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Cilia and flagella are highly conserved organelles that beat rhythmically

with propulsive, oscillatory waveforms. The mechanism that produces

these autonomous oscillations remains a mystery. It is widely believed that

dynein activity must be dynamically regulated (switched on and off, or modu-

lated) on opposite sides of the axoneme to produce oscillations. A variety of

regulation mechanisms have been proposed based on feedback from mechan-

ical deformation to dynein force. In this paper, we show that a much simpler

interaction between dynein and the passive components of the axoneme can

produce coordinated, propulsive oscillations. Steady, distributed axial forces,

acting in opposite directions on coupled beams in viscous fluid, lead to

dynamic structural instability and oscillatory, wave-like motion. This ‘flutter’

instability is a dynamic analogue to the well-known static instability, buckling.

Flutter also occurs in slender beams subjected to tangential axial loads, in air-

craft wings exposed to steady air flow and in flexible pipes conveying fluid.

By analysis of the flagellar equations of motion and simulation of structural

models of flagella, we demonstrate that dynein does not need to switch direc-

tion or inactivate to produce autonomous, propulsive oscillations, but must

simply pull steadily above a critical threshold force.
1. Introduction
Flagella and cilia are slender organelles that generate propulsive, oscillatory

waveforms (figure 1a) to propel cells or move fluid. The common cytoskeletal

structure of cilia and flagella, the ‘9 þ 2’ axoneme, consists of nine outer doublet

microtubules, a central pair, radial spokes and circumferential links (figure 1b).

Dynein molecules form an array of cross-bridges between pairs of microtubule

doublets and exert forces that cause sliding of one doublet relative to the other.

These active shear forces combine with the forces from passive structural

elements (doublets, nexin links and radial spokes) to produce bending [1].

Since dynein activity on opposite sides of the axoneme produces antagon-

istic bending forces, it is widely believed that dynein activity must be

regulated (switched on and off, or modulated) in order to produce oscillatory

waveforms [2–6]. This concept has been supported by a number of theoretical

studies that explored the effect of feedback from mechanical deformation

to dynein force. In a seminal paper [7], Brokaw showed that delayed feed-

back from curvature to dynein activity could lead to oscillations. Brokaw has

continued to describe and evaluate potential feedback mechanisms in a com-

prehensive series of modelling papers [8–12]. Hines & Blum [13] developed a

detailed mathematical model of flagellar motion in the form of partial differen-

tial equations (PDEs); numerical solutions to these equations exhibited

sustained, wave-like oscillations when feedback from curvature was included.

Murase [14] and Julicher and colleagues [5,15,16] have modelled sliding-

controlled, collective dynein behaviour and demonstrated the existence of

oscillatory modes in such models. In the ‘geometric clutch’ (GC) hypothesis

of dynein regulation proposed by Lindemann [17–19], the spacing between
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Figure 1. (a) Schematic diagram of a flagellum with shape parametrized by angle cðs, tÞ. (b) Schematic diagram of axial cross section of the flagellar axoneme
showing key components; viewed from the distal end, outer doublet microtubules are numbered clockwise from doublet 1.
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Figure 2. Well-known cases in which steady axial loading or flow leads to
instability. (a) A compressive tip load with a fixed direction causes buckling
(a static pitchfork bifurcation) when the force exceeds the critical value
Pb ¼ p2EI=4L2. (b,c) A compressive tip load that remains tangent to the
beam (a non-conservative follower load) leads to oscillatory motion known
as flutter, via a dynamic Hopf bifurcation, when the force exceeds a critical
value Pf � 20:1EI=L2 (animation in electronic supplementary material,
movie M1). (d ) Flutter in a flexible tube conveying water. Instability occurs
above a critical flow rate. Panel (d ) is from Greenwald & Dugundji [30]
reproduced with permission from Paidoussis [31]. (Online version in colour.)
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each doublet pair is thought to control the level of dynein

cross-linking. In the GC model, dynein activity increases

when doublets approach one another and decreases when

doublets separate.

