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Abstract

The high energy demand of the brain renders it sensitive to changes in energy fuel supply and 

mitochondrial function. Deficits in glucose availability and mitochondrial function are well-known 

hallmarks of brain aging and are particularly accentuated in neurodegenerative disorders such as 

Alzheimer’s disease. As important cellular sources of H2O2, mitochondrial dysfunction is usually 

associated with altered redox status. Bioenergetic deficits and chronic oxidative stress are both 

major contributors to cognitive decline associated with brain aging and Alzheimer’s disease. 

Neuroinflammatory changes, including microglial activation and production of inflammatory 

cytokines, are observed in neurodegenerative diseases and normal aging. The bioenergetic 

hypothesis advocates for sequential events from metabolic deficits to propagation of neuronal 

dysfunction, to aging, and to neurodegeneration, while the inflammatory hypothesis supports 

microglia activation as the driving force for neuroinflammation. Nevertheless, growing evidence 

suggests that these diverse mechanisms have redox dysregulation as a common denominator and 

connector. An independent view of the mechanisms underlying brain aging and neurodegeneration 

is being replaced by one that entails multiple mechanisms coordinating and interacting with each 

other. This review focuses on the alterations in energy metabolism and inflammatory responses 

and their connection via redox regulation in normal brain aging and Alzheimer’s disease. 

Interactions of these systems is reviewed based on basic research and clinical studies.
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1. Introduction

The aging brain reveals a plethora of correlated processes that contribute to its senescence, 

yet to be fully understood on a molecular level. Age-related cognitive decline is one of the 
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major risk factors for Alzheimer’s disease (AD) and other prevalent neurodegenerative 

disorders [1]. Neurons are capable of surviving for more than a hundred years and staying 

functionally competent, but aging is their biggest adversary. Bioenergetic deficits, oxidized 

redox environment, and low-levels of chronic inflammation are major contributors to the 

cognitive decline associated with brain aging and neurodegenerative disorders like AD.

The brain utilizes ~25% of the total body glucose [2], and the majority of which is used to 

transduce energy through glycolysis and mitochondrial oxidative phosphorylation to support 

synaptic transmission. Aging induces changes in both glucose availability and the 

mitochondria energy-transducing capacity, including decline in neuronal glucose uptake, 

decrease of electron transport chain activity, and increase in oxidant production. Post-

mortem tissues of AD patients exhibit disruptions of mitochondrial functions in the form of 

a dysfunctional tricarboxylic acid cycle (TCA), compromised electron transport and 

oxidative phosphorylation, as well as altered mitochondrial morphology [3]. The 

‘mitochondrial cascade hypothesis’ proposes that in late-onset sporadic AD, the genetic 

makeup of a person’s electron transport train sets the basis for oxidant production and the 

tone for oxidative damage, which drives the progression of other pathologies characteristic 

of AD [4].

Insulin and IGF-1 signaling (IIS) play critical roles in regulating and maintaining brain 

metabolic and cognitive function [5]. Preserved insulin sensitivity, low insulin levels, and a 

state of reduced flux through the IIS represent key metabolic features of a human longevity 

phenotype [6, 7]. Insulin signaling regulates mitochondrial function and its impairment 

causes abnormalities in mitochondrial function and biogenesis. On the other hand, controlled 

H2O2 production by mitochondria serves as a second messenger that enhances insulin 

sensitivity [8], while excessive levels of H2O2 activate stress-sensitive kinases (e.g. JNK and 

IKK), and lead to insulin resistance, and ultimately the bioenergetic deficits observed in the 

aging brain [9].

To add insult to injury, inflammatory processes are being associated with alterations in 

cellular metabolism [10, 11]. The activation of different types of brain immune cells such as 

microglia and astrocytes is one of the fundamental events in neuroinflammation [12]. 

Changes in the activation profile of microglia with age and increased release of 

inflammatory cytokines are hypothesized to induce development of insulin resistance [10, 

11]. Amplification of the microglia-driven inflammatory responses by astrocytes generates 

neurotoxic factors leading to neurodegeneration [13]. A shift from a neurotrophic to 

neurotoxic phenotype in aging astrocytes thus denies neurons of essential energy substrates 

and neuro-protective mechanisms [14]. The activation of neuroinflammation is largely redox 

mediated, both at the molecular level in terms of redox sensitivity of key inflammatory 

components such as NFκB and inflammasomes, and at the cellular level where astrocytes 

transmit inflammatory signal to neurons via oxidants such as H2O2. The chronic 

inflammatory microenvironment, combined with a dysfunctional metabolic system is 

hypothesized to lead to neurodegeneration.

This review summarizes our current understanding of the relationship among metabolic, 

redox, and inflammatory changes in the brain as a function of age, and how these pathways 
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converge and contribute to physiological and pathological changes occurring in normal 

aging- and Alzheimer’s brains.

2. Energy Metabolism in Brain Aging and Alzheimer’s Disease

Neuronal glucose metabolism includes (1) mechanisms that control brain glucose uptake, 

such as insulin and the insulin signaling pathways (Fig. 1); (2) glucose transporter (GLUT)-

dependent brain glucose uptake and the glycolytic pathway (Fig. 2), and (3) entry of 

glycolytic endpoints into mitochondria that are further metabolized in the TCA cycle and 

generate ATP through oxidative phosphorylation (Fig. 3). Because most of the neuronal 

energy-transducing pathways occur in mitochondria, it is important to consider that 

mitochondrial H2O2 participates in the regulation of redox-sensitive signaling, such as 

insulin/IGF1 (IIS) signaling, JNK signaling, and AMPK signaling. Mitochondria also 

receive and respond to cytosolic signaling, by which their metabolic and redox functions are 

modulated [15]. Overall, several signaling pathways and their second messengers, 

metabolites, transporters, receptors, and enzymes work in tandem with mitochondria to 

ensure adequate fuel supply and energy conservation to support neuronal function. As 

outlined in an earlier review [16], mitochondrion-centered hypometabolism is a key feature 

of brain aging and AD that is manifested by altered insulin signaling, decreased neuronal 

glucose uptake, changes in glucose receptors, and changes in the metabolic phenotype of 

astrocytes.

2.1. Insulin/IGF1 signaling (IIS) in brain aging and Alzheimer’s disease

Insulin/insulin-like growth factor 1 signaling (IIS) is primarily orchestrated through insulin 

and IGF1, and the PI3K/Akt and ERK1/2 signaling pathways (Fig. 1). Following binding of 

the ligand to the insulin receptor, the activated signaling networks can be viewed in terms of 

critical nodes encompassed by the insulin receptor substrate (IRS), PI3K, and Akt [17]. 

Binding of PI3K to the phosphorylated IRS activates the PI3K/Akt signaling network, 

whereas recruitment of Grb2 to the IRS results in Sos-mediated activation of the Ras-MAPK 

pathway. The PI3K/Akt pathway effects changes in carbohydrate and lipid metabolism and 

modulates glucose uptake, whereas the Ras-MAPK pathway is involved in cell growth, cell 

differentiation and protein synthesis. Optimal IIS has been suggested to maximize life span 

and also control metabolic requirements for an energy-demanding organ such as brain [18]. 

The balance between of IIS- and JNK (c-Jun N-terminal kinase) signaling is crucial, for both 

elicit profound changes in mitochondrial function [19, 20]. Insulin resistance is usually 

accompanied by compromised mitochondrial function [21].

