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Automatic identification of the necrotic zone boundary is important in the

assessment of treatments on in vitro tumour spheroids. This has been diffi-

cult especially when the difference in cell density between the necrotic

and viable zones of a tumour spheroid is small. To help overcome this

problem, we developed novel one-dimensional pair-correlation functions

(PCFs) to provide quantitative estimates of the radial distance of the necrotic

zone boundary from the centre of a tumour spheroid. We validate our

approach on synthetic tumour spheroids in which the position of the necro-

tic zone boundary is known a priori. It is then applied to nine real tumour

spheroids imaged with light sheet-based fluorescence microscopy. PCF esti-

mates of the necrotic zone boundary are compared with those of a human

expert and an existing standard computational method.
1. Introduction
Tumour spheroids are in vitro cell aggregates grown from a smaller number of

cells initially placed in a non-adhesive environment [1–3]. They provide a way

to study cancer cell behaviours and interactions in a well-controlled environment,

while mimicking the in vivo arrangement of cells more closely than monolayer

cultures. Importantly, tumour spheroids are used in drug testing assays [1,4],

and assessments of the effectiveness of anti-tumour treatments often rely on

quantitative measures of the cell distribution within the spheroid [5,6].

In a sufficiently large spheroid, only the cells in the outermost cell layers can

receive enough oxygen and other nutrients to proliferate. This region is termed

the proliferative zone, while deeper inside the spheroid, quiescent and necrotic

zones are formed [3]. Cells in the quiescent zone remain viable but do not pro-

liferate, while the innermost cells die due to an accumulation of toxic waste

products and a lack of oxygen and nutrient supply, forming the necrotic

zone [7]. The schematic diagram of figure 1 illustrates the necrotic, quiescent

and proliferative zones within a tumour spheroid. Identifying and quantifying

these three regions is important in the analysis of comparative assays on

tumour spheroids [8–10] and mathematical models of the tumour growth

process [11–14].

In this paper, we analyse the in vitro distribution of cells in nine (homotypic)

tumour spheroids. Using light sheet-based fluorescence microscopy in

combination with optical clearing, high-quality three-dimensional images

are generated [15]. Subsequently, the images are processed with a three-

dimensional segmentation method to obtain a point cloud representing the

cell distribution. The cell distribution gives a point pattern that is subsequently

analysed, with the aim of being able to provide an estimate of the position of

the necrotic zone boundary, i.e. the distance from the spheroid centre to

where the necrotic zone transitions into the quiescent zone.

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2016.0649&domain=pdf&date_stamp=2016-10-12
mailto:saber.dini@adelaide.edu.au
https://dx.doi.org/10.6084/m9.figshare.c.3491550
https://dx.doi.org/10.6084/m9.figshare.c.3491550
http://orcid.org/
http://orcid.org/0000-0002-4613-3672
http://orcid.org/0000-0001-5061-9563


necrotic zone

quiescent zone

proliferative zone

nutrients

proliferation

oxygen

growthfactors

Figure 1. Schematic of the necrotic, quiescent and proliferative zones within
a tumour spheroid. In the necrotic zone, cell death occurs due to an accumu-
lation of toxic waste products and a lack of oxygen and nutrient supply [7].
The quiescent zone is a region of viable and non-proliferative cells. In the
proliferative zone, cells receive enough oxygen and nutrients to proliferate
[3]. (Online version in colour.)
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Standard density-based spatial clustering and data clus-

tering methods (DBSCAN and k-means) are implemented

to identify the boundary of the necrotic zone [16–18].

However, we find that using such existing methods can fail,

or produce unreliable results when the difference in the cell

density between the quiescent zone and necrotic zone is

small. Therefore, we offer an alternative, statistically based,

approach by developing a one-dimensional pair-correlation

function (PCF) to identify the necrotic zone boundary in

tumour spheroids.

The PCF is a second-order summary statistic commonly used

for analysing point patterns in cell biology [19–24]. Typically,

PCFs describe the relative frequency of Euclidean distances

between pairs of data points, indicating the extent of deviations

from complete spatial randomness (CSR) [25–29]. The PCF for a

stationary and isotropic point process is defined as

gðrÞ ¼ @ðrÞ
l2

, ð1:1Þ

where r is usually the Euclidean distance between points, @ðrÞ is

the second-order product density (frequency of points separated

by a distance r) and l is the intensity of the point process [27].

When points are distributed uniformly at random (i.e. CSR)

@ðrÞ ¼ l2 and thus g(r)¼ 1 at all distances. Consequently, aggre-

gation and segregation length-scales correspond to g(r) . 1 and

g(r) , 1, respectively. Therefore, we can quantify spatial features

by estimating the PCF for point patterns [30–33].

However, in some situations the Euclidean distance

between points is not the most appropriate distance to

study. For example, in a scratch assay used to assess

wound healing in vitro, the cells move into the wounded

region as a front, which is approximately a straight line.

Binder & Simpson [34] used a one-dimensional PCF to quan-

tify the spatial patterning of the cells in the Cartesian

direction perpendicular to the front in both experimental

images and simulations. They also showed that there was

no spatial structure in the Cartesian direction parallel to

the front. In other situations, the Euclidean distance bet-

ween points may not be the quantity of interest. For

example, Binder et al. [35] analysed the angular separation

of filaments emanating from two-dimensional images of
yeast colonies with a one-dimensional angular PCF. Simi-

larly, in attempting to identify the necrotic zone boundary

in tumour spheroids, we are concerned primarily with

variations of cell density in one particular direction (the

radial direction).

This then motivates us to formulate a projected one-

dimensional PCF to analyse three-dimensional spatial point

patterns with respect to the directions (radial, polar and azi-

muthal) of the spherical coordinates. In the derivation of this

PCF, the (usual) conditions of stationarity and isotropy are

relaxed because the projected point processes are in general

non-stationary and anisotropic. We examine the accuracy of

our method by estimating the PCF for simulated CSR and

regular spatial patterns in the spherical coordinate system.

In addition, we generate synthetic datasets of cell distri-

butions in tumour spheroids, and demonstrate that the PCF

can accurately identify the necrotic zone boundary. This

helps with the interpretation and analysis of the PCF results

for nine experimental datasets, which provide a ‘proof of

concept’ for the usefulness of our approach.
2. Mathematical methods
We derive a projected one-dimensional (non-periodic) PCF to

analyse three-dimensional spatial point patterns described in

spherical coordinates, ðr, u,fÞ. The aim is to use a sample of

N data points to estimate the PCF of the underlying point

process. The sample, or point pattern, is a finite subset of

three-dimensional space that we can define by

S ¼ fbi
~
¼ ðri,ui,fiÞj0 � ri � R, 0 � ui � p, 0 � fi , 2p,

i ¼ 1,2, . . . , Ng,

where bi
~

is the position vector of the ith sample point, and

R ¼ maxðriÞ for i ¼ 1,2, . . . ,N. Without loss of generality, we

consider the projection, Q, of S onto the interval [0, L], to

obtain the projected point pattern

Sa ¼ fai ¼ Qðbi
~
Þjai [ ½0, L�, i ¼ 1,2, . . . ,Ng,

where ai is the projected position of the ith sample point.