Though these feedback models are appealing, experimental

evidence that dynein regulation is required for bending

oscillations remains circumstantial. For example, Lin et al. [20]

has shown by cryo-electron microscopy (cryo-EM) that the

dominant conformation of dynein arms (pre-powerstroke or

post-powerstroke) differs between adjacent doublet pairs in

bent sections of sea urchin flagella. Movassagh et al. [21] also

observed that dynein activity was organized into clusters,

though no clear relationship was seen between the observed pat-

terns of activity and bending. By analysing waveforms of human

sperm flagella, Gaffney et al. [22] and Smith et al. [23] obtained

estimates of oscillatory dynein force from estimated viscous

and elastic forces. On the other hand, Brokaw [3] has commented

that the belief that dynein activity switches ‘on’ and ‘off’ derives

mainly from the lack of alternative explanations for oscillation.

Intriguingly, Geyer et al. [24] have shown show that gradually

increasing dynein activity in reactivated axonemes leads both

to (i) a steady increase in static mean curvature and (ii) an

abrupt transition to oscillatory beating. These data suggest that

simply increasing average dynein activity can lead to instability

of the static equilibrium state of the axoneme.

In this study, we show that switching or modulation of

dynein activity is not required to generate propulsive, oscil-

latory waveforms. In an elastic structure submerged in

viscous fluid, like the axoneme, steady, distributed axial load-

ing of the doublets (i.e. steady dynein activity) leads to a

dynamic structural instability commonly known as flutter.

Flutter is a well-known cause of oscillations in aircraft

wings and panels exposed to steady flow [25,26], axially

loaded beams [27–29] (figure 2b,c), and flexible pipes convey-

ing fluid [32] (figure 2d ). This dynamic instability can occur

in flagella instead of the familiar static instability, buckling,

because dynein forces remain tangent to the doublets as

they deform. Oscillations arise because deformation of the

structure itself changes the direction of these tangential loads.

The idea that steady dynein activity is sufficient to cause

flagellar beating is supported by results from three different,

but complementary, mathematical methods: (i) stability

analysis of the linearized partial differential equations

(PDEs) of doublet motion, using representative, realistic

values for biophysical parameters including doublet tension,

(ii) simulation of nonlinear equations of doublet motion,

generalized from prior work [13,33], and (iii) simulation of

three-dimensional (3D) finite-element (FE) models of flagella

subjected to steady, distributed, axial inter-doublet forces.

Each model and analysis, described in the sections below,
predicts oscillatory, propulsive waves propagating from the

base to tip of the flagellum.
2. Modelling and analysis of flagella
2.1. Axoneme structure and loading
Flagellar bending is caused by the activity of dynein arms

between the outer microtubule doublets (figure 3; electronic sup-

plementary material, figures S1 and S2). Dynein arms are

permanently attached to the A-microtubule of doublet N; these

arms transiently attach and ‘walk’ towards the base of the

B-microtubule of doublet N þ 1, exerting a tipward force on

the higher numbered doublet. In combination with passive com-

ponents, such as radial spokes, and nexin links, dynein forces

also produce bending moments. If dynein activity occurs only

between doublets on one side the entire flagellum will bend in

response (figure 3a). The side that produces the ‘principal’, or

P bend, is denoted the P side; dynein activity on the other (R)

side produces the reverse (R) bend. If equal dynein activity

occurs between doublet pairs on opposite sides of the flagellum

(figure 3b), the net bending moment will be zero, and the equili-

brium configuration of the flagellum will be straight (and

slightly twisted). However, the equilibrium may not be stable.

When dynein activity is not uniform around the circum-

ference (as in figure 3a,b) some doublets may be under

significant tensile or compressive loads, with respect to criti-

cal values for beam instability (buckling or flutter). In flagella

of Chlamydomonas reinhardtii, there are 19 dynein heavy



y

yx

x

z
z

106

–106

s (Pa)

(b)(a) (c) (d )

Figure 3. Simplified mechanical models of the axoneme. Selected longitudinal
members (outer doublets) experience distributed axial loads and bending
moments due to dynein activity. Colour indicates axial stress. (a,b) 3D model
with six outer doublets. (a) Steady, uniform dynein force applied between
doublets on one side (e.g. P) of the axoneme produces bending in one direction
and a small amount of twist. (b) Steady dynein loading applied between doub-
let pairs equally on both P and R sides of the axoneme leads to a straight,
slightly twisted configuration, with axial stress in doublets. (c) A 2D model
showing steady, distributed axial loads and axial stress, in response to
steady dynein activity on a single (P or R) side. (d ) Axial stress in a 2D
model assuming equal activity on both P and R sides. (Online version in colour.)

