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Abstract: Atherosclerosis is a chronic inflammatory disease of the arterial intima, occurring usually in the aged pop-
ulations who are suffering from hypertension, dyslipidemia and diabetes for a long time. Research on atherosclero-
sis has shown that macrophage foam cell formation, inflammation, dyslipidemia and immune cells infiltration are all 
involved in regulating the onset and progression of atherosclerosis. Mesenchymal stem cells (MSCs) originated from 
different kinds of tissue are a group of cells possessing well-established self-renewal and multipotent differentiation 
properties as well as immunomodulatory and anti-inflammatory roles.  Recent studies have displayed their dyslipid-
emia regulation functions. Transplantation of MSCs to atherosclerotic patients might be a new multifactorial thera-
peutic strategy to improve atherosclerosis. This review updates the advancement on MSCs and atherosclerosis.
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Introduction

Despite the remarkable achievements have 
been made in the past decades, cardiovascular 
diseases still remain to be one of the leading 
causes of death worldwide, leading to immense 
health and economic burdens globally [1]. 
Atherosclerosis is the major cause of cardio-
vascular diseases. 

Although the pathogenesis of atherosclerosis is 
not completely clear, current evidence indi-
cates that macrophage at least involves in the 
pathogenesis. Under some conditions, the 
monocytes are recruited into the vascular inti-
ma, where they take up of modified low-density 
lipoprotein (LDL), particularly low-density lipo-
protein cholesterol (LDL-C), to form macro-
phage foam cells. These lipid overloading foam 
cells mark the initiation of atherosclerosis and 
their accumulation and necrosis or apoptosis 
further promote the development of atheroma-
tous plaques and eventually lead to serious car-
diovascular diseases [2].

Lipid lowering, especially by statins, has been 
the most effective way to reduce risk of athero-

sclerotic cardiovascular diseases currently [3]. 
Despite the great progress achieved in the 
pharmacologic treatments with statins, several 
large controlled clinical trials, from the long-
term intervention with pravastatin in ischemic 
disease study to the improve-it trial, from the 
cholesterol and recurrent events trial to the 
Scandinavian simvastatin survival study, all 
support that cardiovascular risk reduction 
including treatments with statins remains far 
from satisfactory [4-6]. Moreover, approximate-
ly two thirds of patients under the treatment of 
statins continue to suffer from the expected 
cardiovascular disease events and many 
patients cannot tolerate statin or follow a long 
term stains treatment to reach optimal LDL-C 
levels [3]. Thus, additional therapies for cardio-
vascular diseases, particularly for effective lipid 
lowering to inhibit foam cells formation so as to 
improve atherosclerosis are needed.

Inflammation and immunity are also known to 
be intimately involved in all stages of athero-
sclerosis, which links multiple risk factors cov-
ering aging, hypertension, dyslipidemia and dia-
betes for atherosclerosis. Moreover, inflamma-
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tory and immunological signaling can alter the 
behavior of the intrinsic cells of the artery wall 
like endothelium and smooth muscle cells, 
leading to lipid peroxidation, endothelium dys-
function and further recruitment of inflamma-
tory and immune cells to the vascular intima [2, 
7-10]. The roles of anti-inflammation and anti-
immunity therapies in mitigation of atheroscle-
rosis have been support by increasing studies 
[11-13].

Given the underlying pathological and phy- 
siological development of atherosclerosis, cur-
rent and future treatment strategies should 
more focus on lowering plasma cholesterol  
and attenuating inflammation and balancing 
immunity. Mesenchymal stem cells (MSCs), 
also known as multipotent mesenchymal stro-
mal cells, are a cluster of well-established  
cells characterized with non-hematopoietic, 
self-renewal and multipotent differentiation 
properties. Bone marrow is considered to be 

original source of MSCs. More studies have 
showed that MSCs can be isolated from the  
different tissues including umbilical cord, pla-
centa, adipose tissue and human gingiva [14-
16]. Recently, the anti-inflammatory and im- 
munomodulatory effects of MSCs on autoim-
mune and inflammatory diseases have been 
increasingly appreciated [17-22]. Additionally, 
MSCs also took part in the lipid metabolism, 
reducing serum cholesterol strikingly [23]. Th- 
ese properties of MSCs may open a new ave-
nue for the treatment of atherosclerosis. This 
review will update the study progress and  
discuss the possibility to apply MSCs for im- 
proving atherosclerosis. The review also pro-
poses some questions that are needed to be 
overcome.