Note that for the radial, polar and azimuthal projections,

we have ai ¼ ri and L ¼ R, ai ¼ ui and L ¼ p, and ai ¼ fi

and L ¼ 2p, respectively. The approach now taken in deriv-

ing the PCF is based on normalizing the proportion of

pairs of projected data points, GðDaÞ, that are separated by

a distance Da in Sa. The normalization is with respect to the

probability of observing such pairs in the projection of the

Poisson process, �GðDaÞ. Owing to the discrete nature of

points, GðDaÞ has to be estimated using the average over an

interval (numerator of GðDaÞ in equation (2.1)). The quantities

GðDaÞ and �GðDaÞ are analogous to the numerator and

denominator in equation (1.1).

To evaluate GðDaÞ, we introduce the bandwidth h, and

obtain the expression

GðDaÞ ¼
ð1=hÞ

PN
i¼1

PN
j.i 1(0,h]ðjaj � aij � DaÞ

N
2

� � , ð2:1Þ

where

1ð0,h�ðxÞ ¼
1 if x [ ð0,h�
0 otherwise:

�
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Note that the denominator in equation (2.1) accounts for

the total number of all possible combinations of pairs of

data points.

To evaluate �GðDaÞ, we first consider the homogeneous

Poisson process, P, which is synonymous with CSR. Depend-

ing on the form of the projection operator, Q, the projection of

the Poisson process, Pa, can be non-stationary and anisotropic

(e.g. radial projection). However, as P is the Poisson process,

the probability density function fa for the projected points of

Pa is known. The projected points, Pa, can be considered as

samples drawn from a random variable A with probability

density function fa.

In order to find the probability of having a pair of

points that are separated by a distance Da in Pa, we can use

the density at a location a [ ½0, L�, and the cumulative distri-

bution of the points in the intervals ðaþ Da, aþ Daþ h�
and ½a� Da� h, a� DaÞ. Integrating over the interval [0, L]

then gives

�GðDaÞ ¼ 1

h

ðL�Da

0

faðaÞPðaþ Da , A , aþ Daþ hÞda

þ 1

h

ðL

Da
faðaÞPða� Da� h , A , a� DaÞda:

ð2:2Þ

As the probability of finding a pair of points a distance Da
apart does not depend on the order of counting the possible

pairs (left-wise or right-wise), it can be shown that the two

integrals in equation (2.2) are equal. When written in terms

of the probability density function, equation (2.2) becomes

�GðDaÞ ¼ 2

h

ðL�Da

0

faðaÞ
ðaþDaþh

aþDa
faðtÞdt da: ð2:3Þ

Using equations (2.1) and (2.3), the estimate of the

non-periodic PCF is then given by

gðDaÞ ¼ GðDaÞ
�GðDaÞ

, ð2:4Þ

where the probability density function, fa, for each of the

three projections is

frðrÞ ¼
3r2

R3
for r [ ½0, R�

0 otherwise,

8<
:

fuðuÞ ¼
sin ðuÞ

2
for u [ ½0, p�

0 otherwise,

8<
:

and ffðfÞ ¼
1

2p
forf [ ½0, 2pÞ

0 otherwise:

8<
:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

ð2:5Þ
2.1. Complete spatial randomness and regular spatial
patterns

The method is validated by evaluating the non-periodic PCF,

equation (2.4), for simulated CSR and regular spatial patterns

within a sphere of radius R. The point patterns are shown in

the panels of the top row of figure 2. From left to right they

are: (i) CSR pattern, (ii) segregated clusters of points in

spherical shells, (iii) segregated clusters of points that are

locally aggregated around prescribed angles of f, and (iv)

segregated clusters of points in conical shells. The three

panels directly below each test pattern in figure 2 correspond
to the PCF evaluation of the radial, azimuthal and polar

projections from 1000 simulations.

At short and intermediate length-scales the results for

the simulated CSR pattern, in the first column of figure 2,

indicate that there is no spatial structure (in any direction)

as g � 1. However, we see that there is significant deviation

from unity in the PCF signals at large distances. This devi-

ation at large distances appears to be inconsistent with our

formulation of the PCF, as we might expect the signal to be

close to unity at all distances. The explanation for this dis-

parity is the division of small numbers in equation (2.4),

where the observed frequency and expected frequency of

pairs of points at large distances are both small. The results

show that the non-periodic PCF is a reliable predictor of

CSR at short and intermediate length-scales.

We now consider the regular spatial patterns. They were

chosen such that for each spatial pattern there is only spatial

structure expected in one of the three corresponding pro-

jected patterns. For example, we discuss the results for the

points distributed in spherical shells, in the second column

of figure 2. As expected, the PCF indicates that there is no

spatial structure for the azimuthal and polar projections

(figure 2g,h). For the radial projection (figure 2f ), we see a

series of five decreasing peaks for increasing values of Dr
in the PCF. The highest peak at Dr ¼ 0 corresponds to

pairs of points within each of the five spherical shells (e.g.

pairs of red points, pairs of green points, etc.). The smallest

peak at Dr ¼ 200 corresponds to a pair of points with one

point belonging to the innermost spherical shell (red) and

the other to the outermost spherical shell (black). Further

information about the spatial patterning can be easily

obtained from the signal (e.g. the distance between the

peaks in the signal is a measure of distance between the

spherical shells). A similar discussion holds for the two sets

of results in the last two columns of figure 2. This demon-

strates the application of the PCF to quantify spatial

structures in point patterns.
2.2. Periodic pair-correlation function
In our analysis of the simulated CSR point pattern of figure 2,

we observed that the non-periodic PCF, equation (2.4), had

significant deviations from unity at large distances—due to

the low frequency of occurrence of large separations. This

can lead to the incorrect assessment that a point pattern has

spatial structure at large distances. This problem of the div-

ision of small numbers at large distances can be overcome

by defining a periodic PCF.

