstream to 100 bp downstream of each TBB nucleo-

some position were aligned and the frequency of AA/AT/TA/TT and CC/CG/GC/GG dinucleotides

was calculated for every base pair. This calculated di-nucleotide frequency was then normalized to

the average dinucleotide frequency and presented in the plots.

For the permutation of TBB nucleosome positions, we first randomly selected 62,035 TBB nucleo-

some positions (the same number as consensus centers of nucleosomes). For each of these positions,

we randomly shifted the genome coordinate of the position by 0–4 bp with an overall average of 2

bp, or by 0–10 bp with an overall average of 5 bp. The frequency of AA/AT/TA/TT dinucleotides

with respect to these permutated positions is presented in the plot Figure 4D, in comparison to that

of the original TBB nucleosome positions.

Identification of overlapping nucleosomes around TSSs
To determine if the observed overlapping TBB nucleosome positions are biologically meaningful, we

excluded TBB nucleosome positions whose occupancy is less than 4.8 reads (about half of the

median sequencing read occupancy of all TBB nucleosome positions), which account for ~5% of the

detected TBB nucleosome positions. The position occupancy was calculated as the average read

count within a 3 bp window centered at TBB nucleosome positions. We then combined individual

TBB nucleosome positions that are separated by less than 80 bp into groups of overlapping nucleo-

somes (overlap by ~ half of a nucleosome). In total, 57,643 groups containing either unique or over-

lapping TBB nucleosome positions were identified in the yeast genome. Groups that contain more

than 9 nucleosome positions (139 groups, 0.24%) were further excluded from this analysis because

they likely reside in regions with delocalized nucleosomes. The remaining groups were compared to

the positions of TSSs of all ORFs in yeast genome (Jiang and Pugh, 2009a), and 4641 were identi-

fied to overlap with TSSs (TSSs within 73 bp distance of any TBB nucleosome position in the group).

All 4641 were analyzed and presented in Figure 5C. 3307 of these groups contain no more than 2

TBB nucleosome positions and their analyses are shown in Figure 5—figure supplement 2.

PIC binding and TATA-box/TATA-like sequences
The occupancy data for the subunits of the PIC was generated from the supplementary data of the

work of Rhee and Pugh (Rhee and Pugh, 2012). The genome coordinates for PIC occupancy were

calculated based on the positions of the +1 nucleosomes kindly provided by Ho Sung Rhee.

Both TATA-box sequences and TATA-like sequences identified by Rhee and Pugh (Rhee and

Pugh, 2012) were analyzed in this study and presented in Figure 6C. However, a substantial fraction

of the TATA-like sequences are located next to or even after the annotated transcription start site –

TATA-like sequences of ~600 genes are within 5 bp of TSSs. If we exclude these genes from our

analysis, the majority of the TATA-box/TATA-like sequences are located outside the boundary of the

proximal nu cleosomes.

Nucleosome digestion variability template estimation
We estimated the digestion variability template from the distribution of sequencing read lengths.

This digestion variability reflects a combination of factors that influences the size of protected nucle-

osomal DNA, such as over- or under- digestion of intact nucleosomes. This estimation was based on

a simple, symmetric model of MNase digestion for each sequenced fragment. Using this model, we

obtained a nonparametric maximum likelihood estimator of the distribution of digestion variability

(e) at each end of a sequenced fragment (e1j, e2j). Therefore, we can infer the digestion variability

template as the distribution of the variability in paired-end read midpoints due to digestion. We

denoted the length of each paired-end read j as ‘j and assumed

‘j ¼ ‘0þ e1j þ e2j; e1j;e2j ~ IID:

‘0 is defined as the length of DNA covering the histone core octamer (147 bp) (Kornberg and Lorch,
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1999) and the e1j and e2j terms are the digestion errors at each end of the read j. We assumed

MNase has the same propensity towards over-or under-digestion at each end on average; therefore,

we modeled these errors as bounded and symmetric between the ends of sequencing reads. Along

the genome, the distributions of digestion errors at the ends of each read are mirror images of each

other, but the two errors of the same read were independent. So positive values of e1j or e2j imply

that DNA sequence not covered by the histone core octamer was left at the ends after MNase

digestion, and negative values imply that MNase over-digested the nucleosomes.