MSCs inhibit foam cell formation

Multiple lines of evidence, from genetic, ex- 
perimental, epidemiological to clinical studies, 

Figure 1. The immunomodulatory and anti-inflammatory effects of MSCs on immune cells involved in atherosclero-
sis. MSCs suppress Th1, Th17 whereas promote Th2 and Treg cells. MSCs also regulate the balance between M1 
and M2 macrophage. MSCs inhibit M1 but facilitate M2 differentiation. MSCs also curb the formation of foam cells 
from macrophage in atherosclerosis.
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have converged on plasma cholesterol, particu-
larly low density lipoprotein cholesterol (LDL-C), 
as the primary driver of the initiation and pro-
gression of the atherosclerotic plaque. After 
being recruited to the intima by activated or 
damaged endothelial cells, the monocytes dif-
ferentiate into macrophages. These macro-
phages are then able to take up modified low-
density lipoproteins (LDL) particles such as oxi-
dized LDL (ox-LDL) and thereby transform into 
foam cells. Foam cells, mostly arising from 
monocytes, are recognized as the early patho-
logical changes of atherosclerosis [24]. During 
the foam cell formation, two steps are critical in 
maintaining lipid homeostasis in macrophages: 
1) cholesterol uptake mediated by scavenger 
receptors such as CD36 and scavenger recep-
tor A (SR-A), and 2) cholesterol efflux mediated 
by ABCA1/ABCG1 [25]. When the balance was 
disturbed, the foam cells are formated.

Interestingly, a recent study shows that bone 
marrow derived mesenchymal stem cells 
(BM-MSCs) can inhibit the formation of macro-
phage foam cells in vitro and in ApoE-KO mice, 
and the mechanism underlying this therapeutic 
effect might partly be related to the downregu-
lation of scavenger receptors CD36 and SRA in 
response to infusion of BM-MSCs (Figure 1).  
Also, anti-inflammatory cytokines IL-10, which 
is thought to be able to modulate the lipid 
metabolism and protect from atherogenesis, 
was significantly upregulated in the BM-MSC 
treatment [25, 26]. Moreover, BM-MSCs-
treated mice displayed a significant reduction 
in circulating monocytes and serum cholesterol 
level [23].

MSCs induce the polarization of M2 macro-
phage

Inflammation plays an important role in all stag-
es of atherosclerosis, which involves different 
kinds of immune cells. Inside the atheroscle-
rotic plaque, macrophages also account for the 
vast majority of immune cells [27, 28]. Normally, 
arterial endothelial cells resist the attachment 
of leukocytes cells streaming past them. When 
the endothelium is subjected to harmful stimu-
lus such as dyslipidemia and hypertension, 
monocytes are recruited to the intima where 
they differentiate into M1 macrophages, pro-
duce and release pro-inflammatory cytokines. 
Further, some of them engulf lipoprotein to 
become macrophage foam cells.

Interestingly, some studies showed that mes-
enchymal stem cells can reprogram macro-
phages into anti-inflammatory phenotypes, M2 
macrophages [29, 30]. When co-cultured with 
macrophages, human gingiva-derived mesen-
chymal stem cells (GMSCs) can convert macro-
phages into M2 phenotype, inducing the secret-
ing of IL-6, CCL-2, IL-10, and decreasing the 
production of TNF-α. After systematically injec-
tion, GMSCs can home to the wound site to 
accelerate the wound healing by secreting anti-
inflammatory cytokines and enhance macro-
phage phagocytic capacity [29]. Additionally, 
cardiac adipose tissue-derived mesenchymal 
stromal cells (AT-MSCs) also can polarize mac-
rophages toward an M2 anti-inflammatory phe-
notype, and this function was mediated partly 
by IL-6 (Figure 1). Interestingly, these AT-MSCs 
are shown to weaken macrophage phagocytic 
capacity [30]. Whether macrophage phagocytic 
capacity is weaker or stronger when co-cultured 
with MSCs and the signaling pathways by which 
MSCs play to reprogram macrophage may need 
further research.

Skin-derived MSCs (S-MSCs) are also able to 
migrate to the atherosclerotic plaque to modu-
late the function of macrophages after tail-vein 
injection and reduce the formation of athero-
sclerotic plaque in Apo E-/- mice. This modula-
tory function of S-MSCs in macrophage is 
thought to partly depend on the impairment of 
the NF-κβ signaling pathway in S-MSCs and the 
increased release of COX-2 or PGE2 from 
S-MSCs. In turn, these changes stimulated the 
release of anti-inflammatory cytokine IL-10 and 
decreased the release of inflammatory cyto-
kines TNF-α and IL-1β, leading to the reduction 
of atherosclerotic lesions in Apo E-/- mice even-
tually [31].