Following the work of Agnew et al. [19] (and others), we

re-define the distance between two points in equation (2.1) as

jjaj � aijj ¼ minðjaj � aij,L� jaj � aijÞ
for i = j [ f1, . . . ,Ng,

ð2:6Þ

with the consequence that

0 � jjaj � aijj �
L
2
:

Using equations (2.1) and (2.6), the proportion of pairs of data

points, GpðDaÞ, separated by a distance Da is given by

GpðDaÞ ¼
ð1=hÞ

PN
i¼1

PN
j.i 1(0,h]ðjjaj � aijj � DaÞ

N
2

� � : ð2:7Þ



xy

z

0 100 200 300 400 500 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500

0.5

1.0

1.5

0.5

1.0

1.5

0.5

1.0

1.5

g
(D

r)

Dr Dr Dr Dr

0 2 4 6

0 1 2 3 0 1 2 3 0 1 2 3 1 2 3

0 2 4 6 2 4 6 0 2 4 6
Df Df Df Df

g
(D

f)
g

(D
q)

0.95

1.00

1.05

0.95

1.00

1.05

0.95

1.00

1.05

0.90

0.95

1.00

1.05

1.10

0.90

0.95

1.00

1.05

1.10

0.90

0.95

1.00

1.05

1.10

xy

z

0

2

4

6

x

y

0

2

4

6

0

2

4

6

xy

z

Dq Dq Dq Dq

(e)

( f )(b)

(a)

(c)

(d )

(i)

(k)

(n)

(m)

(o)

(p)(l)

( j)

(g)

(h)

Figure 2. CSR and regular point patterns, h ¼ L/50. (a) CSR pattern, (e) segregated clusters of points in spherical shells, (i) segregated clusters of points that are
locally aggregated around prescribed angles of f, and (m) segregated clusters of points in conical shells. In the CSR pattern, N ¼ 5000 and R ¼ 500. In all of the
regular patterns, N ¼ 1000. The centres of clusters are equally spaced with distance (e) R/10, (i) p=5, (m) p=10, and the points are distributed uniformly in each
cluster in an interval of size (e) R/100, (i) p=50, (m) p=50. The remaining rows are for the averaged non-periodic PCF from 1000 simulated patterns. (b,f,j,n) Radial
projection. (c,g,k,o) Azimuthal projection. (d,h,l,p) Polar projection. (Online version in colour.)
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This implies that the number of pairs of points separated by a

distance L� Da will be added to the number of pairs of points

separated by a distance Da (for Da � L=2). Therefore, we also

need to re-formulate the normalization term for the periodic

PCF, which yields

�GpðDaÞ ¼ 2

h

ðL�Da

0

faðaÞ
ðaþDaþh

aþDa
faðtÞdt da

þ 2

h

ðDa

0

faðaÞ
ðaþL�Da

aþL�Da�h
faðtÞdt da:

ð2:8Þ

Equations (2.7) and (2.8) then give the periodic PCF

gpðDaÞ ¼
GpðDaÞ
GpðDaÞ

: ð2:9Þ

When evaluating the periodic PCF, equations (2.9), for the simu-

lated CSR pattern in figure 2, we observed a reduction in the

deviations from unity at large distances (results not shown).

For the azimuthal projection, the periodic distance that

separates two points has a clear physical interpretation. It is

simply the acute angle that separates the two points ai and
aj (i = j). However, the physical interpretation of the distance

at which departures from unity occur in the periodic PCF for

the radial and polar projections are, in isolation, unclear. This

is because the periodic PCF cannot distinguish the distances

L� Da and Da. Therefore, we evaluate both the non-periodic

PCF and periodic PCF for synthetic (§3) and experimental

datasets of cell distributions within a tumour spheroid (§4).
3. Synthetic tumour spheroids
We first analyse synthetic tumour spheroid datasets, to help

with interpreting the PCFs for the nine experimental datasets.

A spatial model is used to generate point patterns with two

zones of uniform density. For each synthetic dataset, a total

of N points are distributed within a sphere of radius R. The

points are distributed under the assumption that there are

two zones of uniform cell density, partitioned by a radial

distance, r¼ B, representing the necrotic zone boundary. The

inner zone, r , B, is the necrotic zone of the synthetic

tumour. The outer zone, B , r , R, corresponds to a viable

zone (i.e. the quiescent and proliferative zones together).
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To ensure that the viable zone has a larger cell density than the

necrotic zone, we distribute uniformly at random N � DN
points throughout the entire spatial domain, along with

additional DN points in the viable zone only. There is no spatial

structure in the azimuthal and polar projections of the synthetic

datasets. Therefore, we analyse the radial projection of the

synthetic datasets with the non-periodic and periodic PCF.

As the point process is known for the synthetic tumour

spheroids, we can derive analytic expressions for the non-

periodic and periodic PCF, see electronic supplementary

material, appendix A. Results for four values of the necrotic

boundary are shown in figure 3. We observe that the distance

at which a slope discontinuity occurs in the non-periodic PCF

(figure 3a), Dr ¼ s, uniquely identifies the width of the viable

zone, W ¼ s. This means that the necrotic boundary,

B ¼ R�W , can be identified from the non-periodic PCF. But

the slope discontinuity in the periodic PCF (at Dr ¼ s in

figure 3b) identifies either the width of the viable zone, W¼ s,
or the necrotic boundary, B¼ s, with the non-uniqueness being

due to periodicity, as discussed in §2. Therefore, we cannot

uniquely determine the necrotic zone boundary from the dis-

tance at which the slope discontinuity occurs in the periodic PCF.

We now examine estimates of the non-periodic and peri-

odic PCF from samples of 1000 synthetic tumour spheroids.

The central slice from synthetic tumour spheroids for four

values of the necrotic boundary are shown in the first row

of figure 4, where the difference in density between the necro-

tic and viable zones is visually undetectable (i.e. visually

indistinguishable from CSR spatial patterning). In the

panels of the second and third row, directly below each test

pattern, are the corresponding average non-periodic and per-

iodic PCFs (solid curves). The upper and lower broken curves

are the 95% confidence intervals, which are the 97.5 and

2.5 percentiles of the 1000 simulations. The arrows identify

critical points in the estimates of the PCFs, similar to that

seen for the points of slope discontinuity in the continuous

PCFs (figure 3).

At short to moderate distances, we find a comparable

amount of (small) variability in both the non-periodic and

periodic PCFs (broken curves, second and third rows,

figure 4). However, at moderate to large distances there is a

much greater variability in the non-periodic PCF than that

of the periodic PCF. This implies that we have greater confi-

dence inferring salient features of the periodic PCF at large

distances. It is therefore advantageous to examine both

PCFs together when assessing the spatial pattern of tumours.
To assess the PCFs of the synthetic tumour spheroids, it is

useful to consider statistical significance of the results, i.e. our

confidence in distinguishing the results from the CSR state

(null case). This is done by presenting the 2.5 and 97.5 percen-

tiles of the PCFs of simulated CSR point patterns (the grey

regions in the second and third rows of figure 4). In each

case, 1000 CSR point patterns are generated with the same

number of points as the synthetic spheroid. Then, a point

pattern’s PCF signal found within the grey region could be

interpreted as not distinctive from the CSR point process.

Therefore, this makes it difficult to estimate the critical points

of the PCFs with just one point pattern (or a small sample

size) for B¼ 100 in figure 4b,c, where the broken curves essen-

tially bound the grey CSR regions. By contrast, the two broken

curves at the critical points in figure 4j,k,n,o both lie below the

grey CSR region. This indicates that it is possible to provide an

estimate of the necrotic boundary from just one point pattern in

the cases when B¼ 300 and B¼ 400. We note that this contrast

is mainly due to the difference in density between the necrotic

and viable zones, rather than the increase in the necrotic

boundary (see electronic supplementary material, appendix B,

for a fixed value of B¼ 200 and varying DN).