Table 1. Key variables of the 1D PDE model of flagella mechanics.

variable definition (unit)

cnðs, tÞ tangent angle of doublet n at location s and time t (rad)

Tnðs, tÞ tangential component of internal force in doublet n ( pN)

Nnðs, tÞ normal component of internal force in doublet n ( pN)

MBnðs, tÞ bending moment in doublet n ( pN mm)

fTðs, tÞ inter-doublet tangential (shear) force per unit length

( pN mm21)

fNðs, tÞ inter-doublet normal force per unit length ( pN mm21)

mðs, tÞ net inter-doublet moment per unit length ( pN)
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chains per 96 nm repeat between each doublet pair, or over

195 arms mm21. Each arm may exert at least 2–4 pN [34,35]

average force, so that coordinated dynein activity could

lead to axial forces well over 1000 pN at the base of a flagel-

lum. For comparison, the critical buckling load for a 12 mm

long microtubule doublet with (order of magnitude) flexural

rigidity EI ¼ 100 pN mm2 is Pb ¼ p2EI=4L2 � 2 pN. Why do

not axonemal doublets fail by buckling? One reason is that

most doublets experience dynein forces in both directions

(though the net dynein force will likely be non-zero). In

addition, doublets under compression are connected by

other axoneme components to doublets that are under ten-

sion. Nonetheless, axial loads are clearly significant, though

they have not been considered in most models, the notable

exception being the GC hypothesis [17–19].

To gain insight into the mechanism of instability, we first

represent the 3D mechanics of the axoneme by a two-

dimensional (2D) model (figure 3c,d) and a corresponding

set of one-dimensional (1D) PDEs. Although 3D structural

models are straightforward to simulate using FE methods,

analysis of 1D PDEs is much more efficient and can provide

greater insight into mechanisms. Figure 3c illustrates the

accumulation of axial stress due to distributed dynein forces

in a 2D, two-doublet model. Figure 3d shows the scenario in

which the net bending moments are zero (counteracted by

the opposing doublet pair), but the net axial forces are signifi-

cant. The equations of motion for this situation were derived

(electronic supplementary material) and analysed to deter-

mine the existence and nature of structural instability. To

confirm and supplement the analysis of these 1D PDEs, the

axoneme was also modelled as a 3D structure, using commer-

cial FE software (COMSOL v. 5.1, COMSOL, Inc., Burlington,

MA, USA), and stability and oscillations were investigated in

this full 3D structural FE model.
2.2. Equations of motion: one-dimensional PDE model
2.2.1. Nonlinear equations of motion for two coupled doublets
In the axoneme, doublets under compression are coupled to

doublets in tension by the other components of the axoneme
(dynein, radial spokes and nexin–dynein regulatory com-

plexes). Equations governing the entire flagellum have been

derived and analysed previously [5,13,15,16,33,36]. Using a

similar approach to model individual doublet behaviour in

a two-doublet model (electronic supplementary material,

section A and figure S2), we obtain three equations for

each doublet, describing the motion of a slender elastic

beam moving in viscous fluid, subject to active and passive

inter-doublet forces [13,15]:

