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Early estimates of the transmission potential of emerging and re-emerging infec-

tions are increasingly used to inform public health authorities on the level of risk

posed by outbreaks. Existing methods to estimate the reproduction number gen-

erally assume exponential growth in case incidence in the first few disease

generations, before susceptible depletion sets in. In reality, outbreaks can display

subexponential (i.e. polynomial) growth in the first few disease generations,

owing to clustering in contact patterns, spatial effects, inhomogeneous mixing,

reactive behaviour changes or other mechanisms. Here, we introduce the gener-
alized growth model to characterize the early growth profile of outbreaks and

estimate the effective reproduction number, with no need for explicit

assumptions about the shape of epidemic growth. We demonstrate this phenom-

enological approach using analytical results and simulations from mechanistic

models, and provide validation against a range of empirical disease datasets.

Our results suggest that subexponential growth in the early phase of an epidemic

is the rule rather the exception. Mechanistic simulations show that slight modi-

fications to the classical susceptible–infectious–removed model result in

subexponential growth, and in turn a rapid decline in the reproduction

number within three to five disease generations. For empirical outbreaks, the

generalized-growth model consistently outperforms the exponential model for

a variety of directly and indirectly transmitted diseases datasets (pandemic influ-

enza, measles, smallpox, bubonic plague, cholera, foot-and-mouth disease,

HIV/AIDS and Ebola) with model estimates supporting subexponential

growth dynamics. The rapid decline in effective reproduction number predicted

by analytical results and observed in real and synthetic datasets within three to

five disease generations contrasts with the expectation of invariant reproduction

number in epidemics obeying exponential growth. The generalized-growth con-

cept also provides us a compelling argument for the unexpected extinction of

certain emerging disease outbreaks during the early ascending phase. Overall,

our approach promotes a more reliable and data-driven characterization of the

early epidemic phase, which is important for accurate estimation of the

reproduction number and prediction of disease impact.

1. Introduction
There is a long and successful history of using compartmental transmission models

to study epidemic dynamics, often calibrated using time-series data describing the

progression of the epidemic [1–6]. A fundamental tenet of the classic epidemic

theory is that the initial growth phase should be exponential in the absence of

susceptible depletion or interventions measures. However, early subexponential

(e.g. polynomial) growth patterns have been observed in outbreaks of HIV/AIDS

[7–9], Ebola [10] and foot-and-mouth disease (FMD) [11]. Potential mechanisms
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remain debated but include spatial heterogeneity, perhaps

mediated by the route of transmission (i.e. airborne versus

close contact) [10–12], clustering of contacts [8] and reactive

population behavioural changes that can gradually mitigate

the transmission rate [10,11]. Accordingly, a range of mechanistic

models can reproduce subexponential growth dynamics before

susceptible depletion sets in, including models with gradually

declining contact rate over time [13] and spatially structured

models such as household–community networks [12], regular

lattice static contact networks or small-world networks with

weak global coupling [13,14]. For real epidemics, however, the

underlying mechanisms governing subexponential growth can

be difficult to disentangle and hence to model [13].

Given the relatively common occurrence of subexponential

growth dynamics in empirical data and the variety of mechan-

isms at play, a flexible phenomenological model has been

proposed to reproduce a variety of growth profiles. In the

generalized-growth model, a tuning parameter (called the

deceleration of growth, p) can reproduce a range of dynamics

from constant incidence ( p ¼ 0) to exponential growth ( p ¼ 1)

[11]. Application of this generalized-growth model to empirical

data supports a notably slow spread ( p , 1) of the 2014 Ebola

outbreaks at district level in parts of West Africa, intermediate

spread profiles for historical plague and smallpox outbreaks

( p ¼ 0.8), and near exponential dynamics for pandemic influ-

enza ( p � 1) [15]. Departure from standard epidemic theory

may be more common than previously thought because trans-

mission heterogeneities are the rule rather than the exception

[11]. In this paper, we build on the generalized-growth

model concept [11,13] to show that faithful characterization

of such departures is important for accurate estimation of the

reproduction number.