The statistical significance of the PCF results is further

examined by comparison to those for the normalized density

[35]. This first-order statistic is derived by considering the

proportion of points at a distance r from the origin

FðrÞ ¼
ð1=hÞ

PN
i¼1 1ð0,h�ðri � rÞ

N
: ð3:1Þ

Equation (3.1) is normalized by the radial projection of a

Poisson process

�FðrÞ ¼ 1

h

ðrþh

r

3r2

R3
dt ¼ ðrþ hÞ3 � r3

hR3
,

to obtain the normalized density

f ðrÞ ¼ FðrÞ
�FðrÞ

: ð3:2Þ

In the bottom row of figure 4, three of the four critical points

lie within the grey CSR region and the broken curves essen-

tially bound the grey CSR region. This illustrates that it is

difficult to provide an estimate of the necrotic zone boundary

from just one point pattern (or small sample size) with the nor-

malized density, demonstrating a greater confidence in the

statistical significance of the second-order PCF method.
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periodic PCF, solid curves. (d,h,l,p) Average normalized density, solid curves. The upper and lower broken curves are for the 97.5 and 2.5 percentiles, and the arrows are
for the known distances of the critical points. The shaded region is for the 97.5 and 2.5 percentiles of 1000 CSR point patterns. (Online version in colour.)
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4. Real tumour spheroids
We have shown that the PCF method can provide a reliable

estimate of the (known) radial distance of the necrotic zone

boundary, B, from the centre of a synthetic tumour spheroid.

However, in practice, there are two important distinctions to

consider when examining real tumour spheroids.

The first distinction is that real tumour spheroids can be

ellipsoidal in shape, for example, see figure 5. Therefore, we

consider an ellipsoidal spatial domain centred at the origin

of a Cartesian coordinate system and aligned with the axes,

x2

X2
þ y2

Y2
þ z2

Z2
� 1,

where X, Y, Z are the lengths of the three semi-principle axes.

We now project, or map the points to the interval [0, 1] via

a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

X2
þ y2

Y2
þ z2

Z2

s
, with 0 � a � 1: ð4:1Þ
The previous PCF analysis for the radial distance of

spherical synthetic tumours holds for this non-dimensional

problem, with r ¼ a and R ¼ 1 in equation (2.5). Therefore,

we can estimate the dimensionless necrotic zone boundary,
~B � 1, for this projection of the data points. The inverse map-

ping then provides estimates for the lengths of the three

semi-principle axes of the ellipsoidal necrotic zone boundary

BX ¼ ~BX, BY ¼ ~BY and BZ ¼ ~BZ: ð4:2Þ

The second distinction is that the necrotic zone boundary in a

real tumour spheroid is unknown, but it can be estimated

by a human expert. Without prior knowledge of the PCF

estimates, human expert estimates for the necrotic zone

boundary in nine tumour spheroids were obtained (table 2).

In addition to this, we automate the data collection process

and subsequent evaluation of the PCF estimates of the necro-

tic zone boundary for each tumour (see §§4.1 and 4.2).

Together, this allows for an unbiased comparison between
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Figure 5. Central image slice and corresponding point pattern analysis for one tumour spheroid from each of the three groups. The rows top to bottom correspond
to Ia, IIa and IIIa, respectively. The first column is the central slice of the tumour spheroids. The unit of the length in the images is a micrometre. The white curves
superimposed on the central image slices outline the necrotic zone identified by a human assessor. The second and third columns are the non-periodic PCF and
periodic PCF respectively, h ¼ 0.02. The blue curves are for the PCF statistics. The black curves are the analytic PCFs best fit to the statistics (blue curves), using a
nonlinear least-squares method. The shaded region is for the 97.5 and 2.5 percentiles of 1000 CSR point patterns. (Online version in colour.)
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the human expert and PCF estimates of the necrotic zone

boundary for each tumour (tables 2 and 3).

4.1. Experiments and data collection
Nine homotypic tumour spheroids were formed from the

breast cancer cell line T47D by the liquid overlay method

[36]. An initial number, Ns, of seed cells (table 1) together

with medium were placed in a convex well, which is coated

with a non-adhesive layer. Mature spheroids were obtained

after being cultured for 12 days in the incubator, each with

Ne number of cells (table 1). The spheroids were then

removed from the wells, fixed, stained with Draq 5 to label
the nuclei, and optically cleared. Imaging of the spheroids

was performed with a digital scanned laser light-sheet fluor-

escence microscope [37]. They were categorized, by visual

inspection, into three groups: (i) spheroids with no visible

necrotic core, (ii) spheroids with a small necrotic core and,

(iii) spheroids with a large necrotic core. A central slice of

the image stack of one tumour spheroid from each of the

three groups is shown in figure 5, with central slices from

the remaining six tumour spheroids presented in electronic

supplementary material, figure S2 (appendix C).

The point patterns or raw datasets are the positions

of the nuclei of the cells. Detecting the cell nuclei in the



Table 1. Data for nine tumour spheroids. Group I: no visible necrotic core. Group II: small necrotic core. Group III: large necrotic core. X, Y, Z are the lengths of the
three semi-principle axes in micrometres for each ellipsoidal spatial domain. Ns is the number of initially seeded cells for each tumour spheroid. Ne is the total number
of cells in the raw dataset for each mature tumour spheroid. N is the number of cells in each data subset (i.e. ellipsoidal spatial domain) used in the spatial analysis.

group I group II group III

Ia Ib Ic IIa IIb IIc IIIa IIIb IIIc

X 93 102 114 173 173 145 169 190 169

Y 115 107 149 190 176 201 250 196 233

Z 110 88 133 145 159 178 218 165 180

Ns 500 1000 2000 5000 5000 5000 10 000 10 000 10 000

Ne 4597 3983 10 334 25 806 23 739 25 943 36 732 32 916 35 200

N 3607 3127 7900 16 356 15 593 17 864 30 555 21 226 24 729

0.2 0.4 0.6 0.8 1.00
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3
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Figure 6. Removal of data points associated with the irregularities of the surface for three tumour spheroids. Points with a . ~A are removed from the raw datasets.
(a) Tumour spheroid Ia, ~A ¼ 0:94. (b) Tumour spheroid IIa, ~A ¼ 0:80. (c) Tumour spheroid IIIa, ~A ¼ 0:94. (Online version in colour.)
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three-dimensional images of the spheroids is achieved by

applying a custom multi-scale Laplacian of Gaussian (LoG)

detection algorithm [38]. Further details of the detection

method can be found in the electronic supplementary

material, appendix D.