T1,ss �N1c1,ss � 1þ cT

cN

� �
N1,sc1,s �

cT

cN
T1c

2
1,s

� cT

cN
fNc1,s þ fT,s ¼ 0, ð2:1aÞ

N1,ss þ 1þ cN

cT

� �
T1,sc1,s þ T1c1,ss �

cN

cT
N1c

2
1,s

þ cN

cT
fTc1,s þ fN,s ¼ cNc1,t, ð2:1bÞ

EIc1,ss þmþN1 ¼ 0, ð2:1cÞ

T2,ss �N2c2,ss � 1þ cT

cN

� �
N2,sc2,s �

cT

cN
T2c

2
2,s

þ cT

cN
fNc2,s � fT,s ¼ 0, ð2:1dÞ

N2,ss þ 1þ cN

cT

� �
T2,sc2,s þ T2c2,ss �

cN

cT
N2c

2
1,s

� cN

cT
fTc2,s � fN,s ¼ cNc2,t ð2:1eÞ

and EIc2,ss þmþN2 ¼ 0: ð2:1fÞ

In these equations ð:Þ,z ¼ @ð:Þ=@z. Key variables of the model are

summarized in table 1. Parameters for Chlamydomonas flagella

[37,38] (table 2) are used, unless otherwise noted. Most par-

ameters have been measured experimentally (see references in

table 2), but several are simply plausible estimates (denoted by

superscript ‘a’ in table 2). In addition, boundary conditions (elec-

tronic supplementary material, section A and equations A.9(i–

viii)) are needed to specify that each doublet is fixed at the

base and free at its tip: zero angle, displacement and velocity at

the base, and zero external moments and forces at the tip.
2.2.2. Inter-doublet forces and moments
Passive components of the axoneme resist doublet separation

(electronic supplementary material, figure S2), coupling the

motion of the two doublets. These components are modelled as

distributed elements with linear elastic and viscous coefficients,

kN and bN, respectively, and a nonlinear elastic coefficient k3N.

@fN
@s
¼ �kNðc1 � c2Þ � bNðc1,t � c2,tÞ � k3Nðc1 � c2Þ3: ð2:2Þ



Table 2. Baseline parameter values of the 1D PDE model of flagella mechanics.

parameter value units description

cN 0.003 pN s mm22 normal viscous resistive force coefficient [37]

cT cN/2 pN s mm22 tangential viscous resistive force coefficient [37]

a 0.200 mm diameter of flagellum [39]

L 12 mm length of flagellum [40]

EIf 800 pN mm2 flexural rigidity of flagellum [38]

EI EIf/2 ¼ 400 pN mm2 flexural rigidity of ‘doublet’ [38]

kN 10 000 pN mm22 inter-doublet normal stiffness (10 pN nm21 mm21)a

kT 1000 pN mm22 inter-doublet shear stiffness (1 pN nm21 mm21) [38]

bN tC kN pN s mm22 inter-doublet normal viscous resistancea

bT tC kT pN s mm22 inter-doublet shear viscous resistancea

k3N 100 000 pN mm24 nonlinear normal stiffness (1 � 1024 pN nm23 mm21)a

k3T 2500 pN mm24 nonlinear shear stiffness (2.5 � 1026 pN nm23 mm21)a

p 200 – 800 pN mm21 steady dynein force per unit length per doublet [41]

D(s) 1 or 1� es=s0 Nondim. distribution of dynein forcea

t 0.155 s flagellum viscoelastic time const. t ¼ cNL4=EI (calculated)

tC t/200 s inter-doublet viscoelastic time constanta

aEstimated, not based on experimental measurement.
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In the tangential direction we include a steady, distribu-

ted dynein force per unit length, fT ¼ pDðsÞ, as well as passive

resistance to inter-doublet sliding. The dynein distribution

function, D(s), allows the steady dynein activity to vary

along the length. For longitudinally uniform dynein activity,

D(s)¼ 1; to represent dynein activity that increases distally,

DðsÞ ¼ 1� exp( s=s0Þ. The moments due to equal, opposing

dynein forces on the P and R sides cancel (electronic supplemen-

tary material, figure S1; figure 3b), but the moments due to

passive shear resistance sum. The net inter-doublet moment

per unit length is thus

m ¼ �kTa2 �c� bTa2 �c,t � k3Ta3 �c
3
, ð2:3Þ

where the mean shear angle is �c ¼ ðc1 þ c2Þ=2. The coefficients

kT and bT represent linear elastic and viscous resistance to sliding

[5,33,40], and k3T a nonlinear stiffness. The nonlinear terms in

equations (2.2) and (2.3) represent assumed nonlinear, stiffening

behaviour of elastic elements between doublets [8].