The basic reproduction number, commonly denoted by R0, is

a key parameter that characterizes the early epidemic spread in a

fully susceptible population, and can be used to inform public

health authorities on the level of risk posed by an infectious dis-

ease and the potential effects of intervention strategies [16].

According to the classical theory of epidemics, largely based

on compartmental modelling [1,2,17,18], R0 is expected to

remain invariant during the early phase of an epidemic that

grows exponentially and as long as susceptible depletion

remains negligible [2]. More generally, temporal variation in

the transmission potential of infectious diseases is monitored

via the effective reproduction number, Rt, defined as the average

number of secondary cases per primary case at calendar time t
[19]. If Rt , 1, then the epidemic declines, whereas Rt . 1

indicates widespread transmission.

Here, we expand the generalized-growth method [11] to

characterize and estimate the effective reproduction number Rt

during the early growth phase and before susceptible depletion

sets in. We illustrate our phenomenological approach, using a

combination of analytical results and synthetic datasets deri-

ved from mechanistic models with spatial or temporal effects

yielding subexponential growth, and apply the approach to

empirical data reflecting a variety historic and contemporary out-

breaks. We show that subexponential growth dynamics is both

common and important for accurate assessment of the early

transmission potential.
2. Material and methods
Our study is organized in four sections. First, we describe the

phenomenological ‘generalized-growth’ model and the method
to estimate the effective reproduction number in this model.

Second, we simulate from this phenomenologic model to

gauge the expected magnitude of temporal variation in repro-

duction number and test our analytical predictions. Third, we

simulate epidemic datasets based on mechanistic transmission

models that reproduce subexponential growth dynamics, and

apply the generalized-growth estimation approach to these syn-

thetic data. Fourth, we test a range of empirical outbreak

datasets for presence of subexponential growth and estimation

of the effective reproduction number.
2.1. The effective reproduction number during the early
epidemic growth phase

We extend a previously established generalized-growth model

[11] to estimate the effective reproduction number Rg according

to disease generations g. Briefly, the generalized-growth model

is a useful phenomenological model that relaxes the assumption

of exponential growth in the early ascending phase of an

outbreak, taking the form

C0 ¼ rCp, ð2:1Þ

where C0(t) describes the incidence at time t, the solution C(t)
describes the cumulative number of cases at time t, r is a positive

parameter denoting the growth rate (with units of (people)l2 p

per time), and p [ ½0,1� is a ‘deceleration of growth’ parameter

(dimensionless). If p ¼ 0, then this equation describes constant

incidence over time and the cumulative number of cases grows

linearly, whereas p ¼ 1 describes exponential growth in the

Malthus equation, and the solution is given by CðtÞ ¼ C0ert,

where C0 is the initial number of cases. An equivalent approach

to model subexponential growth would be to modulate the

growth rate rather than the cumulative number of cases (see

electronic supplementary material).

For the exponential growth model, the average number of

secondary cases generated by initial cases during the first gener-

ation interval Tg (assumed to be fixed) is estimated by [20,21]

Rexp
0 ¼

C0ðTgÞ
C0ð0Þ ¼

rC0erTg

rC0
¼ erTg : ð2:2Þ

The expression for Rexp
0 depends only on r and Tg. Moreover,

during the exponential growth phase, Rexp
0 remains invariant at

erTg . This can be shown by analysing Rexp
g , the ratio of case inci-

dences over consecutive generation intervals, which is given by

Rexp
g ¼

C0½ðgþ 1ÞTg�
C0½gTg�

¼ erðgþ1ÞTg�rgTg ¼ erTg : ð2:3Þ

In the case of subexponential growth, i.e. when p , 1, we can

characterize the effective reproduction number Rsub exp
g over dis-

ease generations, g. For such polynomial epidemics, equation

(2.1) exhibits an explicit solution that describes the cumulative

number of cases over time, Csub exp(t), in the form of [22]