Under this model, each sequencing read’s midpoint varies around its nucleosome’s center

according to the distribution of dj �
1

2
e1j � e2j
� �

. The template t
!
specifies this distribution, expressed

in vector form and transformed to account for the random rounding of fragment centers to integer

positions. Hence,

tk ¼ P dj ¼ k
� �

þ
1

2
P dj ¼ k�

1

2

� �

þP dj ¼ kþ
1

2

� �� �

For k¼�w; . . . ;w, yielding a vector t
!

of length 2wþ 1. To setup the estimation task, we defined two

probability distributions,

pðiÞ ¼Prðlj ¼ iÞ;
qðiÞ ¼Prðe1;j ¼ 1Þ:

It is known that lj � 0, which implies e1;j;e2;j �� l0
2

�

c. If the longest observed fragment length is lmax,

we also have Prðlj >lmaxÞ ¼ 0. The non-parametric Maximum Likelihood Estimation (MLE) also enfor-

ces lj � lmax, which implies e1;j;e2;j � lmax � l0 þ
l0
2

�

c. We could then write

p ið Þ ¼
X

lmax�l0þ
l0
2b c

k¼�
l0
2b c

q kð Þq i� l0� kð Þ:

The resulting log-likelihood for the observed fragment lengths is

‘ qð Þ ¼
X

M

j¼1

log p lj
� �

:

We maximized lðqÞ numerically, using a multivariate logit transformation on the values qðkÞ to avoid

bounded optimization. Using the L-BFGS algorithm (Zhu et al., 1997) on a laptop with a Core i5

processor and 8GB of RAM, this maximization requires ~40 s for a typical experiment. The complex-

ity of this computation depends only on the number of distinct read lengths observed (i.e., 151 bp,

152 bp, etc).

We obtained the template distribution t
!

from q via a convolution sum and linear transformation.

We first obtained the distribution of e1 � e2 via

u ið Þ ¼ P e1 � e2 ¼ ið Þ ¼
X

lmax�l0þ
l0
2b c

k¼�
l0
2b c

q kð Þq k� ið Þ:

We finally transformed the distribution u ið Þ to the desired template t ið Þ by accounting for random

rounding, as

t kð Þ ¼
1

2
u 2k� 1ð Þþ u 2kð Þþ

1

2
u 2kþ 1ð Þ:

The resulting digestion variability template accurately reflects both variation from enzymatic diges-

tion and the details of the preprocessing.

Segmentation of chromosome for nucleosome position estimation
Each chromosome was segmented into disjoint, contiguous regions with similar statistical properties

(sequencing coverage). This was done to control for local variation in sequencing coverage and
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nucleosome occupancy, allowing for efficient estimation of local structure with minimal sensitivity to

distant observations. To accomplish this, we started from ORFs and refined these natural demarca-

tions into a statistically useful segmentation. We first enumerated all open reading frames (ORFs)

and intergenic regions on each given chromosome. Merging overlapping ORFs into single segments

yielded a starting set of contiguous, non-overlapping segments. We then iteratively merged the

most similar short segments until all segments exceed a minimal length (800 bp). The similarity was

defined based on sequencing read midpoints per base pair within each segment. This yielded a seg-

mentation for which each segment has sufficient length to estimate local properties of the nucleo-

some position distribution. For the S. cerevisiae genome, we obtained a total of 5135 segments for

our T1 experiment with a mean segment length of 2351 bp (minimum length of 800 bp and maxi-

mum length of 14,499 bp). The results on the T2 experiment were extremely similar with 5118 seg-

ments and a mean length of 2359 bp. This segmentation was fixed and used in all subsequent

computation. The region of human chromosome 12, position 38,000,000 bp to 48,000,000 bp was

segmented based on the annotated introns and exons of human genome hg18 (Roche, NimbleGen).

Other segmentation techniques based on the biological structure of each chromosome can be used

and may be more appropriate for mammalian genomes.

Computational model and notation
Our probabilistic model for the observed read midpoints captures the variation due to nuclease

digestion as well as the variation from biological sources (for example, biological heterogeneity

among cells, stochastic fluctuation in the selection of fragments for sequencing, and other factors in

sample preparation and analysis). To accomplish this, we extended discrete convolution models

from signal processing to account for the particular types of structure and variation found in MNase-

seq data. For each chromosome, we defined yk as the number of sequencing read midpoints aligned

to position k, where k ranges from 1 to N (the length of the chromosome). Given the segment

s : 1:::Nf g�! 1:::Sf g, which maps the N base pair locations to S segments on this chromosome, we

posited

yk j lk ~Poisson lkð Þ

l
!