The physiological relevance of insulin in the brain has been increasingly recognized. The 

central nervous system was not considered to be an insulin-dependent tissue until the 

detection of insulin in brain [22]. In brain, the PI3K-Akt pathway is involved in glucose 

uptake, neuronal survival and synaptic plasticity [23, 24]. Conditional knockout of neuronal 

insulin receptors resulted in mice to be overweight, insulin resistant, and glucose intolerant 

[25].

IIS is also involved in the regulation of longevity. Early studies in C. elegans revealed that 

mutations of insulin receptor DAF-2 [26] or the PI3K AGE-1 [27] extended lifespan by 
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more than 100%. Later studies showed that mutation of the insulin receptor in adipose tissue 

was able to extend mouse lifespan by 18% [28]; similarly, brain-specific IRS2 knockout in 

mice led to ~18% extension of lifespan [29]. Conversely, insulin resistance is implicated in 

many adverse aging phenotypes and age-related conditions, which make the enhancement of 

insulin signaling also an anti-aging intervention. This paradox can perhaps be explained by 

the several orders of complexity in mammalian physiology and the recognition of insulin 

signaling being important in events beyond the regulation of carbohydrate and lipid 

metabolism. Moreover, genetic modifications to the entire IIS may have significantly 

different effects compared to insulin resistance, where only specific functions of the insulin 

pathway are impaired [23, 30]. It has also been suggested that each organism has an optimal 

level of IIS that maximizes lifespan and regulates metabolic requirements [18]. The notion 

of optimal IIS also seems consistent with the results showing regulation of lifespan by 

caloric restriction: progressive reductions in calorie intake promoted lifespan until the 

optimal IIS was reached, after which, additional reductions in calorie intake caused 

starvation and shortening of lifespan [31].

Brain aging is associated with a reduced IIS pathway entailing inactivation of the PI3K/Akt 

signaling in rats [32]. Interestingly, a high-fat diet that led to hepatic insulin resistance was 

able to induce impairment of the long-term potentiation (LTP) in the CA1 region of mouse 

hippocampi, which suggests the involvement of systemic insulin resistance in regulating 

brain bioenergetic and synaptic function [33].

Several studies pointed towards an impaired IIS pathway being involved in the pathogenesis 

of AD. Our study with a triple transgenic (3xTG) AD mouse model showed impairment of 

IIS associated with synaptic plasticity [34]. Diet-induced insulin resistance in a Tg2576 AD 

transgenic model promoted AD-type neuropathology [35]; intracerebroventricular 

streptozotocin injection to Tg2576 mice led to a brain insulin-resistant state, reduced spatial 

cognition, increased AD pathology, and increased mortality [36]. Intake of sucrose-

sweetened water in APP/PS1 mice induced insulin resistance associated with memory 

impairment and Aβ accumulation in the brain [37].

In a clinical study, brain insulin resistance, IGF-1 resistance and IRS1 dysfunction, was 

shown to be early and common characteristics of AD [38]. Another clinical study observed 

severe deficiency of PI3K-Akt signaling branch of IIS accompanied by 

hyperphosphorylation of Tau protein in individuals with AD and type 2 diabetes mellitus 

[39]. A cross sectional population-based study found that features of insulin resistance were 

associated with AD, independent of the apolipoprotein E status [40]. A consequence from 

these clinical studies is the search for therapeutic options that alleviate insulin resistance 

and, thus, potentially halt AD progression [41].

2.2. Brain glucose uptake in brain aging and Alzheimer’s disease

Studies examining brain glucose uptake have been mostly carried out using 18F-

fluorodeoxyglucose positron emission tomography (FDG-PET), which allows measurement 

of glucose uptake but it does not represent the subsequent metabolism of glucose to CO2. 

FDG, upon uptake to the cell, is phosphorylated to and trapped as FDG-6-PO4, which emits 

a radioactive signal [42]. It is still not conclusive whether the majority of the brain glucose 
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enters astrocytes first via GLUT1 45kDa [43] or is transported directly from blood vessels to 

neurons via GLUT3 [44]. The exact modus operandi for the amount of direct glucose uptake 

into the neurons remains unclear and this perhaps, also raises some questions about FDG-

PET data interpretation.

Aging is associated with an increased risk of deteriorating systemic control of glucose and 

of brain glucose uptake [45]. Several pre-clinical and clinical studies seem to support a role 

for lowered brain glucose uptake in age-associated cognitive impairment [43]. Dynamic 

micro-FDG-PET scanning showed lower brain glucose uptake in aged male Fischer 344 rats 

compared to younger controls [32], which is also seen in chronologically and reproductively 

aged female rats [46, 47].

FDG-PET in human subjects exhibited focal decreases in brain activity (particularly in the 

medial network) as a function of normal aging [48]. Declining brain glucose uptake was also 

accompanied by structural changes in the brain: (a) global thinning of cerebral cortex by 

middle ages was observed by high-resolution, structural MRI measurements in non-

demented subjects [49]; (b) a significant age dependent decline of gray matter density and 

cortical matching algorithms was found over the dorsal, frontal, and parietal association 

cortices [50], and (c) cingulate sulcus enlargement was seen with age [51].

Although there are inconsistent studies about the status of brain glucose uptake during 

normal aging [43], there is overwhelming evidence about lower brain glucose uptake and 

metabolism being associated with AD [52]. Progressive decline of brain glucose uptake in 

AD and mild cognitive impairment (MCI) has been confirmed in multiple longitudinal 

studies. Cognitively healthy individuals with lower brain glucose uptake are more likely to 

be affected by MCI and/or AD dementia [53, 54]. Certain regions of the AD brain such as 

hippocampus, posterior cingulate, temporal, parietal, and frontal lobes have even more 

starkly lower brain glucose uptake [43]. Although decreased brain glucose uptake has been 

considered a predictor of progression to cognitive impairment or AD dementia, it still lacks 

enough information to allow the translation of those findings into a widely accepted 

diagnostic scan.

Brain glucose uptake can be separated into three steps (Fig. 2), (1) transport of glucose 

across the endothelium via GLUT1 (55kDa), (2) GLUT1 (45kDa) mediated transport of 

glucose into astrocytes, and (3) transfer of glucose into neurons via neuronal GLUTs [43]. A 

strong correlation has been established between decreased brain glucose uptake and decline 

in the expression of insulin-sensitive glucose transporters [29]. Fischer 344 rats showed 

decreased brain glucose uptake with age along with a parallel decrease in neuronal GLUTs. 

The expression of neuronal GLUT3 and GLUT4 decreased dramatically with age, whereas 

the expression of the vascular endothelium GLUT1 (55 kDa) decreased slightly with age 

[55]. Interestingly, the expression of the glia-expressed GLUT1 (45 kDa) increased with age; 

these results signaled towards a metabolic shift in neurons and astrocytes [32].

Similar to aging, AD is associated with decreased glucose transporter expression. In the 

APP/PS1 model, 18-month old mice had reduced GLUT1 expression in hippocampus 

compared to wildtype mice, whereas no difference were observed when they were 8 month-
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old [56]. In male 3xTG-AD mice, there was a decline in the neuronal GLUT3 and GLUT4 

[34]. In female 3xTG-AD mice, brain glucose uptake coincided with the decrease in the 

expression of GLUT3 but not GLUT4; this was also associated with a rise in inactive 

(phosphorylated) pyruvate dehydrogenase and in ketone body metabolism [57].

GLUT1 and GLUT3 levels in six brain regions of AD patients were reduced; the decreased 

GLUT3 levels in certain neurons compromised glucose availability and may be responsible 

for the deficits in glucose metabolism [58]. Studies on postmortem brains from AD patients 

revealed a decreased expression of GLUT1 and GLUT3, which correlated with abnormal tau 

hyperphosphorylation and downregulation of HIF1α (that leads to the transcriptional 

activation of GLUT); interestingly, GLUT2 expression was increased, likely due to astrocyte 

activation [59]. A large reduction (49.5%) of GLUT3 immunoreactivity was found in the 

dentate gyrus, a region whose cells are selectively destroyed in AD [60]. Reduced GLUTs 

expression in AD have also been found at the BBB and in the cerebral cortex [61].