2.3. Stability analysis of the linearized one-dimensional
PDE model

To describe small-amplitude motion about a straight, equili-

brium configuration, equations (2.1a– f ) may be linearized

to obtain much simpler equations [5,15,42]. For a uniform,

steady dynein force distribution (DðsÞ ¼ 1; fT ¼ p), dropping

terms that are nonlinear in the dependent variables, the base-

line tension (or compression) in the two doublets is

(electronic supplementary material, figure S3):

Doublet 1: T10 ¼ pðL� sÞ (tension)

Doublet 2: T20 ¼ �T10 (compression)

Equations (2.1a– f ) become

EIc1,ssss �
@

@s
ðpðL� sÞc1,sÞ þ cNc1,t

¼ �m,ss � kNðc1 � c2Þ � bNðc1,t � c2,tÞ, ð2:4aÞ
EIc2,ssss þ
@

@s
ðpðL� sÞ c2,sÞ þ cNc2,t

¼ �m,ss þ kNðc1 � c2Þ þ bNðc1,t � c2,tÞ ð2:4bÞ

and m ¼ �kTa2 �c� bTa2 �c,t , ð2:4cÞ

with corresponding fixed-free boundary conditions.

Analogous linearized equations can be derived for distally

increasing dynein activity (electronic supplementary material,

figure S3).

Following [5,15,16] and [33,36] separable solutions of

the form

cnðs, tÞ ¼ expðstÞ~cnðsÞ n ¼ 1,2 ð2:5Þ

are sought, with s ¼ aþ iv (a and v are real). If a . 0, the

amplitude of the corresponding mode grows exponentially.

These separable solutions are substituted into the linearized

equations of motion (equations (2.4a–c)). After defining a

characteristic time for the system, t ¼ cNL4=EI, and a

normalized eigenvalue, �s ¼ st, the resulting ordinary differ-

ential equations (ODEs) may be written in non-dimensional

form:

~c
0000
1 � �p½ð1� �sÞ~c01�

0 þ �s~c1 ¼ �cð�sÞð~c001 þ ~c
00
2Þ � �dð�sÞð~c1 � ~c2Þ

ð2:6aÞ

and

~c
0000
2 þ �p½ð1� �sÞ~c02�

0 þ �s~c2 ¼ �cð�sÞð~c001 þ ~c
00
2Þ þ �dð�sÞð~c1 � ~c2Þ,

ð2:6bÞ

where the new non-dimensional parameters are �p ¼ pL3=EI,
�cð�sÞ ¼ ðkTa2 þ bTa2 �sÞL2=EI and �dð�sÞ ¼ ðkN þ bN �sÞL2=EI.

These two coupled ODEs, together with the associa-

ted fixed-free boundary conditions, form an eigenvalue

problem. Approximate solutions to the eigenvalue problem

can be obtained using numerical methods such as FE analysis



Table 3. Parameter values used in the 3D structural FE model.

parameter value units description

E (all) 8 � 108 Pa ( pN mm22) Young’s modulus (doublets)a [38]

EI (doublet) 100 pN mm2 flexural rigidity (doublets)a [38]

EA (doublet) 1 � 106 pN axial stiffness � L (doublets)a

EIs0 (spoke) EI/3200 pN mm2 flexural rigidity (spokes) [38,44,45]

EAs0 (spoke) EA/10 pN axial stiffness � a/2 (spokes)b

EIs (spoke) EIs0ð1þ k2Þ pN mm2 nonlinearity (k ¼ curvature)b

EAs (spoke) EAs0ð1þ 12Þ pN nonlinearity (1 ¼ axial strain)b

a/2 0.100 mm spoke length [39]

p 50 – 200 pN mm21 dynein force/length/doublet [41]

r 1 � 1026 pN s2 mm24 density (all)c

aValue of E chosen to give EI ¼ 100 pN mm2 for each doublet. I and A estimated from doublet cross section.
bEstimated, not based on experimental measurement.
cValue of r is set greater than estimated physical density (approx. 1000 kg m23 or 1 � 1029 pN s2 mm24) to accelerate convergence (mass scaling) [46]. The
ratio of total kinetic energy to potential energy was less than 0.01 for all simulations (electronic supplementary material, figure S8), confirming that inertial
effects are negligible and that the effect of mass scaling on solution accuracy is minimal.
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or the method of weighted residuals [36,43] (electronic

supplementary material, section B).