N�1ð Þ � X N� N�2 ‘0=2b cð Þð Þ b
!

N�2 ‘0=2b cð Þ�1ð Þ

bk>0 for k¼ ‘0=2b cþ 1 . . .N� ‘0=2b c

logbk ~Normal �sk
;s2

sk

� �

where X specifies the contribution of a nucleosome positioned at kto the expected number of reads

at position m due to digestion variability, and sk is the region corresponding to position k. X was

defined as the matrix generated by the convolution of t
!

with a sequence of length N. ‘0 stands for

147 bp as mentioned before.

To complete the model specifications, we placed priors on �s and s2

s . We use independent conju-

gate priors for s2

s , assuming 1

s2
s
~Gamma a0; g0ð Þ. Our priors for �s are fully conjugate and indepen-

dent across segments; we assumed p �s j s
2

s

� �

~N �0;
s2

s

nst0

� �

where ns is the length of segment s.

Estimation of nucleosome position signal
To estimate b and detect individual nucleosome positions, we sampled from the posterior distribu-

tion of b
!

using a Markov chain Monte Carlo (MCMC) sampler. By iterating through a carefully engi-

neered sequence of random draws, this sampler obtains approximate samples from the given

posterior. These draws of b
!

form the basis for all of our subsequent summaries, particularly the

detection of nucleosomes positions (using selected posterior probabilities) and the estimation of

consensus positions (using selected posterior expectations). This sampler consisted of two alternat-

ing updates. At each iteration r, our algorithm
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1. Drew �
! rð Þ

; s
!2 rð Þ

� �

j b
! r�1ð Þ

directly, then

2. Updated b
! rð Þ

j �
! rð Þ

; s
!2 rð Þ

� �

via a distributed Hybrid Monte Carlo (HMC) step.

The first is a standard conjugate normal update, given the log-normal model for b
!
, and operates

independently across segments. Full details can be found in Blocker and Airoldi (2016).

The conditional posterior of b
! tð Þ

j �
! tð Þ

; s
!2 tð Þ

� �

is not part of any standard family, so we turned to

Hamiltonian Monte Carlo (HMC). The dimensionality of b
!

makes a single HMC update for the entire

vector both computationally infeasible and numerically unstable. For efficient computation, we lever-

aged the conditional independence structure of this conditional posterior. Subvectors of b
!

sepa-

rated by at least 2w entries are conditionally independent given �
! tð Þ

; s
!2 tð Þ

� �

and the entries of b
!

between them. Consider the subvectors b
!

j1:j2½ � and b
!

k1:k2½ �, with j1<j2<k1<k2. The elements of b
!

j1:j2½ �

only affect l
!

j1�w:j2þw½ �, and the elements of b
!

k1 :k2½ � only affect l
!

k1�w:k2þw½ �. Hence, if k12þ 2w, then b
!

j1:j2½ �

and b
!

k1:k2½ � are conditionally independent given �
!
and s

!2

.

We first fixed the length of each subvector that will be updated via a single HMC step to B>4w.

Next, considered two partitions of b
!
into subvectors:

b
!

1:B½ �;b
!

Bþ2wþ1:2Bþ2w½ �; . . . ;b
!

nb Bþ2wð Þþ1:N½ �;

b
!

B=2þ1:3B=2½ �;b
!

3B=2þ2wþ1:5B=2þ2w½ �; . . . ;b
!

nb Bþ2wð ÞB=2þ1:N½ �:

Within each partition, the subvectors are conditionally independent, and the union of these parti-

tions includes all entries of b
!
.

For each iteration of our sampler, we cycled through each of these partitions, updating each sub-

vector of b
!

with an HMC step. As each subvector within each partition is conditionally independent,

we can execute all HMC steps in parallel for each partition. This allows us to distribute the computa-

tional burden over hundreds of CPUs. Each of these distributed HMC steps is computationally effi-

cient, as the log-conditional posterior’s value and gradient can be computed via a convolution,

lowering the computational cost to oðBlogBÞ with the fast Fourier transform. A Python implementa-

tion of the sampler is available on GitHub, http://www.github.com/airoldilab/cplate.