2.3. Mitochondrial energy metabolism in brain aging and Alzheimer’s disease

Mitochondria are at the center-stage of cellular energy supply and are particularly important 

for the brain because 90% of the glucose (primary source of brain energy) is oxidized to 

CO2 in brain [62] (Fig. 3). The energy generated in this process is utilized to maintain 

neurotransmission and neuronal potential, and to prevent excitotoxicity [63]. Thus any 

alterations to neuronal glucose metabolism, largely supported by mitochondria, would affect 

neuronal function and ultimately affect cognition, learning, and memory.

The end metabolite of glycolysis, pyruvate, enters mitochondria via the mitochondrial 

pyruvate carrier (MPC) [64, 65] (Fig. 3). Pyruvate is the substrate for the pyruvate 

dehydrogenase complex (PDH); this is a central reaction in glucose metabolism and a 

decreased PDH flux was observed in rodent models of aging and AD [66]. The MPC 

acquires further significance when considering that decrease in its activity can lead to a 

reduced PDH flux. Acetyl-CoA, generated by the oxidative decarboxylation catalyzed by 

PDH, is then metabolized in the TCA cycle. Acetyl-CoA is also a co-substrate for the 

synthesis of N-acetylaspartate (NAA) by Asp-NAT; NAA is the most abundant amino 

molecule in the brain, considered a neuronal and axonal biomarker. Its breakdown product, 

acetate, functions in oligodendrocytes in the biosynthesis of myelin lipids [67]. Aspartate –

generated by transamination from oxaloacetate– appears to be a limiting metabolite for 

proliferation when deficits in the electron-transport chain occur [68, 69]. α-ketoglutarate, an 

intermediate of the TCA cycle, is used for the conversion of glutamate and GABA, via 

glutamate dehydrogenase and glutamate decarboxylase (GAD), respectively [70] (Fig. 3). 

Reducing equivalents (NADH) from the TCA flow through the respiratory chain and the 

associated oxidative phosphorylation generates ATP. The latter along with glutamate and 

GABA are critical for the maintenance of synaptic plasticity.

Measuring glucose metabolism via 13C-MRS/NMR involves supplying a 13C-labeled 

glucose followed by measuring the glycolytic end product pyruvate and the downstream 

TCA cycle metabolites, neurotransmitters, and neurochemicals, such as glutamate, 

glutamine, GABA, and NAA [71, 72]. Metabolites generated from the labeled glucose have 

one or multiple 13C in their structure based on how they were metabolized and the pattern 
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of 13C labeling allows the determination of specific metabolism patterns. Thus, it is possible 

to follow the trail of glucose metabolism after glycolysis and estimate the amount of a 

specific metabolite (e.g., glutamate) generated directly from the labeled glucose. Moreover, 

MRS/NMR methods employing 13C-labeled substrates such as glucose and acetate allow 

direct assessment of neuronal and glial mitochondrial metabolism and facilitate 

distinguishing between them.

Mitochondrial brain glucose metabolism investigated in aged rats using [1-13C]-glucose 

via 13C and 1H NMR spectroscopy revealed that the incorporation of glucose-derived 13C 

into glutamate, glutamine, aspartate, and GABA declined in aged brain [73]. The SAMP8 

mouse model of accelerated aging is characterized by spontaneous age-related learning and 

memory impairments associated with gliosis as a function of age [74]. SAMP8 mice, 

administered [1-13C]-glucose and [1,2-13C]-acetate, showed that major mitochondrial 

metabolites such as glutamate and glutamine derived from [1-13C]-glucose and [1,2-13C]-

acetate were both significantly declined during aging [75].

13C/1H MRS studies in healthy brains showed that elderly subjects had ~30% lower 

neuronal mitochondrial metabolism (assessed by glutamate-glutamine cycle flux and TCA 

cycle flux) compared to young subjects [71, 76].. Interestingly, the astroglial rate of TCA 

cycle was ~30% higher in elderly group compared to young subjects, thus suggesting that 

normal aging was associated with a decline in neuronal metabolism along with an increase 

in glial metabolism as seen in astrocytes isolated from aged rats [14].

There are several studies on mitochondrion-driven glucose metabolism (measured by MRS/

NMR) in rodent models of AD. Tg2576 mice showed a decrease in NAA, glutamate, and 

glutathione in the cerebral cortex at 19 months of age, which coincided with widespread 

AD-type pathology [77]. 1H-[13C]-NMR spectroscopy analyses of the APPswe-PS1dE9 

mouse model of AD showed a decrease in glutamate, GABA, and glutamine, which 

suggested an impaired glutamatergic and GABAergic glucose oxidation and 

neurotransmitter cycle in these mouse brains [78]. 1H-13C spectroscopy analyses of Thy-1-

APPSL model, expressing mutant human APP, suggested that mitochondrial dysfunction 

may contributed to the glutamine synthetase impairment and increased metabolism of 

glutamate via the GABA shunt [79]. Glucose metabolism was clearly reduced by ~50% in a 

3xTG-AD model as exhibited by the decreased levels of metabolites derived from the TCA 

cycle (glutamate, glutamine, GABA, and NAA) [80]. Clinically, a pilot study in AD patients 

receiving [1-13C]-glucose probed for glucose metabolism using quantitative 1H and proton-

decoupled 13C MR brain spectra, showed reduced glutamate neurotransmission which might 

contribute to cognitive impairment [81]. Interestingly, a hypermetabolic state was observed 

in younger triple transgenic mouse model of AD (7 months) in contrast to the hypometabolic 

state found in those mice that at older age (13 months). Hypermetabolism in the young AD 

mice was illustrated by prominent increases in 13C labeling and enrichment of metabolites 

(e.g. glutamate and glutamine), glycolytic activity, TCA cycle activity, and glucose cycling 

ratios [82]. Consistently, 1H and 13C NMR spectroscopy analyses after infusion of 

[1-13C]glucose and astrocytic substrate, [1,2-13C]-acetate on P310L Tau transgenic mice 

revealed a hypermetabolic state in both astrocytes and glutamatergic and GABAergic 

cortical neurons [83].
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TCA cycle also generates the NADH that flow through the respiratory chain, tightly coupled 

to oxidative phosphorylation. Deficits in the mitochondrial catalytic machinery (i.e., 

expression and activity of the respiratory chain complexes) along with an increase in the 

mtDNA mutations contribute to a hypometabolic state [84, 85]. Brains of rhesus monkeys 

had significant reductions in complex I and complex IV activities (with correction for the 

variable of mitochondrial enrichment) in an age-dependent manner [86]. The activity of 

complex I is 30% lower in the older rat brain mitochondria compared to young animals [87].