Subsets of the raw data points are obtained by removing

data points associated with the irregularities of the surface of

the tumour spheroids. For each data subset, a spatial domain

is defined by an ellipsoid centred at the origin with the three

semi-principal axes aligned with the Cartesian axes. This is

done systematically. (i) Find the smallest convex set of

points (i.e. the convex hull) that contains all the raw data

points [39]. (ii) Fit an ellipsoid to the convex hull, using a

linear least-squares algorithm [40], to obtain initial estimates

of the lengths of the three semi-principal axes, X�, Y� and Z�,
with X� � Y�. (iii) The origin is chosen as the centre of mass

in each dataset. The MATLAB function #pca is used to find

three orthogonal directions (principle components) in

which each dataset has the largest variances. The point

pattern is then rotated so that the three principle axes of

each dataset coincide with the Cartesian coordinate system

[41]. (iv) The data points are projected onto the interval

[0, 1] using equation (4.1), with X ¼ X�, Y ¼ Y� and

Z ¼ Z�. The global maximum of F(a), given by equation

(3.1), provides an estimate of the non-dimensional distance,

a ¼ ~A, associated with the surface irregularities of each

tumour spheroid (figure 6). (v) Data points with a . ~A are

removed from each raw dataset and the inverse map,

equation (4.2), provides the lengths of the three semi-

principal axes, X ¼ ~AX�, Y ¼ ~AY� and Z ¼ ~AZ�, (with

X � Y) for the ellipsoidal spatial domains (table 1).
The subsets of N data points for each of the nine tumours

(see electronic supplementary material, appendix E) are

subsequently analysed with the PCF methods.
4.2. Spatial analysis
The nine subsets of data points, with ellipsoidal

spatial domains, are mapped to the interval [0, 1] using

equation (4.1). The non-periodic and periodic PCFs (blue

curves) are shown in figure 5, and electronic supplementary

material figure S2 (appendix C). The PCFs for the real

tumour spheroids can be examined in a similar way to that

of the synthetic tumour spheroids, as discussed in §3.

However, unlike the synthetic tumour spheroids, the non-

dimensional necrotic zone boundary, ~B, is unknown in the

real tumour spheroids. Additionally, it is difficult to provide

an estimate of the necrotic zone boundary by visual examin-

ation of the PCFs alone. To overcome this difficulty, and to

automate the PCF estimates of necrotic zone boundary, we

fit the analytical PCFs (see electronic supplementary material,

appendix A) to the statistical PCFs. A nonlinear least-squares

method with two parameters DN and ~B is used to find the

best fit (e.g. see black curves in figure 5). The point at

which there is slope discontinuity in the fitted PCF is taken

as the critical point used in determining the estimates for

the necrotic zone boundary, ~B. Equation (4.2) gives estimates

for the lengths, BX, BY and BZ, of the three semi-principle

axes of the ellipsoidal necrotic zone boundary in each

tumour spheroid. The two lengths BX and BY (with

BX � BY) for each tumour spheroid are recorded in the

second and third row of table 2.



Table 2. Necrotic zone boundary estimates in micrometres for the nine tumour spheroids. The italicized PCF estimates are for fitted PCFs (and therefore critical
points) that reside within the 97.5 and 2.5 percentiles of 1000 CSR point patterns (e.g. see first row of results for spheroid Ia in figure 5).

group I group II group III

Ia Ib Ic IIa IIb IIc IIIa IIIb IIIc

human BX — — — 36 36 34 81 83 93

BY — — — 43 40 53 138 90 128

non-periodic PCF BX 12 6 23 42 46 34 94 92 96

BY 15 6 30 46 47 46 140 94 132

periodic PCF BX — — 52 42 49 30 94 101 95

BY — — 69 46 50 42 139 104 131

DBSCAN BX 84 — — 43 47 33 77 74 80

BY 103 — — 47 48 45 114 77 110

Table 3. Percentage difference in computed estimates relative to the human estimates, for group II and III tumour spheroids. The smallest (absolute)
percentage differences are italicized. The rightmost column shows the average (absolute) percentage difference for each method.

group II group III

IIa (%) IIb (%) IIc (%) IIIa (%) IIIb (%) IIIc (%) average (%)

non-periodic PCF BX 15.9 26.9 0.1 16.5 10.7 3.2 12.2

BY 7.6 18.2 212.5 1.4 4.7 3.5 8

periodic PCF BX 15.9 35.2 211.8 16.5 21.6 2.1 17.2

BY 7.6 25.8 220.1 0.6 15.9 2.7 12.1

DBSCAN BX 18.1 30.7 24.2 24.1 210.6 213.8 13.6

BY 10.0 21.2 214.1 217.1 214.7 213.4 15.1
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The italicized PCF estimates in table 2 are for fitted PCFs

(and therefore critical points) that reside within the CSR

shaded regions (e.g. see black curves for spheroid Ia in

figure 5). This means that we can reject these estimates as they

may be considered as not distinctive from the CSR point pro-

cess. This is the case for all three group I tumour spheroids

with no visible necrotic cores, and because the group I

tumour spheroids are the smallest in size it is reasonable to

infer that the innermost cells still have sufficient nutrient and

oxygen to remain viable [42].

We compare the non-periodic and periodic PCF estimates for

BX and BY with those of a human. The human estimates are based

on visual examination of a central image slice of each tumour,

where white curves are superimposed onto the images to identify

the necrotic core boundary in each tumour spheroid (e.g. see cen-

tral image slices in figure 5). Fitting an ellipse to the white curves

in each image then provides human estimates for BX and BY,

which are shown in the first row of table 2.

Recorded in table 3 (first and second rows) are the percen-

tage difference in the PCF estimates relative to the human

estimates for the group II and III tumour spheroids, with vis-

ible necrotic cores. The averaged results (rightmost column)

show that the non-periodic PCF estimates have the smallest

(absolute) percentage difference, when compared with

those of the human. A similar result is found when calculat-

ing the overall mean squared error (MSE) for each PCF
method; non-periodic PCF MSE ¼ 45 and periodic PCF

MSE ¼ 96. We believe that the main difference between the

PCF and human estimates can be attributed to the fact that

the human estimates are based on a single two-dimensional

central slice of each spheroid, whereas the PCF estimates

are based on the three-dimensional point pattern data of

each spheroid. Other contributing factors in the percentage

difference are likely to include the processing method of the

raw data and the spatial model used for the estimation of

the critical point in the PCFs. We also note that there appears

to be a positive bias in the estimates (21 out of 24 in table 3),

and further investigation of this is left to future research.

To conclude the analysis, we implement an existing

method commonly used to evaluate spatial clustering, using

the three-dimensional point pattern data of each spheroid.