Estimation of consensus centers of nucleosomes
We defined consensus centers of nucleosomes as the average centers of possible overlapping nucle-

osomes within a small region. Each such position represents a cluster of nearby nucleosome posi-

tions and is similar to a ’nucleosome’ obtained by standard methods (Albert et al., 2007;

Shivaswamy et al., 2008; Tirosh, 2012; Tsankov et al., 2010). Based on the nucleosome position

distribution b
!
, we determined the consensus centers of nucleosomes as the centers obtained from a

standard Parzen window peak calling method (Tirosh, 2012). We smoothed each draw of b
!

obtained from our sampler with a Gaussian window with a standard deviation of 20 bp. We then

averaged these smoothed maps across draws and performed a greedy search for local maxima,

enforcing a minimal spacing constraint of 147 bp. The comparisons presented in the main article are

based on the standard practice of applying the same smoothing and search procedure directly to

the midpoint counts (Albert et al., 2007; Shivaswamy et al., 2008; Tsankov et al., 2010).

Detection of nucleosome positions
We defined nucleosome positions as a position along the genome with a greater chance observing a

nucleosome than expected under a locally uniform distribution of sequencing read midpoints. With

this definition in hand, we used carefully selected posterior probabilities (estimated using the above
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algorithm) to find those positions with strong support from the observed data. Formally, to detect

individual nucleosome positions, we first defined

Cp;lðkÞ ¼

Pp
i¼�pbkþi

Pl
i¼�lblþi

for each position k. We then estimated P Cp;l kð Þ> 2pþ 1ð Þ= 2lþ 1ð Þ j y
!

� �

for each k using the MCMC

sampler described previously. We then calibrated these Bayesian summaries against those implied

by a null distribution of nucleosome positions within each region, constraining the number of reads

within each segment to match the number observed and using information on the digestion variation

in the form of the estimated template. We approximated this null distribution by repeatedly ran-

domly permuting the observed reads within each segment.

In order to generate the Bayesian summaries implied by the null distribution described above, we

then ran the proposed MCMC sampler on paired end sequencing reads drawn from the null, using

the template and segmentation estimated from the observed data. From the sampler’s output, we

obtained an estimate of the distribution of P Cp;lðkÞ>ð2pþ 1Þ=ð2lþ 1Þ j y
!

� �

over positions k under

the null. We compared this to the distribution of posterior probabilities for the observed data and

set a detection threshold to control the FDR using the method of Storey and Tibshirani (Storey and

Tibshirani, 2003). For the datasets analyzed in this work, a threshold of 0.8 on

P Cp;l kð Þ> 2pþ 1ð Þ= 2lþ 1ð Þ j y
!

� �

typically yields an FDR of 5% or less for the experimental data.

We have considered two null distributions in this work, both of which preserve the sequencing

coverage within the identified regions as the experimental dataset. The first is a random null distri-

bution, where simulated sequencing reads are assumed to be uniformly distributed within each

region. The second is a MNase digestion-aware null, where simulated sequencing reads are assumed

to be uniformly distributed subject to the observed distribution of the dinucleotide ends. These two

null distributions are applied to identify TBB positions in two scenarios. The MNase digestion-aware

null is used to identify experimental TBB positions that are statistically significant over the sequence

bias of MNase digestion. The random null is used to set the threshold for determining possible

nucleosome positions that result from MNase digestion bias over a uniform background. In all cases,

the false discovery rate is controlled to be less than 5%, allowing a fair comparison between different

data sets.

In silico simulation of MNase digestion
For each region of the genome, we tabulated the full table of dinucleotide counts from all aligned

paired-end reads. For each pair of cut dinucleotides, we enumerated all potential paired-end reads

with matching cut dinucleotides with centers falling in the given region. We then sampled uniformly

from this set of potential reads with replacement to match the observed number of reads with the

given cut dinucleotides. This yields a sample of reads exactly matching the observed cut dinucleo-

tide distribution with fragment centers random within each region conditional on cut dinucleotides.

These simulated controls were then passed through the same pipeline as the observed reads and

used to set thresholds based on the stated FDR-controlling procedure.