2.4. Simulation of the nonlinear one-dimensional PDE
model

Time-domain numerical simulations of the full nonlinear PDEs

[37,38] for the two-doublet model (equations (2.1a– f)), with

fixed-free boundary conditions, were performed using a com-

mercial software package (COMSOL v. 5.1; COMSOL,

Inc. ). Time-domain simulation can confirm the contributions

of the unstable modes predicted by stability analysis, and

also allows exploration of nonlinear, transient and non-peri-

odic behaviour. Simulations were performed with the same

baseline parameters used in the stability analysis, with various

values of the steady, distributed dynein load p. The 1D domain

was discretized into 201 elements with quartic polynomial

interpolation, and a backward differentiation algorithm with

variable time step and relative tolerance of 1 � 1028 was

used to solve the system. Representative results were checked

with finer mesh and smaller relative tolerance.

2.5. Simulation of three-dimensional structural finite-
element models

Three-dimensional FE structural models were constructed

using the same commercial FE package (COMSOL v. 5.1,

COMSOL, Inc.). The basic model consisted of six slender

beams (outer doublets) in a hexagonal array connected to a

central beam (central pair) by radially oriented beams

(spokes). Radial beam elements coupled the doublets to

each other and to the central pair, providing both normal

and shear stiffness. Normal and tangential viscous force com-

ponents, proportional to the normal and tangential velocity

components, respectively, of each doublet, represented the

effect of fluid at low Reynolds number. Dynein activity was

modelled by steady, uniformly distributed axial forces

tangent to each doublet, and corresponding steady, distribu-

ted bending moments to satisfy equilibrium conditions

(electronic supplementary material, section A and figure S2).
The 3D FE model was composed entirely of linearly elastic,

beam elements. Different values of flexural rigidity (EI) and

axial stiffness (EA) were used for doublets (longitudinal mem-

bers) and radial spokes. In the spokes, baseline values EIs0 and

EAs0 were multiplied by quadratic functions of curvature or

strain, to model assumed nonlinear stiffening (table 3). These

nonlinear terms are chosen for convenience, to represent in

simple form the behaviour of elastic components with limited

range. Inertial effects were included, but inertial forces are

extremely small relative to elastic and viscous forces (electronic

supplementary material, section C and figure S8). Mass scal-

ing [46] was used to speed computation; the ratio of kinetic

energy to potential energy was checked to confirm that inertial

effects could be neglected. The system was discretized into

260 beam elements, with cubic polynomial interpolation of the

displacement field. Time-marching simulations (backward

differentiation, variable time step, relative tolerance 1�1026)

were performed. Representative results were checked with

finer mesh and relative tolerance.

Parameters of the 3D FE structural model (table 3) were

chosen to approximate the overall parameters of Chlamydomonas
reinhardtii flagella [37,38]. Each of the seven individual doublets

of the 3D model is more flexible (EI¼ 100 pN mm2) than each

of two doublets of the 1D PDE model (EI¼ 400 pN mm2). As a

result, critical dynein force densities differed between the two

models by roughly a factor of 4.
3. Results: dynamic instability and oscillations
3.1. Instability and oscillatory modes of the one-