Brain mitochondria isolated from the Thy-1 APP mouse model of AD showed a reduced 

COX IV activity, mitochondrial membrane potential, and ATP levels at 3 month-of-age 

(accompanied with increased intracellular but not extracellular Aβ). Moreover, non-TG mice 

treated with extracellular Aβ showed significant decline in active respiration (state 3) and 

maximum respiration [88]. In the 3xTG-AD model, female mice showed a decreased 

expression and activity of complex IV coupled with compromised oxidative phosphorylation 

[89]. The impairments of mitochondrial complexes were also seen in clinical studies [3, 90]: 

a proteomic study in AD patients found that complex III core protein-1 in the temporal 

cortex and the complex V β-chain in the frontal cortex were significantly reduced [91]. In 

another study, mitochondria from AD patients exhibited suppressed activity in all respiratory 

chain complexes with a dramatic decline in complex IV activity [92, 93]. Compromised 

mitochondrial function in AD was also related to direct effect of Aβ on mitochondrial 

OXPHOS. Mitochondria localized Aβ levels negatively correlated with mitochondrial 

respiratory function, and with cognition [94], which is consistent with another study in 

which Aβ was found to inhibit mitochondrial complexes I and IV activity [95].

3. Mitochondrial Redox Control in Brain Aging and Alzheimer’s Disease

Mitochondria are effective sources of H2O2, which accounts for changes in the cellular 

redox environment that characterizes brain aging. Oxidized redox status is a feature of AD 

[96, 97].

Mitochondrial H2O2 originates from dismutation of O2
·−, the formation of which is 

accounted for by different mechanisms [98–101]. While uncontrolled production of H2O2 

overwhelms the reducing capacity of the cell, regulated H2O2 participates in the redox 

regulation of cytosolic signaling and nuclear transcriptional pathways [102].

3.1. Mitochondrial H2O2 and redox signaling

Mitochondrial H2O2 participates in the regulation of multiple cytosolic signaling pathways 

such as the IIS and the MAPK signaling. In neurons and hepatocytes, mitochondrion-

generated H2O2 is found to activate IIS [103]. Low levels of H2O2 generated by 

mitochondria are actually required for the initial activation of IIS and this process is termed 

as “redox priming”. Collapse of the neuronal mitochondrial proton gradient by FCCP not 

only eliminates mitochondrial O2 consumption and H2O2 production, but also suppresses the 

phosphorylation (activation) of the insulin receptor even in the presence of insulin [103]. 

This is consistent with the observation that the spike signal of mitochondrion-generated 

H2O2 precedes the autophosphorylation of the insulin receptor, and that phosphorylation can 

be dose-dependently inhibited by N-acetylcysteine [104]. IIS is sensitive to H2O2 due to: (a) 
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the oxidation of cysteine residues on the insulin receptor and IGF-1 receptor facilitates 

autophosphorylation of both receptors and leads to the activation of the downstream IRS 

[105] and (b) H2O2 oxidizes and inhibits two negative regulators of IIS – the tyrosine 

phosphatases (e.g., PTP1B) and the lipid phosphatase (PTEN) [106]. Moreover, 

mitochondrial H2O2 is also involved in the activation of Akt and its translocation to 

mitochondria and to the nucleus [107]. Nevertheless, increasing evidence suggests that H2O2 

modulates IIS in a concentration-dependent manner (Fig. 4): while lower concentrations of 

H2O2 (~5 μM) activate IIS, higher levels (~50 μM) inactivate IIS [108]. IIS inactivation is 

likely due to the stimulation by elevated H2O2 of inhibitory pathways of IIS such as JNK 

and IκB kinase (IKK) [19, 20], which constitutes the mechanism of stress and inflammation-

induced insulin resistance, respectively [109]. The activation of JNK by H2O2 has been 

thoroughly investigated [110–113] and it occurs at several levels: (a) H2O2 oxidizes 

thioredoxin and releases the upstream kinase of JNK, ASK1 [114], (b) H2O2 oxidizes and 

inhibits MAPK phosphatases [115], and (c) H2O2 disrupts the glutathione transferase-JNK 

complex and releases the latter [116]. IIS activity (IRS1 and Akt activation) declines in both 

the aged rat brain and 3xTG-AD mouse brain, whereas JNK phosphorylation and activity is 

increased in both models with aging or with AD genotype [32, 34]. Moreover, a recent study 

in the same 3xTG-AD model indicates that biliverdin reductase-A (BVR-A) is also 

connecting oxidative changes to insulin resistance via the inactivation of BVR-A and mTOR 

hyperactivation [117], which is consistent with clinical data from MCI and AD subjects 

[118].

3.2. The Mitochondrial Redox System

Maintenance of the mitochondrial redox status is determined by the balance between the 

sources of H2O2 and its reduction to H2O by the glutathione peroxidase (GPx)-GSH and 

thioredoxin-2 (Trx2)-peroxiredoxins systems.

GSH-supported system—GSH synthesized in cytosol enters mitochondria and provides 

reducing equivalents to GPxs for H2O2 removal [119]. GPx1 localized in the matrix and 

GPx4 in the inter-membrane space are the two major GPx isoforms associated with 

mitochondria. While GPx1 is primarily involved in reducing H2O2 in mitochondrial matrix, 

GPx4 in both the cytosol and the mitochondria is vital to protect the cell from lipid 

hyperoxidation [120, 121]. GSH is regenerated from GSSG by glutathione reductase using 

reducing equivalents from NADPH. Mitochondrial GSH levels positively correlate with 

cellular viability [122, 123]. In both neurons and astrocytes, depletion of mitochondrial GSH 

leads to an increase in H2O2, loss of mitochondrial membrane potential, as well as cell death 

[124, 125]. Reagents that increase mitochondria GSH levels protect neurons against oxidant-

induced neurotoxicity [126]. During aging, oxidation of mitochondrial GSH to GSSG [127, 

128] is accompanied by mitochondrial DNA (mtDNA) oxidation in rodents [129, 130]. A 

clinical study to noninvasively quantify GSH in the occipital cortex of healthy young and old 

human subjects suggests that the old group has ~30% lower GSH levels than the young 

group [131]. The age-dependent decline in GSH levels in brain has also been connected with 

impaired cognitive function in aging. Treatment of rodents with compounds that acutely 

deplete GSH in the brain results in deficits in short-term spacing memory as well as 

impairment of LTP [132, 133].
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Trx-supported peroxiredoxin system—In this system, electrons are transmitted from 

NADPH to Trx2 by thioredoxin reductase 2 (TrxR2) and eventually to H2O2 via 

peroxiredoxins [134]. Prx3 and Prx5 are the two mitochondrial Prxs that reduce H2O2, 

organic hydroperoxides, and peroxynitrite (ONOO−) [135]. Prx3 catalyzes the removal of up 

to 90% of mitochondrial H2O2 especially at low H2O2 levels due to its high reaction rate 

constant (107 M−1s−1) [136]. Real time monitoring indicates that the removal of H2O2 in 

brain mitochondria is primarily a function of the Trx/Prx system with the GSH/GPx system 

contribute a small percentage [137]. Interestingly, high concentrations of H2O2 suppresses 

the peroxidase activity of Prx3 by hyperoxidizing it to the sulfinic acid form (Prx3-Cys-

SO2H) [138], which can be converted back to the sulfenic acid form (Prx3-Cys-SOH) 

through an ATP-dependent reaction catalyzed by sulfiredoxin (Srx) translocated into 

mitochondria [139, 140]. During aging, the inactivated, hyperoxidized Prx3 accumulates in 

liver mitochondria, with the reduced form remains the same as that of young rats [141]. This 

study confirms the increased H2O2 production and oxidized redox status in aged 

mitochondria. The imbalance between reduced and hyperoxidized Prx3 that occurred with 

aging could be ascribed to a decreased Srx activity in mitochondria and to the decline in 

mitochondrial protease activity involving the matrix-localized, ATP-stimulated Lon protease 

[142].