Csub expðtÞ ¼ [rð1� pÞtþ A]1=ð1�pÞ, ð2:4Þ

where A ¼ C1�p
0 . Hence, the corresponding incidence equation is

given by

C0sub expðtÞ ¼ r[rð1� pÞtþ A] p=ð1�pÞ: ð2:5Þ

The analytical expression for the effective reproduction number

by disease generation, Rsub exp
g , captures the ratio of case incidences

over consecutive disease generations

Rsub exp
g ¼

C0sube exp½ðgþ 1ÞTgþ1�
C0sub exp½gTg�

¼ 1þ
rð1� pÞTg

rð1� pÞgTg þ A

� � p=ð1�pÞ
: ð2:6Þ
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In contrast to the exponential growth model ( p ¼ 1),

where Rexp
g was independent of disease generation through-

out the early growth phase, we observe that Rsub exp
g in

generation g varies as a function of g. Given that A is fixed in

equation (2.6), the ratio rð1� pÞTg=ðrð1� pÞgTg þ AÞ declines to

zero as g increases, and, thus, Rsub exp
g approaches 1.0 asymptoti-

cally. Moreover, Rsub exp
g ! erTg as p! 12 (see the electronic

supplementary material).

2.2. Numerical estimation of the effective reproduction
number

The effective reproduction number can be estimated from case

incidence data simulated from the generalized-growth model

and using information about the distribution of the disease gen-

eration interval (table 1). Specifically, based on the incidence at

calendar time ti denoted by Ii, and the discretized probability dis-

tribution of the generation interval denoted by ri, the effective

reproduction number can be estimated using the renewal

equation [19,36]

Rti
¼ IiPi

j¼0 Ii�jrj

, ð2:7Þ

where the denominator represents the total number of cases that

contribute (as primary cases) to generating the number of new

cases Ii (as secondary cases) at calendar time ti [19].

2.3. Trends in effective reproduction number based on
simulations from the phenomenological
‘generalized growth’ model

To gauge the expected temporal variation in the effective repro-

duction number for a range of growth profiles and test analytic

predictions, we simulate incidence data, using the generalized-

growth model (equation (2.1)). We fix the growth rate parameter

r, but assume different distributions of the disease generation

interval (e.g. exponential, gamma, uniform, delta), and vary

the ‘deceleration of growth’ parameter p between 0 and 1 [11].

We analyse the outbreak trajectory in the first five disease gener-

ations to estimate the effective reproduction number using

equation (2.7) (assuming a fixed generation interval) and com-

pare with estimates obtained from the analytical expressions in

equations (2.3) and (2.6).

2.4. Trends in early growth dynamics based on
mechanistic models simulations

Next, we develop three specific examples of mechanistic trans-

mission models that support early subexponential growth

dynamics. These include (i) SIR (susceptible–infectious–

removed) dynamics on a spatially structured model, as substan-

tial levels of clustering have been hypothesized to yield early

polynomial epidemic growth [8,11,12], (ii) SIR compartmental

model with reactive behavioural changes via a time-dependent

transmission rate [10,11,31,37,38], and (iii) an SIR compartmental

model with inhomogeneous mixing [39,40]. We briefly describe

these models below.

2.4.1. Susceptible – infectious – removed epidemics on a spatially
structured model

One of the putative mechanisms leading to early polynomial epi-

demic growth dynamics is clustering [8,11], a network property

that quantifies the extent to which the contacts of one individual

are also contacts of each other [14]. Contact networks are particu-

larly useful to explore the impact of clustering; here, we use a
network-based transmission model with household–community

structure, which has been previously applied to study the trans-

mission dynamics of Ebola [12,41]. In this model, individuals are

organized within households of size H (each household contains

H individuals) and households are organized within commu-

nities of size �C households (each community contains �C�H
individuals). Network connectivity is identical for every individ-

ual. The household reproduction number R0H was set at 2.0 and

the community reproduction number R0c was set at 0.7 based on

previous study [12]. For a fixed household size (H ¼ 5) and

different values of the community size parameter, we analyse

the temporal profile in case incidence and the effective reproduc-

tion number during the first few disease generations from 200

independent stochastic realizations.
2.4.2. Susceptible – infectious – removed compartmental model
with reactive behavioural changes

In addition to contact clustering, rapid onset of behaviour

changes is another mechanism that has been hypothesized to

lead to subexponential growth dynamics, as it would result in

an early decline in effective reproduction number. For instance,

during the 2014–2015 Ebola epidemic, some areas of West

Africa exhibited early subexponential growth even before control

interventions were put in place [10,42].