dimensional PDEs
Modes and frequencies of oscillation were obtained by analysis

of the linearized PDEs of two coupled doublets (equation

(2.4a,b)) subject to steady, uniformly distributed dynein load-

ing, using the method of weighted residuals (electronic

supplementary material, section B). The eigenvalues of the

system depend on the amplitude, p, of the distributed

dynein force (figure 4a,b). Loss of stability is indicated by a
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Figure 4. Stability analysis of the linearized 1D PDE flagella (two-doublet) model (see figure 3d; electronic supplementary material, figure S2), with steady, uni-
formly distributed, axial dynein loading of amplitude p ( pN mm21). (a) Real part, a, and (b) imaginary part, v, of eigenvalues of the linearized equations as the
steady dynein load, p, is increased. A dynamic instability occurs near p ¼ 330 pN mm21 when the real parts of one pair of eigenvalues become positive
while the imaginary parts are non-zero. (c,d) Unstable modes (eigenfunctions) of the 1D PDE model with steady, uniform, dynein loading. (c) Least stable
mode for p ¼ 350 pN mm21 (corresponding animation is in the electronic supplementary material, movie M2). (d ) Least stable mode for p ¼ 500 pN mm21.
Each curve shows the average flagellar shape at 16 equally spaced phases in the beat, with phase depicted by colour (increasing blue to red). (e,f ) Oscillatory
behaviour of the 1D PDE model with steady, uniform, dynein loading, obtained by eigenanalysis of the linearized PDEs. Onset and frequency of oscillations
depend on both the properties of the doublets and the inter-doublet coupling. (e) Oscillation frequency of the least stable mode versus flagellar length, L, and
dynein force density, p, for conditions in which the straight equilibrium configuration is unstable. ( f ) Frequency of the least stable mode versus coupling stiffness,
kN, and dynein force density, p.
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positive real part of any eigenvalue; the finite imaginary part

of that eigenvalue confirms the oscillatory nature of the

instability, and specifies its frequency. The eigenfunction corre-

sponding to each unstable eigenvalue (figure 4c,d; electronic

supplementary material, movie M1) describes the shape of

the growing, oscillatory waveform. All eigenfunctions of this

model exhibited anterograde (base-to-tip) propagation.

The stability of the system can be established for multiple

parameter combinations, as the stability analysis algorithm

is quite efficient. As expected, increasing dynein force

density and length are both associated with loss of stability

(figure 4e). Increasing inter-doublet normal stiffness appears

to increase the threshold for onset of oscillations (figure 4f ).
Neither inter-doublet viscous resistance nor shear stiffness

had a significant effect on stability thresholds (electronic

supplementary material, figure S4). Increasing dynein force

density increases the frequency of oscillation (figure 4; elec-

tronic supplementary material, figure S4), whereas

increasing the inter-doublet stiffness or viscosity tends to

decrease frequency.
3.2. Propagating waves in time-domain simulations of
the one-dimensional PDE model

Time-domain simulation of the system of 1D PDEs revea-

led oscillatory solutions (figure 5) consistent with modes

predicted by stability analysis. Larger amplitude waves were

obtained using the distally increasing, steady dynein force

distribution. Near the stability threshold ( p ¼ 450 pN mm21),

the solution consisted of small-amplitude waves that

closely resembled the single unstable mode of the linearized

model. At higher values of the steady dynein load (p ¼ 600

and 800 pN mm21), the contributions of more than one

unstable mode are apparent. All modes propagate from

base to tip.

Above a critical value of axial force density (figure 6), the

3D structural FE model also exhibited oscillatory, wave-like

behaviour propagating from base (fixed end) to tip (free

end; figure 6a,b). The qualitative behaviour of the system,

including onset of oscillation, and relative deformations of

doublets in compression and tension are consistent with the
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predictions of the 1D PDE models. The threshold for onset of

oscillations is lower in the 3D FE model because the flexural

modulus of each doublet (100 pN mm2) in the 3D FE model is

lower than the flexural rigidity of each doublet (400 pN mm2)
in the two-doublet 1D PDE system. The 3D FE model also did

not include a viscous inter-doublet component, so inter-

doublet time constants are lower and oscillation frequencies

are higher than those of the 1D PDE model.
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4. Discussion and conclusion
Steady tangential dynein forces, combined with fluid–

structural interactions, can initiate and maintain propulsive fla-

gellar waveforms, without feedback to or regulation of dynein

activity. Evidence for this mechanism is provided by (i) eigen-

analysis of a simple linearized model, (ii) simulation of a set of

nonlinear PDEs, and (iii) simulation of an FE structural model.

The possibility that propulsive oscillations arise from a mech-

anical instability is distinct from prior models based on

switching or modulation of dynein. These previous models

include curvature-controlled dynein dynamics [7,13], and

dynein regulation by inter-doublet forces (the GC model),

which both produce propulsive, anterograde (base-to-tip) pro-

pagating waveforms [36]. Flagella models with dynein

controlled by inter-doublet sliding can also produce oscillatory

waveforms [5,15,16,36], though corresponding waveforms

appear to be mostly retrograde. The possible role of nonlinear

buckling instability in flagella was explored by Gadelha [47] in

a model in which oscillations were driven by imposed, period-

ically varying dynein activity.