In the brain, Prx3 protects neurons against excitotoxicity while it suppresses astrocyte 

proliferation in specific brain regions [143]. Prx3 was also found to be involved in various 

neurodegenerative disorders such as AD, Parkinson’s disease, amyotrophic lateral sclerosis, 

and Down syndrome [144]. AD patients exhibit a significantly lower expression of Prx3 in 

the brain than the normal subjects [145]. In AD mouse models, Prx3 overexpression protects 

both the APP transgenic- or non-transgenic mice from mitochondrial dysfunction and 

cognitive decline [146]. Prx3 transgenic mice exhibited enhanced mitochondrial function 

coupled with reduced oxidative stress compared with control group; relative to the APP 

single transgenic mice, APP+Prx3 double transgenic mice exhibited enhanced mitochondrial 

function, improved cognition, and reduced brain Aβ loading [146].

Prx5 is a 17 kDa atypical 2-Cys Prx [147]. In addition to mitochondria, Prx5 occurs in other 

intracellular compartments such as peroxisome, cytosol, and nucleus. Prx5 has a higher 

reaction rate with peroxynitrite and alkyl hydroperoxides than that with H2O2 and, unlike 

Prx3, it is insensitive to H2O2 hyperoxidation [148]. Prx5-deficient cells have increased 

oxidative macromolecule damage and are more susceptible to cell death [149, 150]. 

Conversely, overexpressing Prx5 in CHO cells protects mtDNA from H2O2 induced 

oxidation [151].

In addition to being a H2O2 scavenger, oxidized Prx1 and Prx2 could act as a H2O2 signal 

receptor and transduce signals to redox-sensitive target proteins [152, 153]. By forming a 

transient mixed disulfide intermediate with a nearby target protein, H2O2-oxidized Prx 

transmits redox signals from H2O2 to that target protein. The target protein, rather than Prx 

itself, is later reduced by Trx [152, 153]. These studies suggest a new paradigm in redox 

signaling that allows the spatiotemporally precise regulation of redox-sensitive proteins 

especially those that have a low intrinsic reactivity with H2O2, such as some transcription 
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factors and kinases. It is still to be determined whether mitochondrial Prxs are involved in 

this redox relay to facilitate H2O2 oxidation of mitochondrial proteins.

The intermolecular disulfide formed upon H2O2-driven oxidation of the two cysteine 

residues of Prx3 is reduced back by Trx2 in mitochondria [154]. Trx2 is abundantly 

expressed in mitochondria of tissues with high metabolic rate [155]. Trx2 is involved in 

apoptosis by interacting with the mitochondrion-localized apoptosis signal-regulating kinase 

1 (ASK1). When Trx2 is oxidized by inflammatory or oxidative stimuli, ASK1 disassociates 

from Trx2 and phosphorylates downstream pro-apoptotic kinases such as p38 and JNK 

[156]. Interestingly, the Trx system is also implicated in the long-living Ames dwarf mouse. 

In these growth hormone (GH)-deficient mice, the expression and activity of both Trx2 and 

thioredoxin reductase-2 (TrxR2) are higher than those in the wild type mice. Such an 

upregulation of Trx2 system in these long-living mice is reversed by a 7-day treatment of 

GH [157], suggesting the correlation among reduced GH signaling, enhanced oxidative 

stress resistance, and extended life span. The expression of Trx2 in hippocampi of AD brains 

is significantly lower than that in control brains [158].

The expression of TrxR2, that catalyzes the NADPH-dependent reduction of oxidized Trx2, 

decreases with age in multiple tissues [159]. TrxR2, together with NADPH supply, could be 

key aspects that account for the dysregulated redox status during aging and 

neurodegeneration [160].

3.3. Interconnected mitochondrial energy- and redox systems

Both the GSH and Trx systems in mitochondria use NADPH as the ultimate reducing 

equivalent through glutathione reductase and TrxR, respectively. Sources of NADPH in 

mitochondria are the activities of nicotinamide nucleotide transhydrogenase (NNT), 

isocitrate dehydrogenase 2 (IDH2), and malic enzyme, with the NNT accounting for ~50% 

of the total NADPH production [161].

Under physiological conditions, NNT catalyzes the reduction of NADP+ to NADPH using 

electrons from NADH and proton gradient force built on the mitochondrial inner membrane 

[162]. The mitochondrial energy-transducing component is thus connected with the 

mitochondrial redox system by NNT, given that the NADH is primarily generated in TCA 

cycle, and that the proton gradient is built by the electron transport chain. Oxidative 

challenges by cigarette smoke, which contains high amount of oxidants and electrophiles, 

upregulates NNT expression [163]. Silencing of NNT in PC12 cells leads to lowered ratios 

of NADPH/NADP+ and GSH/GSSG, elevated H2O2 production, and compromised 

mitochondrial metabolic capacity. NNT suppression also induces accumulation of oxidized 

mitochondrial Prx3 [164], as well as the activation of intrinsic apoptosis through the 

activation of redox-sensitive JNK pathway [112]. The activity of NNT in male Fischer 344 

rats declines as a function of age in 6-, 14-, and 26 month-old rats (Yin et al., unpublished 

data). NNT expression in mouse brain also declines during aging from middle age (11 

month) to old (21 month) and its expression is lower in brains of the 3xTG-AD mice at both 

11- and 21-month, compared to age-matched non-TG controls [165].
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Under some pathological conditions, NNT in heart catalyzed the reverse reaction to generate 

NADH using reducing power from NADPH [166]. Upon increased metabolic demand, NNT 

switches to the reverse mode and consumes NADPH for NADH production, which impairs 

the capacity of mitochondrial redox systems to remove H2O2 and ultimately results in 

oxidative stress and cell death [166]. The activation mechanism of NNT reverse mode 

requires further investigation as well as involvement of this mechanism in tissues other than 

the heart, such as the brain.

Mitochondrial energy status determines redox capacity via NADPH-generating enzymes 

such as NNT and IDH2. On the other side, perturbations of the mitochondrial redox status 

alter the bioenergetic function via oxidative- or nitrosative post-translational modifications 

of key metabolic enzymes, including aconitase [167], α-ketoglutarate dehydrogenase [168], 

malate dehydrogenase (MDH) [169], succinyl-CoA-3-oxaloacid CoA transferase (SCOT) 

[170, 171] and complexes I [172], II [173], and V [170, 171] (for detailed review, see [15]). 

While oxidative modifications of these enzymes mostly lead to the inhibition of their activity 

in MCI or AD, the activity of MDH was found to be increased in MCI [174, 175]. Moreover, 

cytosolic redox status affects the utilization of different fuel substrates for energy 

transducing within the mitochondria by modulating cytosolic glycolysis and pentose 

phosphate pathway (PPP) [176, 177]. In lung cells, oxidative reagents such as cigarette 

smoke or acrolein suppress glycolysis and glucose-dependent ATP production by oxidizing 

and inhibiting the glycolytic enzyme, glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH). This suppression of glycolysis reroutes glucose to the PPP to generate more 

NADPH to combat oxidative challenges [176, 177]. Due to the limited pyruvate transport 

into mitochondria, fatty acid transporters including carnitine palmitoyltransferase 1 (CPT1) 

and cluster of differentiation 36 (CD36) are upregulated, thus enhancing the utilization of 

fatty acids as fuel substrates. This shift in energy substrates reduces fatty acid supply to the 

surfactant biosynthesis and is thus implicated in the progression of chronic obstructive 

pulmonary disease (COPD) [176, 177]. These studies extend the inter-regulations between 

the mitochondrial energy and redox pathways to their cytosolic counterparts.

4. Inflammatory Responses in Brain Aging and Alzheimer’s Disease

The immune privilege of the CNS prevents circulating immune cells from gaining access to 

it without the occurrence of inflammation or injury [178]. While a prolonged inflammatory 

state in the brain is detrimental to its function, the brain innate immune system can also be 

beneficial, since it promotes cellular repair and clears debris.