The density-based spatial clustering of applications with noise

(DBSCAN) algorithm classifies points in high-density regions

(e.g. viable zone) as a cluster [16]. Points that are in low-density

regions (e.g. necrotic zone) are classified as outliers. A subset of

outliers for each tumour spheroid is used to calculate the

DBSCAN estimates shown in the bottom row of table 2 (see

electronic supplementary material, appendix F). The difference

in the DBSCAN and human estimates is comparable to the

difference in the PCF and human estimates (see bottom row

of table 3), with an overall MSE¼ 138. The results demonstrate

that the PCF method is a potentially useful alternative to



r
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existing standard clustering methods in providing estimates for

the necrotic zone boundary in tumour spheroids.
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5. Discussion
We have derived one-dimensional non-periodic and periodic

PCFs for the radial, azimuthal and polar projections of a point

pattern. This is different from the usual Euclidean distance

based PCF [25–29]. Analysis of spatial structure with one-

dimensional PCFs is useful in situations where the Euclidean

distance is not the main quantity of interest, as is the case in

identifying the necrotic zone boundary in tumour spheroids.

We analysed synthetic tumour spheroids (i.e. simulated

datasets) with our PCFs to illustrate the methodology for iden-

tifying the necrotic zone boundary. It was found that a critical

point (at which there is a slope discontinuity) in the non-peri-

odic PCFs corresponds to the width of the viable zone in

synthetic tumour spheroids, and this allows us to identify the

necrotic zone boundary. However, for small sample sizes,

when the non-periodic PCF is used, the critical point can be

obscured by noise (at large distances). Using the periodic PCF,

we reduced the noise in the PCFs, but with the drawback that

the critical point corresponds to either the width of the viable

zone, or the necrotic zone boundary itself. However, by examin-

ing both the non-periodic and periodic PCFs, we are able to

provide a more statistically significant (i.e. it lies farther from

CSR) estimate of the necrotic zone boundary than that obtained

using the normalized cell density.

The PCF method was modified to provide estimates for

the lengths of the three semi-principle axes of an ellipsoidal

shaped necrotic zone boundary, and then applied to three-

dimensional point patterns of nine experimental tumour

spheroids. The PCF estimates were compared with those of

a human and the DBSCAN method [16]. The primary differ-

ence in the computed and human estimates was attributed to

the human estimates being based only on a two-dimensional

slice (image) of each tumour spheroid. The average percen-

tage differences of the PCF and DBSCAN method were

comparable (see rightmost column in table 3), and this

demonstrates that the PCF method potentially has merit as

an alternative to the existing DBSCAN method.

The focus of this study has been to provide estimates for

the radial distance(s) of the necrotic core boundary from the

centre of a tumour spheroid. These estimates provide a

simple metric to classify and categorize tumour spheroids,

which has potential application to high-throughput compara-

tive assays [8–10]. For example, the PCF method could be

used to investigate population-level variability in the size of

the necrotic zone by using a larger sample of mature

tumour spheroids from the same cell line, grown from the

same number of seeded cells. This would allow one to

study differences in nutrient consumption between cell
types, or the effects of different cell culture methods, or

drug treatments. The automatic evaluation of PCF estimates

has clear advantage over manual human estimates in the

assessment of such high-throughput comparative assays.

The PCF method also has two main advantages over the

DBSCAN method. The first being that the DBSCAN method

is semi-automatic, requiring human input for each tumour

spheroid analysed. The second advantage is that only the

PCF method provides reliable estimates for point pattern

data that is visually indistinguishable from the CSR point

process (see electronic supplementary material, appendix F).

Although this work is concerned with homotypic spher-

oids there are approaches that aim at more complex

spheroids, including different cell types and heterogeneities

in the microenvironment. Our data analysis can be readily

applied to datasets from such complex spheroids. Further-

more, adjusting the segementation method would allow for

the extraction of cell position information from histological

stains and enable the analysis of sections of cancer patient

tumours. Therefore, the PCF method could potentially have

a role in diagnostic testing and personalized cancer treatment.

More generally, and in addition to the estimates for the

necrotic zone boundary, it is important to understand that the

PCFs can provide multi-scale spatial information on tumour

spheroids (e.g. figure 2). Previous studies have shown that the

PCF is close to a sufficient summary statistic, essentially captur-

ing all the spatial information in a given point pattern [34,43].

Therefore, our PCF method could be implemented in combi-

nation with inferencing algorithms such as approximate

Bayesian computation [43], which require close to sufficient

summary statistics, to parametrize tumour growth models for

specific cell types and culture conditions [11–14].
Competing interests. We declare we have no competing interests.

Funding. The work of S.D. and J.E.F.G. was supported by an Australian
Research Council Discovery Early Career Researcher Award
(DE130100031) to J.E.F.G. S.D. also acknowledges a University of Ade-
laide Full Fees Scholarship. B.J.B. was supported by a National Health
and Medical Research Council Project grant no. (APP1069757) and
Australian Research Council Discovery Project Grant (DP160102644).
N.G.B. was supported by the Australian Research Council Centre of
Excellence for Mathematical and Statistical Frontiers (CE140100049).
S.C.F., C.M., A.S. and E.H.K.S. are supported by the Deutsche
Forschungsgemeinschaft (DFG) and the Cluster of Excellence for
Macromolecular Complexes (CEF-MC II, EXC115).

Authors’ contributions. The experiments were conceived and designed by
C.M. and E.H.K.S. The experiments were performed by C.M. and the
data analysis performed by A.S. The PCF method was conceived and
designed by S.D., B.J.B., J.E.F.G. and N.G.B., with input from S.C.F.
The mathematical derivations, numerical computations and
interpretation of results were carried out by S.D. under the guidance
of B.J.B., J.E.F.G., N.G.B. and S.C.F. The manuscript was written
by S.D., B.J.B., J.E.F.G., S.C.F. and N.G.B. All authors edited the
manuscript and approved submission.
References
1. Hirschhaeuser F, Menne H, Dittfeld C, West J,
Mueller-Klieser W, Kunz-Schughart LA. 2010
Multicellular tumor spheroids: an underestimated
tool is catching up again. J. Biotechnol. 148, 3 – 15.
(doi:10.1016/j.jbiotec.2010.01.012)
2. Mueller-Klieser W. 1987 Multicellular spheroids.
J. Cancer Res. Clin. Oncol. 113, 101 – 122. (doi:10.
1007/BF00391431)

3. Sutherland RM. 1988 Cell and environment
interactions in tumor microregions: the multicell
spheroid model. Science 240, 177 – 184. (doi:10.
1126/science.2451290)

4. Loessner D, Stok KS, Lutolf MP, Hutmacher DW,
Clements JA, Rizzi SC. 2010 Bioengineered 3D
platform to explore cell – ECM interactions and drug

http://dx.doi.org/10.1016/j.jbiotec.2010.01.012
http://dx.doi.org/10.1007/BF00391431
http://dx.doi.org/10.1007/BF00391431
http://dx.doi.org/10.1126/science.2451290
http://dx.doi.org/10.1126/science.2451290


rsif.royalsocietypublishing.org
J.R.Soc.Interface

13:20160649

11
resistance of epithelial ovarian cancer cells.
Biomaterials 31, 8494 – 8506. (doi:10.1016/j.
biomaterials.2010.07.064)

5. Blacher S et al. 2014 Cell invasion in the spheroid
sprouting assay: a spatial organisation analysis
adaptable to cell behaviour. PLoS ONE 9, e97019.
(doi:10.1371/journal.pone.0097019)

6. Vinci M et al. 2012 Advances in establishment and
analysis of three-dimensional tumor spheroid-based
functional assays for target validation and drug
evaluation. BMC Biol. 10, 29. (doi:10.1186/1741-
7007-10-29)

7. Dairkee SH, Deng G, Stampfer MR, Waldman FM,
Smith HS. 1995 Selective cell culture of primary
breast carcinoma. Cancer Res. 55, 2516 – 2519.