By contrast, the mechanism of fluid–structural flutter

proposed here does not require dynein regulation or switch-

ing. Instead, the fluid–structural instability and resulting

oscillations are driven by axial tension in individual doublets.

The importance of doublet tensile and compressive loading

was first raised by Lindemann [17–19] in the development

of his (GC) hypothesis. However, as noted above, the GC

hypothesis involves explicit mechanical feedback from

transverse force to dynein activity. In the current model,

dynein activity varies circumferentially (i.e. differs between

doublets) and longitudinally, but does not vary with time.

Unlike classical systems that exhibit dynamic instability,

inertial effects are not necessary for this instability and in

fact inertia is negligible at the low Reynolds numbers

involved in flagella motion. Viscosity, however, can help

destabilize the flagellum by introducing phase shifts between

doublet motion and force on the doublets, allowing work to

be done on the flagellum during each cycle [32]. This instabil-

ity occurs over a wide range of parameter values (figure 4e,f;
electronic supplementary material, figure S4a,b).

The possibility of structural flutter is consistent with a

number of prior experimental observations. If this model is

correct, increasing steady dynein activity explains both the

gradual increase in static curvature and abrupt onset of

oscillations, which have been observed in reactivated axo-

nemes as adenosine triphosphate concentration is increased

[24]. The current model is also consistent with observations

of intermittent buckling and re-attachment observed between

doublets from which inter-doublet links are absent [48]. The

effect of increased fluid viscosity on beat frequency [49–51] is

captured naturally because oscillation frequency scales inver-

sely with the major viscoelastic time constant of the system:

t ¼ cNL4=EI. The decrease in beat frequency of outer dynein

arm-deficient mutants (e.g. oda2) is consistent with the gen-

eral decrease in frequency with force density (figure 4e,f ).
The paralysis of pf13 mutants missing outer dynein arms

and one species of inner dynein arm is consistent with sub-

threshold dynein activity. The direction and timing of

oscillations arising from fluid–structural flutter instability

can be influenced by subtle cues, such as the orientation of

the central pair [52], structural asymmetry of the axoneme

[53] or hydrodynamic effects from neighbouring flagella [54].

The models of flagella mechanics used in this study are

simplified in order to isolate and emphasize the basic mech-

anism of instability. These models have inevitable limitations.

The effects of biased dynein activity, or inherent curvature,

on flagellar stability and oscillations have not been explored.

As a result, the predicted waveforms are symmetric. The

interactions between doublets in the current model are not

satisfactory for describing large amplitude behaviour; inter-

doublet components are undoubtedly more complex than

the simple spring–dashpot system used here. Neither the

possible collective behaviour of dynein arms, nor their

force–velocity relationships are modelled. The 3D structural

FE models are composed completely of linear, elastic beam

elements. While geometric nonlinearity due to large defor-

mations is considered, possible material nonlinearities,

sliding or loss of contact between components are not

accounted for. A notable structural feature omitted from the

current model is the twisted central pair of microtubules,

which may enhance twisting or out-of-plane motion. Twist-

ing is present, but minimal, in the current 3D FE models,

but may be important in flagella beating [55].

Despite these caveats, this study shows that dynamic

structural instability described here is sufficient to produce

propagating, oscillatory, waveforms. In other words, dynein

regulation is not necessary for flagella beating, although mech-

anical feedback to dynein activity may still affect waveform

frequency, amplitude or symmetry. Estimates of propagating,

oscillatory, dynein forces in prior studies of human sperm

[23] support a role for such feedback in sperm flagella.

However, this evidence remains indirect, and dependent on

precise knowledge of fluid resistive force and flagellum

elastic parameters.

In summary, propulsive flagellar beating can arise from

steady, distributed dynein forces acting between coupled,

flexible doublets in viscous fluid. This mechanism, analogous

to flutter in airframes and flexible pipes, is simple, robust

to parameter variations and consistent with experimental

observations. The possible role of this dynamic instability

in flagellar oscillations is a compelling target for future

experimental and theoretical investigations.
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