4.1. Brain cell types involved in neuroinflammation

Microglia is the major effector of the innate immune system and are ubiquitously distributed 

in the brain. Microglia use highly motile processes to survey nearby regions for the presence 

of pathogens and cellular debris, while synthesizing factors important for tissue 

maintenance. Microglia also help maintain plasticity of the neuronal circuits, and contribute 

to the protection and remodeling of synapses. These functions of microglia are partly 

mediated by the release of trophic factors, such as brain-derived neurotrophic factor 

(BDNF), which is important for memory formation and learning. Upon activation by 
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pathological triggers, microglia migrate to the site of injury, where they initiate an immune 

response. Changes in the function or activity of microglia, as a result of aging or 

neurodegeneration, may contribute to pathology progression. Along with microglia, 

astrocytes and endothelial cells also express innate immune receptors and contribute to 

inflammatory responses in the brain [179]. While astrocytes are mainly involved in 

maintaining neuronal function, they are also known to mediate neuroinflammation by 

receiving and amplifying inflammatory signals from microglia, and form the self-

propagating cytokine cycle which generates large amounts of cytokines and oxidative signals 

[180].

4.2. Molecular components in inflammatory response

An inflammatory response typically involves three stages: TLR-NFκB formation of 

procytokines, inflammasome assembly, and activation of caspase-1. The detection of 

pathological triggers in an inflammatory response is mediated by pattern recognition 

receptor (PRRs) such as TLRs that recognize danger-associated molecular patterns 

(DAMPs) or pathogen-associated molecular patterns (PAMPs). The downstream signaling 

pathways affected regulate the activities of transcription factors NFκB and AP-1, which 

induces the expression of effector proteins, such as components of the inflammasome (e.g., 

NLRP3, NLRP1, NLRC4), cytokines, oxidants and NO.

NFκB signaling—NFκB regulates immune responses through the transcriptional 

regulation of cytokines and immune response genes [181]. Under basal conditions, In 

response to stimuli-induced phosphorylation of IκB, NFκB dissociates from the complex 

and translocates from cytosol to the nucleus to induce the transcription of its target genes 

[182] (Fig. 5). NFκB is sensitive to redox changes and inflammatory mediators and 

participates both protective and damaging responses, based on the context of stimulation. 

H2O2 can positively or negatively modulate NFκB activity. Mitochondria-derived H2O2 is 

key to the activation of NFκB [20, 183]. Although excessive levels of H2O2 inactivate NFκB 

through oxidation of its p50 subunit, moderate levels of H2O2 lead to IKK- or Syk-induced 

phosphorylation, polyubiquitination, and degradation of IκB, and the activation of NFκB 

[184, 185] (Fig. 5). NFκB can have a pro-survival role by inhibiting JNK, upregulating anti-

apoptotic genes, and decreasing the expression of manganese superoxide dismutase 

(MnSOD). Conversely, NFκB activation can be damaging to cells by initiating and 

amplifying inflammatory gene expression [186–188]. NFκB and MAPK pathway activation 

is apparent in oxidative stress and Aβ-induced neuronal cell death [189–191]. Interestingly, 

the outcomes of NFκB activation can be age-dependent: its activation by TNFα is 

neuroprotective against excitotoxicity and ischemic brain injury in 10 month-old neurons, 

but the same stimulus in 24 month old neurons was shown to be toxic [192].

Inflammasomes—Cellular insults identified by PRRs activate cytosolic multiprotein 

complexes called inflammasomes, which are responsible for the maturation and release of 

pro-inflammatory cytokines and the activation of pyroptosis, an inflammatory form of cell 

death [193]. The inflammasomes are either members of the NLR family or members of the 

pyrin and HIN domain-containing (PYHIN) family [194]. A total of 23 genes encode the 

NLRs, but only a few are capable of forming oligomeric complexes that activate caspase-1 
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[195], including NLRP1, NLRP2, NLRP3, NLRP6, NLRP12 and NLRC4 [196, 197]. The 

activation of most inflammasomes requires a priming stimulus (signal 1) and an activating 

stimulus (signal 2). Inflammasome complexes are generally composed of three components: 

a cytosolic PRR, caspase-1, and an adaptor protein, ASC (apoptosis-associated speck-like 

protein containing a caspase activation and recruitment domain). A priming stimulus, 

through activation of NFκB signaling, often leads to assembly of the inflammasome 

complex, which increases expression of prointerleukin-1β (pro-IL1β) and the 

inflammasome (e.g., NLRP3). Activated inflammasomes oligomerize to form a platform 

with ASC that can activate caspase-1 (Fig. 6). ASC facilitates interaction between the PYD 

domain of the NLRP proteins and the CARD of procaspase-1. Caspase-1 regulates the 

maturation and release of IL-1β and IL-18 and also triggers pyroptosis pathways [194].

NLRP3 inflammasome is the most widely studied member of the NLR family. It can be 

activated by a wide array of stimuli, including APMPs such as bacterial, fungal and viral 

components, as well as DAMPs such as extracellular ATP, and it can also be stimulated by 

H2O2 and amyloid-β in the brain. Its ability to respond to a wide variety of stimuli suggests 

that it behaves as a general sensor of cellular damage and stress. The activity of NLRP3 

seems crucial in the pathogenesis of different degenerative disorders such as AD, 

atherosclerosis, liver cirrhosis, and lung fibrosis [194].

The exact activation mechanism of the NLRP3 inflammasome is under debate, but all the 

proposed models postulate that cytoplasmic K+ concentration plays a crucial role. Three 

models have been proposed. (a) The channel model proposes extracellular ATP to be the 

main activator, which activates the P2X7 K+ release channel, which ultimately gives rise to 

pannexin 1 pore formation. The pores (which can be formed by bacterial toxins as well) 

allow cytoplasmic entry of extracellular factors that directly activate NLRP3 and also allow 

K+ efflux out of the cell [198, 199]. (b) The lysosome rupture model fits when the activating 

stimuli are particulate activators (e.g., alum and silica). It proposes that these particles are 

phagocytosed, causing lysosomal rupture release of Cathepsin B into the cytoplasm, which 

activates the NLRP3 inflammasome [200, 201]. (c) The H2O2 model, being the most 

relevant model in the context of this review, proposes NLRP3 to be a general sensor of 

cellular stress, where H2O2 serves as the secondary messenger that activates the 

inflammasome [202, 203] (Fig. 6)., and it will be particularly discussed.

4.3. Redox regulation of NLRP3 inflammasome

All NLRP3 activators have been found to be able to trigger oxidant production, whereas 

treatment with antioxidants blocks NLRP3 activation [204]. H2O2-triggered binding of 

NLRP3 to Trx-interacting protein (TXNIP), production is proposed to be the mechanism 

underlying the redox activation of NLRP3 [202]. Under resting mode, TXNIP is bound to 

Trx [205] and increased cellular H2O2 production dissociates this complex, thereby allowing 

TXNIP to bind to NLRP3, thus and leading to the activation of the latter (Fig. 6). 

Knockdown of Trx potentiated inflammasome activation and knockdown of TXNIP 

inhibited activation of caspase-1 and IL1β secretion upon stimulation by NLRP3 agonists 

[202, 206]. However, caspase-1 activation is not completely blocked when TXNIP is 

knocked out, suggesting that there are multiple pathways being capable of activating 
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NLRP3. Redox changes are also important in priming of the NLRP3 inflammasome. 