Comparison between datasets and replicates
All comparisons are based on matched distances, as in (Brogaard et al., 2012). For example, when

we compared our identified consensus centers of nucleosomes to those identified from a previous

study (Jiang and Pugh, 2009a), we calculated the distance between every center in our dataset to

its nearest center in the published study and summarized them into distance probability (Figure 2B–

E) and cumulative (Figure 2—figure supplement 3–6) plots. Similarly, when we evaluated the per-

formance of the TBB method on an in silico MNase-seq dataset, we computed the distance between

every identified TBB position from the in silico dataset and its nearest simulated nucleosome posi-

tion. When we evaluated reproducibility between replicates, we considered the set of all best-match

distances obtained by matching each replicate against the other to ensure symmetry.
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Random nucleosome positions and consensus centers
We used two methods to generate random nucleosome positions and consensus centers as controls

to estimate the detection accuracy of the TBB approach. In the first method, we randomly generated

the genomic coordinates of nucleosome positions on each chromosome to match the number of

experimentally detected TBB nucleosome positions or consensus centers. In the second method, we

took into account the spacing features between TBB nucleosome positions or consensus centers. In

this way, the randomly generated genomic coordinates and the experimental determined data have

the same distribution of spacing between adjacent positions. The random nucleosome positions or

consensus centers maps generated by these two methods yielded similar results and only the result

of the second method is shown in the plots (Gray trace, Figure 2—figure supplements 3–5). The

median distance between the random nucleosome positions and the chemical positions is 18 bp,

and is 36 bp for the spacing between the random nucleosome positions and the TBB positions

determined here. The median distance between the random consensus centers and either the refer-

ence centers or the consensus centers determined here is 49 bp in both cases. The median distance

between the random nucleosome positions and the chemical positions is much smaller than the rest

of the comparisons because the number of chemical positions was three times larger than the num-

ber of TBB nucleosome positions and 5 times larger than the number of consensus centers deter-

mined in this study.

In silico validation of detection accuracy
The true positions of nucleosomes in vivo are generally not available with the current experimental

and computational approaches. We thus performed a set of in silico experiments to evaluate the

performance of the TBB method in a setting where ground truth of nucleosome positions is avail-

able. We first simulated the true positions of nucleosomes: we generated the primary nucleosome

positions to represent the most frequent (strongest) positions among a set of overlapping nucleo-

somes, and then added alternative positions around the primary positions to account for the other

overlapping nucleosomes (Figure 3A). In each set of in silico experiments, we systematically varied

the occupancy (coverage), spacing (offset), and relative strength of primary and alternative nucleo-

some positions (effective magnitude) according to a factorial design that spans the 5th to 95th per-

centiles of the corresponding properties observed in our yeast experiments (Figure 3A;

Supplementary file 2). At each of the simulated nucleosome positions, we randomly generated

sequencing reads based on the digestion variability template estimated from T1, and constructed 10

artificial chromosomes to represent the in silico MNase-seq data sets. The occupancy of sequencing

read midpoints in these simulated data sets resembles that determined from our biological samples.

We then applied the TBB approach to identify nucleosome positions in these in silico data sets and

compared them with the simulated nucleosome positions (both simulated primary and alternative

positions). We found that the TBB approach can reliably identify primary nucleosome positions (50%

and 85% of the primary positions within 2 bp and 4 bp, respectively) across all settings. Detection of

the alternative positions is similarly reliable (50% and 75% within ~3 bp and ~7 bp, respectively) if

the alternative positions are populated at least 1/3 as frequently as the nearest primary positions

(effective magnitude smaller than 0.6) (Supplementary file 1). Detailed methods and discussion

about the in silico validation can be found in Extended Experimental Procedures.

Procedures for in silico estimation of TBB performance
To estimate the precision of the TBB approach in identifying nucleosome positions, we simulated

nucleosome positions on a set of artificial chromosomes, generated in silico MNase-seq sequencing

read midpoint datasets based on the experimental digestion variation, estimated the in silico TBB

nucleosome positions with these in silico datasets, and compared them to the original simulated

nucleosome positions. The differences between these identified TBB in silico positions and the origi-

nal simulated positions reflect the precision of the TBB approach.

To mimic the organization of nucleosomes in the genome, we simulated nucleosome positions

based on observed in vivo organization around genes and constructed simulated artificial chromo-

somes with units of genes. Each artificial chromosome contains 1100 genes, and each gene was

3501 bp in length, consisting of a 1000 bp promoter region before its transcription start site (TSS)

and 2500 bp following the TSS. The in vivo organization of nucleosomes around genes was
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determined from the identified consensus centers from the T1 experiment and averaged across all

ORFs. As traditionally annotated, the nucleosomes after the TSS were numbered incrementally from

+1, and the nucleosomes before TSS were numbered decrementally from �1. The average positions

of these nucleosomes relative to TSSs were used in the construction the simulated nucleosome posi-

tions. Meanwhile, the number of sequencing reads within each consensus position was used to simu-

late the in silico MNase-seq datasets.