8. Deisboeck T, Berens M, Kansal A, Torquato S,
Stemmer-Rachamimov A, Chiocca E. 2001 Pattern of
self-organization in tumour systems: complex
growth dynamics in a novel brain tumour spheroid
model. Cell Prolif. 34, 115 – 134. (doi:10.1046/j.
1365-2184.2001.00202.x)

9. Dufau I et al. 2012 Multicellular tumor spheroid model
to evaluate spatio-temporal dynamics effect of
chemotherapeutics: application to the gemcitabine/
CHK1 inhibitor combination in pancreatic cancer. BMC
Cancer 12, 15. (doi:10.1186/1471-2407-12-15)

10. Garg S, Fischer S, Schuman E, Stelzer E. 2015
Lateral assembly of N-cadherin drives tissue
integrity by stabilizing adherens junctions. J. R. Soc.
Interface 12, 20141055. (doi:10.1098/rsif.2014.1055)

11. Araujo R, McElwain D. 2004 A history of the study
of solid tumour growth: the contribution of
mathematical modelling. Bull. Math. Biol. 66,
1039 – 1091. (doi:10.1016/j.bulm.2003.11.002)

12. Casciari JJ, Sotirchos SV, Sutherland RM. 1992
Mathematical modelling of microenvironment and
growth in EMT6/Ro multicellular tumour spheroids.
Cell Prolif. 25, 1 – 22. (doi:10.1111/j.1365-2184.
1992.tb01433.x)

13. Grimes DR, Kelly C, Bloch K, Partridge M. 2014 A
method for estimating the oxygen consumption rate
in multicellular tumour spheroids. J. R. Soc.
Interface 11, 20131124. (doi:10.1098/rsif.2013.1124)

14. Stein AM, Demuth T, Mobley D, Berens M, Sander
LM. 2007 A mathematical model of glioblastoma
tumor spheroid invasion in a three-dimensional in
vitro experiment. Biophys. J. 92, 356 – 365. (doi:10.
1529/biophysj.106.093468)

15. Stelzer EHK. 2015 Light-sheet fluorescence
microscopy for quantitative biology. Nat. Methods
12, 23 – 26. (doi:10.1038/nmeth.3219)

16. Ester M, Kriegel HP, Sander J, Xu X. 1996 A density-
based algorithm for discovering clusters in large
spatial databases with noise. In Proc. of the Second
International Conf. on Knowledge Discovery and Data
Mining (KDD), Portland, Oregon, vol. 96, pp. 226 –
231. See http://www.aaai.org/Papers/KDD/1996/
KDD96-037.pdf.

17. Hartigan JA, Wong MA. 1979 Algorithm AS 136:
A K-means clustering algorithm. Appl. Stat. 28,
100 – 108. (doi:10.2307/2346830)

18. Jain AK, Dubes RC. 1988 Algorithms for clustering
data. Upper Saddle River, NJ: Prentice-Hall, Inc.

19. Agnew DJG, Green JEF, Brown TM, Simpson MJ,
Binder BJ. 2014 Distinguishing between
mechanisms of cell aggregation using pair-
correlation functions. J. Theor. Biol. 352, 022705.

20. Binny RN, Plank MJ, James A. 2015 Spatial moment
dynamics for collective cell movement incorporating
a neighbour-dependent directional bias. J. R. Soc.
Interface 12, 20150228. (doi:10.1098/rsif.2015.0228)

21. Fozard JA, Kirkham GR, Buttery LD, King JR, Jensen
OE, Byrne HM. 2011 Techniques for analysing
pattern formation in populations of stem cells and
their progeny. BMC Bioinform. 12, 396. (doi:10.
1186/1471-2105-12-396)

22. Mattfeldt T, Gottfried HW, Frey H, Vogel U. 1993
Second-order stereology of prostatic
adenocarcinoma and normal prostatic tissue.
Acta Stereol. 12, 203 – 208.

23. Riedel IH, Kruse K, Howard J. 2005 A self-organized
vortex array of hydrodynamically entrained sperm
cells. Science 309, 300 – 303. (doi:10.1126/science.
1110329)

24. Treloar KK, Simpson MJ, Binder BJ, McElwain DS,
Baker RE. 2014 Assessing the role of spatial
correlations during collective cell spreading. Sci. Rep.
4, 5713. (doi:10.1038/srep05713)

25. Chandler D, Percus JK. 1988 Introduction to modern
statistical mechanics. Phys. Today 41, 114. (doi:10.
1063/1.2811680)

26. Dieckmann U, Law R, Metz JA. 2000 The geometry
of ecological interactions: simplifying spatial
complexity, vol. 1. Cambridge, UK: Cambridge
University Press.

27. Illian J, Penttinen A, Stoyan H, Stoyan D. 2008
Statistical analysis and modelling of spatial point
patterns, vol. 70. Hoboken, NJ: John Wiley & Sons.

28. Jones BJ, Martı́nez VJ, Saar E, Trimble V. 2005 Scaling
laws in the distribution of galaxies. Rev. Mod. Phys.
76, 1211. (doi:10.1103/RevModPhys.76.1211)

29. Martı́nez VJ, Saar E. 2010 Statistics of the galaxy
distribution. Boca Raton, FL: CRC Press. See http://
www.crcnetbase.com/doi/book/10.1201/
9781420036169.

30. Ripley BD. 1976 The second-order analysis of
stationary point processes. J. appl. Probability 13,
255 – 266. See https://www.cambridge.org/core/
journals/journal-of-applied-probability/article/the-
second-order-analysis-of-stationary-point-processes/
63ECBD08B25F19C844C8FEC5B88C5266.

31. Ohser J, Mücklich F. 2000 Statistical analysis of
microstructures in materials science. Chichester, UK:
Wiley. See http://au.wiley.com/WileyCDA/WileyTitle/
productCd-0471974862.html.