To model behaviour change, we consider a classical SIR

epidemic model [1,3] with time-dependent contact rate following

dSðtÞ
dt
¼ �bðtÞS I

N
,

dIðtÞ
dt
¼ bðtÞS I

N
� gI

and
dRðtÞ

dt
¼ gI,

9>>>>>>>=
>>>>>>>;

ð2:8Þ

where S(t), I(t) and R(t) denote the number of susceptible, infec-

tious and removed (recovered) hosts in a randomly mixed

population of size N, b(t) is the time-dependent transmission

rate, the probability that a susceptible individual encounters an

infectious individual is given by I(t)/N and 1/g is the mean

infectious period.

In the classical SIR model with constant transmission rate b,

in a completely susceptible population, S(0) � N and I(t)
grows exponentially during the early epidemic phase,

e.g. IðtÞ � I0egðR0�1Þt, where R0 ¼ b=g is the average number of

secondary cases generated by a primary case during the infec-

tious period. When susceptible depletion kicks in (S(t) , S(0)),

the effective reproduction number, Rt, declines following

Rt ¼ ðSðtÞ=NÞR0. During the first few disease generations,

where S(0)=N � 1, the classical SIR model supports a reproduc-

tion number that is nearly invariant, i.e. Rt � R0. Here, to

capture behaviour change, we model an exponential decline in

the transmission rate b(t) from an initial value b0 towards fb0

at rate q . 0 following

bðtÞ ¼ b0(ð1� fÞe�qt þ f):

Here, b(t) leads to early subexponential growth dynamics when-

ever R0 . 1 and q . 0. Assuming that R0 . 1 in a sufficiently

large susceptible population, so that the effect of susceptible

depletion is negligible in the early epidemic phase, the quantity

1 2 f models the proportionate reduction in b0 that is needed for

the effective reproduction number to asymptotically reach 1.0.

Hence, f can be estimated as 1/R0. If q ¼ 0, bðtÞ ¼ b0 and we

recover the classic SIR transmission model with early exponential

growth dynamics. In general, a faster decline of the effective

reproduction number towards 1.0 occurs for higher values of q,

even without susceptible depletion. It is worth noting that

prior HIV/AIDS models [43] have incorporated exponential

decay in the transmission rate in a similar manner as described
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here, albeit the rate of decay was assumed to be a time-

dependent function of HIV/AIDS prevalence.

To examine the behaviour of the effective reproduction

number Rg over disease generations in the above model, we ana-

lyse the temporal progression in the number of cases at

generation g based on the following discrete equations [44]

Igþ1 ¼ Sg(1� e�R0(ð1�fÞe�qgþf)Ig=N
)

and Sgþ1 ¼ Sg � Igþ1,

)
ð2:9Þ

where f ¼ 1/R0, Ig is the number of new cases at generation g
and Sg is the number of remaining susceptibles at generation g.

We initialize simulations with I0 ¼ 1 and S0 ¼ N where N is set

to 108 individuals.

2.4.3. Susceptible – infectious – removed compartmental model
with nonlinear incidences

Beyond contact clustering and decay in transmission rate, a third

mechanism potentially accounting for subexponential growth is

departure from mass action which may owing to spatial struc-

tures or other forms of non-homogeneous mixing. These effects

can be incorporated in the SIR models using nonlinear incidence

rates [45,46]. For instance, the incidence rate can take the form:

b0SðtÞIaðtÞ=N, where a is a phenomenological scaling mixing

parameter; a ¼ 1 models homogeneous mixing, whereas a , 1

reflects contact patterns that deviate from random mixing and

lead to slower epidemic growth [47]. A related version of this

model is the TSIR model [40], which has found applications in

various infectious disease systems, including measles [40,48],

rubella [49] and dengue [50].