Priming of the inflammasome, which involves the TLR/NFκB signaling, can occur through 

its deubiquitination in the presence of mitochondrial H2O2 [195]. Several questions about 

the oxidant-dependent model of NLRP3 activation remain unresolved, and not all the stimuli 

that lead to oxidant production were able to activate NLRP3 (e.g., TNFα). This implies that 

activation of NLRP3 follows a specific mechanistic pathway, in which oxidants or 

specifically H2O2 are essential but are not sufficient. In addition, in contrast to the H2O2 

model of NLRP3 activation, O2
·− was found to inhibit caspase-1 activation via redox 

signaling [207].

NADPH oxidases (NOX) were initially thought to be the primary activators of the NLRP3 

inflammasome via the production of O2
·− and H2O2. Some early inflammasome studies 

reported the NOX enzymes to be important in activating NLRP3 in response to ATP and 

particulates [206, 208]. However, macrophages deficient in certain NOX subunits, like 

NOX1, NOX2, NOX3, and NOX4, responded normally to activating stimuli, and in some 

cases, demonstrated slightly increased inflammasome activity, suggesting either 

compensation by remaining members of the NOX family or occurrence of a other cellular 

sources of oxidants for inflammasome activation [209]. In the CNS, NOX function is 

required for proper neuronal signaling and cognitive function, but overproduction of 

superoxide radicals contributes to neurotoxicity and neurodegeneration [210]. Increased 

activation of microglial NOX enzymes was found in the brains of AD patients [211]. 

However, in normal aging mouse brains, NOX activity was only upregulated in the 24-

month-old mice when challenged by a high fat diet [212], suggesting age-related increase in 

sensitivity to activating stimuli in the brain.

Recent studies suggest that mitochondria might be the organelles that integrate signaling for 

inflammasome activation [209]. There is also evidence showing that NOX activation (and 

the generation of O2
·− and H2O2) requires initial priming by mitochondrial H2O2 [213]. In 

non-stimulated conditions, the NLRP3 protein is localized at the endoplasmic reticulum 

(ER) but not mitochondria. This localization changed upon activation of the inflammasome 

in response to several different stimuli: NLRP3 translocated to the perinuclear space, where 

it also co-localized with ER and mitochondria. A similar ER/mitochondrial co-localization 

was observed for ASC upon NLRP3 activation, and TXNIP was found to redistribute to the 

mitochondria upon inflammasome activation. Depletion of mitochondrial DNA or 

inactivation of the voltage dependent ion channel (VDAC) was shown to impair 

inflammasome activation. VDAC proteins, abundant in the outer mitochondrial membrane, 

are channels responsible for ions and metabolite exchange between mitochondria and the 

rest of the cell, particularly the ER. They are also involved in the regulation of mitochondrial 

metabolism and mitochondrial O2
·− release [214], and their nitration is significantly 

increased, indicative of changes in redox homeostasis, in AD brains [215]. Additionally, 

inhibition of mitophagy/autophagy by 2-methyladenine resulted in the accumulation of 

dysfunctional mitochondria with increased oxidant production, and as a consequence, 

inflammasome was activated [209]. Other mitochondrion-generated oxidants, such as 

ONOO− and O2
·− can also activate the NLRP3 inflammasome [216, 217].
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4.4. NLRP3 at the interface of inflammation and metabolism

The first link between inflammation and metabolism originated from early studies in models 

of obesity, where the expression of pro-inflammatory cytokines such as TNF-α, IL-6 and 

IL-1β was upregulated in adipose tissues of obese and diabetic subjects. The NLRP3 

inflammasome, which regulates the secretion of IL-1β, is considered to be a sensor of 

altered metabolic homeostasis and its activation is thought to induce insulin resistance. 

Increased activity of NLRP3 was also implicated in the pathogenesis of metabolic diseases 

such as type 2 diabetes and metabolic syndrome [218], with insulin hypersensitivity being 

the primary phenotype of the NLRP3- or caspase-1-deficient mice [219, 220]. Interestingly, 

deficiency of IL-1β protects rodents from insulin resistance induced by high-fat diet [220, 

221], and the treatment with an IL-1 receptor antagonist reduced hyperglycemia in diabetic 

rodents and improved glycemic control in type-2-diabetes patients [222, 223]. Studies using 

genetic mouse models demonstrated that IL-1β inhibits IIS by upregulating TNFα, a known 

insulin resistance-promoting cytokine [224, 225]. Although it is not clear whether or not the 

NLRP3 inflammasome contributes to neuronal insulin resistance, it is likely that a similar 

mechanism to that in adipose tissue might be prevalent in the CNS.

Conversely, metabolic signals (from mitochondria) can modulate inflammatory response. 

Mitochondrion-derived DAMPs, such as mtDNA, can directly induce inflammatory changes 

in microglial and neuronal cells [226], although the oxidation of mtDNA is still required 

[227], which supports the notion that redox control is the linking component transducing 

metabolic signal to inflammatory response. In addition, extracellular ATP at various 

concentrations can activate microglia and induce neuroprotective or neurotoxic effects by the 

expression of pro- or anti-inflammatory cytokines [228, 229].

4.5. Neuroinflammation in aging and Alzheimer’s disease

Several of the inflammatory factors discussed above can be general neurotoxic factors in 

normal aging and neurodegenerative diseases. It is predicted that these inflammatory 

responses are partly driven by positive feedback loops between microglia and astrocytes. 

Amplification of inflammation by astrocytes worsens the neurotoxic environment and the 

damaged neurons can further activate glial cells by releasing ATP and other DAMPs. This 

encompasses a self-promoting cycle of inflammation and neuronal death, even after the 

withdrawal of initial stimuli. This inflammatory mechanism is hypothesized to cause 

neurodegeneration and set the foundation of neurological disorders such as AD [13].

Chronic, low-grade inflammation positively correlates with aging: with age, microglia 

exhibit enhanced sensitivity (priming) to inflammatory stimuli (originating either from 

peripheral tissues or brain), similar to that observed in brains with ongoing 

neurodegeneration [230]. In both physiologically aged and senescence-accelerated mouse 

models, profound microglia priming was characterized by increased basal production of pro-

inflammatory cytokines (IL-1β, IL-6, and TNFα), decreased production of anti-

inflammatory cytokines (IL-4 and IL-10), decreased activity of the TGFβ1-Smad3 signaling 

pathway, and upregulated TLR expression. This age-related increase in microglial activation 

negatively impacts brain function [231]. NLRP3-deficient mice on a high-fat diet showed 

lower incidence of astrogliosis as compared to the age-matched wildtype mice. Furthermore, 
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these NLRP3-deficient mice were significantly protected from age-related decline in 

cognition and memory [232]. The same study also suggested that IL-1β signaling, 

downstream of NLRP3 activation, modulates the age-related functional decline in the brain 

by the deletion of IL-1 receptor. Aging is also associated with dysregulation of microglia, 

with deficits in CD200 and fractalkine regulation. Similarly, astrocytes also exhibit pro-

inflammatory phenotypes during aging: an increased expression of pro-inflammatory 

cytokines including TNF-α, IL-1β and IL-6 was observed in the rat cortex and striatum 

during aging [233].

In the Alzheimer’s brain, Aβ is capable of activating microglia and astrocytes to induce 

production of damaging molecules such as H2O2, NO, pro-inflammatory cytokines, 

chemokines, and prostaglandins (e.g., PGE2), which cause neuronal death [234]. Aβ plaques 

can be detected through several sensors, including TLRs, NLRs, and RAGE (receptor for 

advanced glycation end products) [204, 235–237]. Aβ oligomers and fibril-induced 

lysosomal damage can trigger activation of the NLRP3 inflammasome [201]. In neurons, 

NALP1, a member of the NLR family, can induce inflammatory response, similar to NLRP3 

[238]. These inflammatory signals, along with other risk factors converge to produce an 

abnormal processing of the tau protein [239]. Although neuroinflammation can facilitate the 

formation of neurofibrillary tangles (NFTs) through tau kinases, it is not clear that whether 

these NFTs affect inflammatory responses [13, 240].