32. Stoyan D, Stoyan H. 1996 Estimating pair correlation
functions of planar cluster processes. Biom. J. 38,
259 – 271. (doi:10.1002/bimj.4710380302)

33. Stoyan D, Stoyan H. 2000 Improving ratio estimators
of second order point process characteristics.
Scand. J. Stat. 27, 641 – 656. (doi:10.1111/1467-
9469.00213)

34. Binder BJ, Simpson MJ. 2013 Quantifying spatial
structure in experimental observations and agent-
based simulations using pair-correlation functions.
Phys. Rev. E 88, 022705. (doi:10.1103/PhysRevE.88.
022705)

35. Binder BJ, Sundstrom JF, Gardner JM, Jiranek V,
Oliver SG. 2015 Quantifying two-dimensional
filamentous and invasive growth spatial patterns in
yeast colonies. PLoS Comput. Biol. 11, e1004070.
(doi:10.1371/journal.pcbi.1004070)

36. Carlsson J, Yuhas JM. 1984 Liquid-overlay culture of
cellular spheroids. In Spheroids in cancer research:
methods and perspectives (eds H Acker, J Carlsson,
R Durand, RM Sutherland), pp. 1 – 23. Berlin,
Germany: Springer. See http://dx.doi.org/10.1007/
978-3-642-82340-4_1.

37. Keller PJ, Schmidt AD, Wittbrodt J, Stelzer EH. 2008
Reconstruction of zebrafish early embryonic
development by scanned light sheet microscopy.
Science 322, 1065 – 1069. (doi:10.1126/science.
1162493)

38. Lowe DG. 2004 Distinctive image features from
scale-invariant keypoints. Int. J. Comput. Vis. 60,
91 – 110. (doi:10.1023/B:VISI.0000029664.99615.94)

39. De Berg M, Van Kreveld M, Overmars M,
Schwarzkopf OC. 2000 Computational geometry.
Berlin, Germany: Springer.

40. Rosin PL. 1993 A note on the least squares fitting
of ellipses. Pattern Recognit. Lett. 14, 799 – 808.
(doi:10.1016/0167-8655(93)90062-I)

41. Jolliffe I. 2014 Principal component analysis.
Hoboken, NJ: John Wiley & Sons, Ltd.

42. Greenspan HP. 1972 Models for the growth of a
solid tumor by diffusion. Stud. Appl. Math. 51,
317 – 340. (doi:10.1002/sapm1972514317)

43. Johnston ST, Simpson MJ, McElwain DS, Binder BJ,
Ross JV. 2014 Interpreting scratch assays using pair
density dynamics and approximate Bayesian
computation. Open Biol. 4, 140097. (doi:10.1098/
rsob.140097)

http://dx.doi.org/10.1016/j.biomaterials.2010.07.064
http://dx.doi.org/10.1016/j.biomaterials.2010.07.064
http://dx.doi.org/10.1371/journal.pone.0097019
http://dx.doi.org/10.1186/1741-7007-10-29
http://dx.doi.org/10.1186/1741-7007-10-29
http://dx.doi.org/10.1046/j.1365-2184.2001.00202.x
http://dx.doi.org/10.1046/j.1365-2184.2001.00202.x
http://dx.doi.org/10.1186/1471-2407-12-15
http://dx.doi.org/10.1098/rsif.2014.1055
http://dx.doi.org/10.1016/j.bulm.2003.11.002
http://dx.doi.org/10.1111/j.1365-2184.1992.tb01433.x
http://dx.doi.org/10.1111/j.1365-2184.1992.tb01433.x
http://dx.doi.org/10.1098/rsif.2013.1124
http://dx.doi.org/10.1529/biophysj.106.093468
http://dx.doi.org/10.1529/biophysj.106.093468
http://dx.doi.org/10.1038/nmeth.3219
http://www.aaai.org/Papers/KDD/1996/KDD96-037.pdf
http://www.aaai.org/Papers/KDD/1996/KDD96-037.pdf
http://www.aaai.org/Papers/KDD/1996/KDD96-037.pdf
http://dx.doi.org/10.2307/2346830
http://dx.doi.org/10.1098/rsif.2015.0228
http://dx.doi.org/10.1186/1471-2105-12-396
http://dx.doi.org/10.1186/1471-2105-12-396
http://dx.doi.org/10.1126/science.1110329
http://dx.doi.org/10.1126/science.1110329
http://dx.doi.org/10.1038/srep05713
http://dx.doi.org/10.1063/1.2811680
http://dx.doi.org/10.1063/1.2811680
http://dx.doi.org/10.1103/RevModPhys.76.1211
http://www.crcnetbase.com/doi/book/10.1201/9781420036169
http://www.crcnetbase.com/doi/book/10.1201/9781420036169
http://www.crcnetbase.com/doi/book/10.1201/9781420036169
http://www.crcnetbase.com/doi/book/10.1201/9781420036169
https://www.cambridge.org/core/journals/journal-of-applied-probability/article/the-second-order-analysis-of-stationary-point-processes/63ECBD08B25F19C844C8FEC5B88C5266
https://www.cambridge.org/core/journals/journal-of-applied-probability/article/the-second-order-analysis-of-stationary-point-processes/63ECBD08B25F19C844C8FEC5B88C5266
https://www.cambridge.org/core/journals/journal-of-applied-probability/article/the-second-order-analysis-of-stationary-point-processes/63ECBD08B25F19C844C8FEC5B88C5266
https://www.cambridge.org/core/journals/journal-of-applied-probability/article/the-second-order-analysis-of-stationary-point-processes/63ECBD08B25F19C844C8FEC5B88C5266
https://www.cambridge.org/core/journals/journal-of-applied-probability/article/the-second-order-analysis-of-stationary-point-processes/63ECBD08B25F19C844C8FEC5B88C5266
http://au.wiley.com/WileyCDA/WileyTitle/productCd-0471974862.html
http://au.wiley.com/WileyCDA/WileyTitle/productCd-0471974862.html
http://au.wiley.com/WileyCDA/WileyTitle/productCd-0471974862.html
http://dx.doi.org/10.1002/bimj.4710380302
http://dx.doi.org/10.1111/1467-9469.00213
http://dx.doi.org/10.1111/1467-9469.00213
http://dx.doi.org/10.1103/PhysRevE.88.022705
http://dx.doi.org/10.1103/PhysRevE.88.022705
http://dx.doi.org/10.1371/journal.pcbi.1004070
http://dx.doi.org/10.1007/978-3-642-82340-4_1
http://dx.doi.org/10.1007/978-3-642-82340-4_1
http://dx.doi.org/10.1007/978-3-642-82340-4_1
http://dx.doi.org/10.1126/science.1162493
http://dx.doi.org/10.1126/science.1162493
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.1016/0167-8655(93)90062-I
http://dx.doi.org/10.1002/sapm1972514317
http://dx.doi.org/10.1098/rsob.140097
http://dx.doi.org/10.1098/rsob.140097

	Identifying the necrotic zone boundary in tumour spheroids with pair-correlation functions
	Introduction
	Mathematical methods
	Complete spatial randomness and regular spatial patterns
	Periodic pair-correlation function

	Synthetic tumour spheroids
	Real tumour spheroids
	Experiments and data collection
	Spatial analysis

	Discussion
	Competing interests
	Funding
	Authors’ contributions
	References