Here, we consider an SIR model with non-homogeneous

mixing, with constant transmission rate b0 and mixing parameter

a, following

dSðtÞ
dt
¼ �b0S

Ia

N
,

dIðtÞ
dt
¼ b0S

Ia

N
� gI

and
dRðtÞ

dt
¼ gI:

ð2:10Þ

To analyse the progression of the reproduction number Rg over dis-

ease generations in the above model, we use the following discrete

equations describing the number of cases at generation g [13,44]

Igþ1 ¼ Sgð1� e�R
Iag =N

0 Þ
and Sgþ1 ¼ Sg � Igþ1,

9=
; ð2:11Þ

where Ig is the number of new cases at generation g and Sg is the

number of remaining susceptible individuals at generation g. We

initialize simulations with I0¼ 1 and S0¼ N where N is set to 108

individuals.

2.5. Application to real outbreak data
Lastly, we analyse a variety of empirical outbreak datasets to test

the importance of subexponential growth in observed disease

dynamics and the resulting impact on the effective reproduction

number estimates. We rely on a convenience sample representing

a variety of pathogens, geographical contexts and time periods,

and include outbreaks of pandemic influenza, measles, smallpox,

bubonic plague, cholera, FMD, HIV/AIDS and Ebola (table 1

and electronic supplementary material for time series). The tem-

poral resolution of the datasets varies from daily to annual. For

each outbreak, the onset week corresponds to the first obser-

vation associated with a monotonic increase in the case

incidence, up to the peak incidence.

We focus on the first three to five disease generations,

depending on the length of the available empirical time series.
We estimate the effective reproduction number, using the two-

step approach. In the first step, we use nonlinear least-squares

to fit the generalized growth model to the synthetic mechanistic

data, and estimate parameters r and p (equation (2.1), [11]). The

initial number of cases C0 is fixed according to the first obser-

vation. Nominal 95% CIs for parameter estimates r and p are

constructed by simulations of 200 best-fit curves, C0(t), using

parametric bootstrap with a Poisson error structure, as in prior

studies [51]. In the second step, we simulate epidemic curves

using the generalized-growth model with estimated r and p,

and apply equation (2.7) to the simulated incidence data. We

assume a gamma distribution for the generation interval,

with means and standard deviations as in table 1 [52–58].

In addition, for each outbreak, we compare the goodness of fit

of the phenomenological generalized-growth model versus the

exponential growth models.
3. Results
3.1. Trends in effective reproduction number based on

simulations from the phenomenological
‘generalized growth’ model

We first analyse simulations of epidemic growth under the

generalized growth model in the first five disease generations

of the outbreak, for different values of r and p and a fixed

generation interval (figure 1 and electronic supplementary

material, figure S2). Our simulations confirm the analytical

results described in equations (2.3) and (2.6) in relation to

changes in the effective reproduction number under early

exponential ( p ¼ 1) and subexponential growth dynamics

( p , 1). As expected, the greater the departure from exponen-

tial growth ( p close to 0), the lower the effective reproduction

number Rsub exp
g . However, more importantly, in the case of

subexponential growth, and for a given growth rate r, the

effective reproduction number Rsub exp
g is a dynamic quantity

that approaches 1.0 asymptotically with increasing disease

generations. In contrast, for exponential growth ( p ¼ 1), the

effective reproduction number remains invariant during the

early epidemic growth phase.

We also run simulations under different assumptions

regarding the distribution of the generation interval and

vary p in the range 0 , p � 1 (figure 2). The declining trend

in the effective reproduction number associated with the sub-

exponential growth regime ( p , 1) persists independently of

the generation interval distribution. Moreover, as p decreases,

estimates of the effective reproduction number become less

dependent on the generation interval distribution (figure 2).

This indicates that for a sufficiently small p , 1, the mean

of the generation interval distribution provides sufficient

information to estimate the reproduction number, without

the need to specify a full distribution.