To test the ability of the proposed model to identify overlapping nucleosomes, we built overlap-

ping nucleosome positions into our simulation. We first generated nucleosome positions down-

stream of the TSS (corresponding to the positions of the +1, +2, +3, . . . nucleosomes) and upstream

of the TSS (corresponding to the positions of the �1, �2, �3, . . . nucleosomes) to represent the

most frequent (strongest) positions among a set of overlapping nucleosomes (termed ’primary posi-

tions’). Then we added positions around the primary positions (termed ’alternative positions’) to rep-

resent overlapping nucleosomes. In the simulation, we varied the relationships between the primary

positions and the alternative positions to explore the performance of the TBB model. For simplicity,

we assumed the alternative positions are symmetric to the primary positions.

We designed a simulation with three factors, varied at the gene level: coverage (the expected

number of reads per gene), the spacing between primary nucleosome positions and alternative posi-

tions (which we refer to as offset), and the relative magnitudes of primary and alternative positions

(which we refer to as effective magnitude and is defined as the percentage of reads attributed to

the primary positions) (Figure 3A). Coverage had 10 levels, spanning the 5th to 95th percentile

observed gene-level coverages in increments of 10%. Alternative position spacing had 10 levels,

spanning from 0 bp (no alternative positions) to 45 bp in increments of 5 bp. We tested 11 levels for

the relative magnitude between alternative positions and primary positions, spanning from 0 (no

alternative positions) to 1 (alternative positions of the same magnitude as primary positions) in incre-

ments of 0.1, where the effective magnitude ranged from 1 to 1/3. We used a full factorial design on

these three factors, yielding 1100 distinct relationships between the primary and alternative posi-

tions for each of 10 simulated chromosomes.

To generate our in silico MNase-seq dataset, we followed a modified version of the generative

process described above. For each gene, we first drew coefficients for its subset of b
!

from an

upper-truncated log-normal distributed with parameters estimated from those regions in T1 with

similar coverage. These corresponded to ’background’ positions and introduce a realistic level of

variation into the simulations; biologically, such background could originate from a combination of

low-occupancy nucleosome positions and naked DNA obtained during the MNase-seq process.

Then, we set the entries of b
!

corresponding to the gene’s primary and alternative positions deter-

ministically. The sum of the coefficients for these positions was fixed to the total occupancy of the

gene minus the sum of the background positions. The relative magnitudes were determined by the

design described above, with two alternative positions placed symmetrically around each primary

position at the designated spacings. Thus, for a given level of coverage, the expected number of

reads within each cluster was fixed, but its distribution across primary and alternative positions

varies.

We convolved these b
!

vectors with the template estimated from the experimental data to obtain

vectors of expected read counts l
!
. Finally, we generated y

!
~ iid Poissonðl

!
Þ to obtain simulated read

counts. This entire procedure was repeated for each replicate, yielding 10 artificial chromosomes of

length 3,851,100 bp each. The simulated read midpoint occupancy was similar to the midpoint occu-

pancy observed in vivo around (Figure 3B).

Based on our in silico results, the TBB method appears extremely accurate for calling primary

nucleosome positions. It can estimate 50% of such positions within 2–3 bp and 95% within 4–5 bp

for all simulated conditions, as shown in Supplementary file 1 Its performance remains strong for

the estimation of alternative positions. As the data in Supplementary file 1 hows, more than 50% of

the simulated alternative positions were mapped within 2 bp when the effective magnitude is less

than 0.71 (alternative positions populated at least as much as 20% of their corresponding primary

positions). When the effective magnitude reaches 0.56 or less (populated as much as 40% of their

corresponding primary positions), we mapped over 50% of alternative positions within a single base

pair. With the spacing between the alternative and primary positions ranging from 5–45 bp, the
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median error for estimating alternative positions is no more than 2 bp. We observed stronger

dependence of the TBB method’s performance on the spacing between alternative and primary

positions: we generally attained higher reliability for the larger offsets, with over 85% of alternative

positions estimated within 8 bp when the offset is 10 bp, and within 6 bp when the offset is 40

bp (http://www.github.com/airoldilab/cplate).

Software availability
All sequencing data are deposited in the NCBI SRA database under accession number SRP023122.

All software for the template-based Bayesian model and in silico MNase-seq experiments used in

this paper are available at http://www.github.com/airoldilab/cplate.
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