Despite the critical involvement of inflammatory processes in AD etiology, the use of anti-

inflammatory drugs have produced minimum to no beneficial effects on symptomatic AD 

[241]. In these studies, anti-inflammatory drugs sometimes exhibit adverse effect in later 

stages of AD pathogenesis [241], although it was also found that long-term use of certain 

NSAIDs can reduce AD risk significantly with asymptomatic subjects [242, 243]. 

Interestingly, in another study, it was shown that AD risk reduction with NSAIDs only in 

participants having an APOE epsilon 4 allele [244], indicating the critical role of APOE 

status in AD-associated neuroinflammation. While the reasons for the failures in these 

epidemiological studies could be study design-based (such as the time and dose of 

intervention), one cannot ignore the fact that the pro-inflammatory environment in the AD 

brain is necessary for activating microglia- that clear Aβ [245], and even support 

neurogenesis after damage [246]. Therefore, it is hypothesized that anti-inflammatory drugs 

might only be beneficial in the early stages of AD (before the deposition of Aβ), direct 

evidence for which is yet to be seen [241].

5. Concluding remarks

Compromised glucose metabolism and mitochondrial function are signatures of normal 

brain aging and early stages of AD, while neuroinflammation is also observed in brain aging 

and the late stage of AD animal models and postmortem AD brains. It is still debatable 

whether or not neuroinflammation is the driven force of brain aging and AD or it is simply a 

consequence of metabolic dysfunction occurring earlier in the progression of aging or AD. It 

is noteworthy that although dysregulated neuroinflammation induces neurotoxicity and 

tissue damage, the primary function of controlled immune responses is still to protect the 

brain from infectious agent and injuries. Nevertheless, an increasing number of studies on 
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cell lines, genetic rodent models, and humans indicate that redox control might serve as a 

bidirectional link between energy metabolism and inflammatory responses in the brain. The 

brain metabolic-inflammatory axis entails interconnected cross-talks of energy metabolism, 

redox control, and neuroinflammation (Fig. 7) and might serve as an integrated mechanism 

for brain aging and Alzheimer’s etiology.
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Abbreviations

Aβ β-amyloid

AD Alzheimer’s disease

Akt protein kinase B

AMPK 5′ adenosine monophosphate-activated protein kinase

AP-1 activator protein-1

APP amyloid precursor protein

ASK apoptosis signal-regulating kinase

DAMP damage-associated molecular pattern

ER endoplasmic reticulum

ERK extracellular signal-regulated kinase

GABA gamma-aminobutyric acid

GH growth hormone

GLUT glucose transporter

GPx glutathione peroxidase

HIF1-α hypoxia-inducible factor 1-α

IGF1 insulin-like factor 1

IIS insulin/IGF1 signaling

IKK IκB kinase

IRS insulin receptor substrate

JNK c-Jun N-terminal kinase

LTP long-term potentiation

MAPK mitogen-activated protein kinase
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MCI mild cognitive impairment

MPC mitochondrial pyruvate carrier

MRI magnetic resonance imaging

NAA N-acetylaspartate

NFκB nuclear factor kappa-light-chain-enhancer of activated B cells

NMR nuclear magnetic resonance

NNT nicotinamide nucleotide transhydrogenase

PAMP pathogen-associated molecular pattern

PDH pyruvate dehydrogenase

PET positron emission tomography

PI3K phosphatidylinositide 3-kinase

Prx peroxiredoxins

PTEN phosphatase and tensin homolog

TCA tricarboxylic acid

Trx thioredoxin

TrxR thioredoxin reductase
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Fig. 1. Insulin/IGF1 signaling (IIS) is primarily orchestrated through insulin and IGF1 and the 
PI3K/Akt and ERK1/2 signaling pathways
Binding of the ligand to insulin receptor or IGF1 receptor activates the insulin receptor 

substrate (IRS). Binding of PI3K to the phosphorylated IRS activates the PI3K/Akt signaling 

network, whereas recruitment of Grb2 to the IRS results in Sos-mediated activation of the 

Ras-MAPK pathway. The PI3K/Akt pathway effects changes in carbohydrate and lipid 

metabolism and modulates glucose uptake, whereas the Ras-MAPK pathway is involved in 

cell growth and differentiation and protein synthesis.
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Fig. 2. Glucose transporters (GLUTs) in the brain
GLUT1 (55kDa) is expressed in endothelial cells of the BBB; GLUT1 (45kDa)-mediated 

transport of glucose into astrocytes; glucose uptake into neurons via neuronal GLUTs, 

GLUT3 and the insulin-sensitive GLUT4.
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Fig. 3. Mitochondrial energy metabolism in brain
Pyruvate imported by the mitochondrial pyruvate carrier (MPC) is converted to acetyl-CoA, 

which enters the TCA cycle to generate NADH, the reducing equivalents of which flow 

through the respiratory chain and oxidative phosphorylation. ATP generated by oxidative 

phosphorylation together with glutamate and GABA are critical for synaptic plasticity in 

brain. Glutamate is primarily generated from (a) α-ketoglutarate by glutamate 

dehydrogenase and (b) astrocyte-originated glutamine by glutaminase. GABA is produced 

by glutamate decarboxylase from glutamate. Acetyl-CoA is also a co-substrate for the 

synthesis of N-acetylaspartate (NAA) by aspartate N-acetyltransferase (Asp-NAT). 

Aspartate generated from oxaloacetate (coupled to the conversion of glutamate to α-

ketoglutarate) is critical in cell proliferation.
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Fig. 4. H2O2 modulates IIS in a concentration-dependent manner
Lower concentration of H2O2 activates IIS via (a) oxidation and activation of insulin 

receptor, (b) oxidation and inhibition of phosphatases that negative regulate IIS including 

PTP1B and PTEN, and (c) activation of Akt. Conversely, higher levels of H2O2 inactivate 

IIS due to the stimulation of inhibitory pathways of IIS such as JNK and IKK.
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Fig. 5. NFκB signaling in the inflammatory response
NFκB activation, and subsequent translocation to the nucleus can be initiated by different 

PAMPs or DAMPs via the toll-like receptors (e.g., TLR4). Mitochondrial H2O2 can facilitate 

NFκB activation by modulating the redox sensitive Syk and IKK pathways which 

phosphorylate the inhibitory protein IκB and lead to IκB ubiquitination and degradation, 

thereby releasing NFκB and its translocation to the nucleus.
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Fig. 6. Mitochondrion-driven activation of the NLRP3 inflammasome
H2O2 generated by mitochondria and NADPH oxidase (NOX) enzymes are major sources 

for NLRP3 priming and activation. NOX enzymes are dependent on mitochondrial H2O2 for 

their activation. Once primed, the inflammasome components oligomerize and form a 

complex with ACS, generating a platform for caspase-1 to catalyze the proteolytic activation 

of IL1β.
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Fig. 7. Coordination of metabolic, redox, and inflammatory signals in brain aging and 
neurodegeneration
The metabolic-, redox- and inflammatory components are interconnected and signals 

(metabolic signal: ATP; redox signal: H2O2 and NO; inflammatory signal: cytokines) 

originated from each component are involved in intra- (inner circle) and inter- (outer circle) 

cellular communications in the brain.
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