3.2. Trends in case incidence and the effective
reproduction number based on mechanistic models
simulations

3.2.1. Susceptible – infectious – removed epidemics on a spatially
structured epidemic model

Figure 3 shows simulations of case incidence and the effective

reproduction number Rg derived from the household–

community transmission model for different levels of
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community mixing, tuned by �C. As expected, the lower the

community mixing, the greater the departure from homo-

geneous mixing, and hence the greater the departure from

early exponential growth dynamics. Early subexponential

growth dynamics are observed in all community mixing

scenarios tested (�C ¼ 25, 45 and 65 households), which is con-

sistent with a declining trend in the effective reproduction

number Rg (figure 3).
3.2.2. Susceptible – infectious – removed compartmental model
with reactive behavioural changes

Representative profiles of Rg for the SIR model with time-

dependent transmission rate b(t) are shown in figure 4 for

different values of the speed of transmission decline, tuned

by parameter q. The decline in effective reproduction

number Rg ¼ Igþ1=Ig (g ¼ 0 . . . n) is more pronounced as the

decline in transmission rate is faster (i.e. q� 0). Early
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subexponential growth dynamics is seen in all simulations

where q . 0 (figure 4).

3.2.3. Susceptible – infectious – removed compartmental model
with nonlinear incidence rates

Simulations for this model display concave down incidence

curves in semi-logarithmic scale, supporting the presence of

early subexponential growth, even for values of a slightly

below the homogeneous mixing regime (i.e. a just below 1;

electronic supplementary material, figure S3). Accordingly,

the effective reproduction number Rg exhibits a declining

trend during the first few disease generations (figure 5). By
contrast, the reproduction number remains invariant at

Rg ¼ R0 ¼ 2 when a ¼ 1 (figure 5b, black curve).

3.3. Application to real outbreak data
Lastly, we apply the concepts of subexponential growth

dynamics to a variety of empirical outbreak datasets. The

electronic supplementary material, figures S4–S5, provides a

comparative analysis of the goodness of fit provided by the

generalized growth and the exponential growth models across

outbreaks. Our results indicate that the generalized-growth

model consistently outperforms the exponential growth model

in the early ascending phase of the outbreak, even when p is
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only slightly below 1.0 (i.e. departure from the exponential model

is slight). Across outbreaks, we find variability in the deceleration

of growth parameter, even fora given pathogen (median p¼ 0.57,

interquartile range (IQR): 0.46–0.84; figure 6). Not surprisingly,
parameter uncertainty declines with increasing length of the

early epidemic phase used for estimation (figures 6 and 7). On

the other hand, mean estimates of p (table 1) are stable during

the first three to five disease generations (ANOVA, p¼ 0.9).



1 102 3 5

reproduction number

smallpox (Khulna, 1977)

pandemic influenza (San Francisco, 1918)

plague (Bombay, 1905)

measles (London, 1948)

cholera (Aalborg, 1853)

HIV/AIDS (Japan, 1985–2012)

HIV/AIDS (New York City, 1982–2002)

foot-and-mouth disease (Uruguay, 2001)

Ebola (Uganda, 2000)

Ebola (Congo, 1976)

Ebola (Gueckedou, 2014)

Ebola (Montserrado, 2014)

Ebola (Margibi, 2014)

Ebola (Bomi, 2014)

Ebola (Grand Bassa, 2014)

Ebola (Western Area Urban, 2014)

Ebola (Western Area Rural, 2014)

Ebola (Bo, 2014)

Ebola (Bombali, 2014)

Ebola (Kenema, 2014)

Ebola (Port Loko, 2014)

Figure 7. Estimates of the effective reproduction number and the corresponding 95% CIs derived from various infectious disease outbreak datasets of case incidence
series by fitting the generalized-growth model to the initial epidemic phase comprising of approximately the first three (green), four (blue) and five (red) disease
generation intervals. The generation interval is assumed to follow a gamma distribution with the corresponding mean and variance provided in table 1. (Online
version in colour.)

rsif.royalsocietypublishing.org
J.R.Soc.Interface

13:20160659

9

When we use the generalized-growth model to estimate

the effective reproduction number, we find a declining trend

in the effective reproduction number with increasing disease

generation intervals and variability in estimates of the repro-

duction number across 21 outbreaks representing eight

different pathogens (figure 7). Further, estimates of the effec-

tive reproduction number are sensitive to small changes

in the deceleration of growth parameter across outbreaks

(Spearman’s r . 0.62, p , 0.002; electronic supplementary

material, figure S6).

Model fits to empirical data illustrates a variety of

exponential and subexponential growth profiles across patho-

gens (electronic supplementary material, figures S7–S11).

For instance, the autumn 1918 influenza pandemic in

San Francisco is characterized by near exponential growth,

with p � 0.8–0.9 and a relatively stable reproduction

number in the range 1.7–1.8 (electronic supplementary

material, figure S7). In contrast, the FMD outbreak in Uru-

guay at the farm level displays slower initial growth with

mean p � 0.4–0.5 and a more variable reproduction

number in the range 1.6–2.8 (electronic supplementary

material, figure S8). For the HIV/AIDS epidemic in Japan

(1985–2012), we estimated the mean effective reproduc-

tion number in the range 1.3–1.6 with p � 0.5 assuming a
mean generation interval of 4 years, consistent with pro-

nounced departure from exponential growth (electronic

supplementary material, figure S9).

The wealth of district-level Ebola data available for the

2014 epidemic in West Africa provides a good opportunity

to gauge geographical variations in the growth profiles, and

in the resulting effective reproduction numbers. Indeed,

we find variability across geographical locations in the effec-

tive reproduction number (median ¼ 1.46, IQR: 1.26–1.83)

and deceleration parameter p (median ¼ 0.58, IQR:

0.46–0.72), and correlation between these parameter esti-

mates (Spearman’s r ¼ 0.81, p , 0.001). For comparison, at

the fifth disease generation interval, the highest estimate

of the effective reproduction number was at 2.5 (95% CI:

2.0–2.7) for the 2014 Ebola outbreak in Montserrado, Liberia,

whereas the lowest estimate was at 1.03 (95% CI: 1–1.1) for

the outbreak in Bomi, Liberia (figure 7).
4. Discussion
In this study, we introduce a quantitative ‘generalized

growth’ framework to characterize the transmission potential

of pathogens in the early phase of an outbreak, when
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susceptible depletion remains negligible, without making

explicit assumptions about the epidemic growth profile.

The phenomenological ‘generalized growth’ model repro-

duces a range of growth dynamics from polynomial to

exponential [11] and is agnostic of the mechanisms affecting

growth, which may include contact patterns, spatial effects,

non-homogeneous mixing and/or behaviour changes. A phe-

nomenological model can be particularly useful when

biological mechanisms are difficult to identify. Using a com-

bination of analytical results, simulations from mechanistic

models and analyses of empirical outbreak data, we demon-

strate that the effective reproduction number typically

displays a downward trend within the first three to five

disease generations. Evidence of subexponential growth,

and associated reproduction number decline, is found in dis-

ease systems as varied as Ebola, pandemic influenza,

smallpox, plague, cholera, measles, FMD and HIV/AIDS.

Our results indicate that the concept of subexponential

growth is both widespread and important to consider for

accurate assessment of the reproduction number.

For epidemics that truly depart from exponential growth

theory, traditional estimation methods relying on the

assumption of exponential growth are expected to inflate

reproduction number estimates. The bias between theoretical

values and estimates increases as departure from exponential

growth becomes more pronounced, i.e. when p decreases

towards 0, representing slower epidemic spread compa-

red with the exponential case where p ¼ 1. For instance,

our estimate of the reproduction number for the 1972 small-

pox epidemic in Khulna, Bangladesh (approx. 2 (95% CI:

1.6–2.6)) is significantly lower than earlier historic estimates

of smallpox based on an exponential growth assumption

(range 3.5–6.0) [59]. In contrast, when p is near 1.0, indicating

near exponential growth, our estimates of the reproduction

number remain consistent with those of compartmental

models. This is the case for the 1905 bubonic plague epidemic

in Bombay, India [60], or the 1918 influenza pandemic in

San Francisco [15]. Overall, our estimates for Ebola outbreaks

tend to be slightly lower than those reported in prior studies,

possibly because of subexponential growth at the district

levels [12,31,55,61–66]. It is also worth noting that the incor-

poration of generalized growth in a phenomenological

logistic-type model can substantially increase the perform-

ance of the model for short-term forecasting and prediction

of the final epidemic size as recently illustrated in the context

of the Zika epidemic in Colombia [67].

Here, we have studied simulations from three common

types of mechanistic models supporting early subexponential

growth dynamics and incorporating characteristics of the

host contact network, behaviour changes and inhomo-

geneous mixing. In all models, relatively small departures

from crude SIR dynamics led to subexponential growth pro-

files, and in turn a quick decline in effective reproduction

number, speaking to the generalizability of our findings.

With real outbreak case series data, however, it can be diffi-

cult to disentangle the mechanism or combination of

mechanisms shaping the early epidemic growth profile,

especially when case series data are limited to the early epi-

demic growth phase. In order to assess the contribution of

different mechanisms, independent sources of data would

be required to quantify the structural characteristics of the

contact network [68–70], or the timing and intensity of poss-

ible behaviour changes. Further, for comparison purposes, it
can be particularly useful to enumerate secondary cases from

transmission tree data whenever available, and obtain inde-

pendent estimates of R0 [68–70] agnostic of any model

form. There is clearly scope for more research work in this

area. In the absence of detailed information on the chains

of transmission or the biological mechanisms at play how-

ever, a phenomenological approach such as that proposed

here with the generalized-growth model may be preferable.

In addition to providing a quantitative framework for

estimation of the reproduction number based on a phenom-

enological approach, this study has implications for disease

control, particularly our understanding of herd immunity

and extinction thresholds [1,2]. In the simple SIR models,

the critical fraction of the population needed to be effectively

vaccinated to prevent an epidemic is given by 121/R0, which

is in the range 50–90% of the population for most epidemic

diseases [1,66]. However, this fraction may be potentially

considerably lower for epidemics rendering subexponential

growth, where the effective reproduction number naturally

declines towards unity, irrespective of other intervention

measures and before susceptible depletion sets in. For

example, the 2014 West African Ebola outbreak ended with

less than 1% of the population registered as cases, which

defies expectations from SIR models, and the contribution

of large-scale interventions on these low attack rates remains

debated [71]. These data-driven observations suggest that

more attention should be paid to the shape of the early

ascending phase of emerging infectious diseases outbreaks,

and the associated uncertainty in the reproduction number

estimates should be considered.

A related consequence of subexponential growth dyna-

mics, and associated decline in effective reproduction

number, is the effect on the extinction threshold. Indeed, it is

natural to expect a higher probability of extinction owing to

stochastic effects for epidemics governed by subexponential

growth. This may in part explain the small magnitude and a

short duration of most Ebola outbreaks since 1976 [72–74],

as Ebola showed substantial departure from exponential

growth (0.6 , p , 0.72). In fact, simulations using an individ-

ual-level stochastic model for Ebola with household and

community contact network structure are consistent with

early subexponential growth dynamics, and has a probability

of approximately 40% of spontaneous die-out of an outbreak

within the first month of transmission [12]. This model [12]

is also consistent with an effective reproduction number that

asymptotically declines towards unity as the virus spreads

through the population. From a public health perspective, out-

breaks characterized by subexponential growth dynamics may

provide a greater window of opportunity for implementation

of control interventions compared with those following

exponential or near exponential growth dynamics [12].

Overall, our results underscore the need to carefully

characterize the shape of the epidemic growth phase in

order to accurately assess early trends in reproduction

number. Consideration of the subexponential growth phenom-

enon will improve our ability to appropriately model

transmission scenarios, assess the potential effects of control

interventions, and provide accurate forecasts of epidemic

impact. Looking to the future, the development of new

mechanistic transmission models is needed to provide a

better understanding of the factors shaping early epidemic

growth. Such models would allow for systematic evaluation

of epidemic outcomes and disease control policies. A recent
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review of forecasting models for the West African Ebola epi-

demic highlighted a range of approaches to investigating

disease spread from simple phenomenological models, to

compartmental epidemic models, to intricate contact networks

[75]. The vast majority of these approaches considered early

exponential growth dynamics, an assumption that led to sub-

stantial overestimation of Ebola epidemic size and peak timing

and intensity. In the light of these findings, Chretien et al. [75]

stress the need for new mechanistic models that incorporate

‘dampening approaches’ to improve characterization of the

force of infection and provide uniform forecasting approaches

and evaluation metrics. We believe this study represents a

significant step in this direction.
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