However, it is noteworthy that aortic smooth 
muscle cells can be transformed into a dys-
functional macrophage-like phenotype by cho-
lesterol loading [32]. When one tries to evalu-
ate the macrophage inside atherosclerosis, it 
should be taken into consideration to avoid 
underestimating the function of macrophage 
involved in the atherosclerotic plaque [32].

Effects of MSCs on T cells

It was widely thought that immune cells played 
little role in atherogenesis until Hansson et al 
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reported the presence of lymphocytes within 
atherosclerotic lesions before 1986 [2]. Alth- 
ough in much lower number than macroph- 
ages, accumulating evidences now show that 
adaptive immune cells, mainly T and B lym- 
phocytes, also exist and involve in atheroscle-
rotic plaque and atherosclerosis. To date, the 
CD4+ effector T cells that play a role in athero-
sclerosis include Th1, Th2, Th17 cells and Tregs 
[2, 33-35].

Among these cells, Th1 cells are predominate- 
ly involved in aggravating atherosclerosis, no 
matter whether in a plaque of human or mouse 
[36]. A variety of inflammatory cytokines are 
produced by Th1 cells, such as IFN-γ, TNF-α  
and IL-2. Among these inflammatory cyto- 
kines, IFN-γ is closely related to the instability 
of atherosclerotic plaque and reduces the col-
lagen production of smooth muscle cells. IFN-γ 
also increases the expression of adherence 
factors and the lipid absorption of macrophage 
and further increases the rupture of unstable 
plaques. Cleaning up of CD4+ T cells showed a 
70% reduction in plaque size [37], further high-
lighting the importance of T cells in the patho-
genesis of atherosclerosis.

In contrast, few Th2 cells are found in athero-
sclerotic plaques, their roles in atherosclerosis 
remains unclear [38-40]. However, polarizing 
leukocytes to a Th2-like profile can inhibit of 
experimental atherosclerosis [41, 42]. Clinical 
evidence also supports a protective role of  
Th2 cells in cardiovascular disease such as 
myocardial infarction [34].

Th17 cells also exist in atherosclerotic plaques, 
studies to date are inclined to support that 
Th17 cells play an atherogenic role in athero-
sclerosis [33, 39, 43-45]. However, the role of 
IL-17A, one cytokine mainly produced by Th17 
cells, remains somewhat controversial in ath-
erosclerosis. Some studies suggested that 
IL-17A is one of the pathogenic factors in ath-
erosclerosis, and inhibiting of IL-17A can reduce 
atherosclerotic lesion development in ApoE-
deficient mice via weakening its widespread  
of pro-inflammatory and pro-apoptotic effects 
in atherosclerosis [46]. In contrast, Gistera  
and her colleagues observed that IL-17A can 
induce a stable plaque phenotype by stimulat-
ing the collagen production of human vascular 
smooth muscle cells, and blocking IL-17A re- 

ceptor could increase the cardiovascular events 
in patients [47].

T regulatory cells (Tregs) are another subset of 
T cells. They play an important role in maintain-
ing the immune tolerance and immune homeo-
stasis [48-51]. The protective function of Tregs 
in atherosclerosis has been confirmed in multi-
ple studies [43, 52-55]. In unstable atheroscle-
rotic lesions, the number of Tregs is much lower 
compared to stable ones [54]. Accordingly, an 
increase in Tregs can alleviate atherosclerosis 
in animal models [43, 53].

Accumulating studies showed that MSCs can 
wake up the immune activity of different kinds 
of immune cells including T cells, B cells, NK 
cells and so on. This immunosuppressive effect 
provides MSCs an advantage in cell-based 
therapy. In vitro, studies indicated that GMSCs 
are able to suppress the activation and prolif-
eration of Th1 and Th17, and enhance the dif-
ferentiation of regulatory T cells [56]. Also, BM- 
MSCs are found to promote the expansion of 
Tregs as well as improve the function of Tregs  
in atherosclerotic mice [23]. Moreover, BM- 
MSCs also inhibit the inflammatory cytokines 
secreted by effector T cells [57]. All together, 
these studies indicate that MSCs are able to 
regulate the balance between inflammatory 
effector T cells and anti-inflammatory Tregs to 
maintain a stable plaque or reduced athero-
sclerosis, implicating that MSCs maybe a po- 
tent candidate for atherosclerosis therapies 
(Figure 1).

Impairment of MSCs by age and age-related 
diseases

Atherosclerosis is a multifactorial-induced ch- 
ronic disease and usually accompanied by  
age and age-related diseases. However, age 
and age-associated conditions also impair the 
properties and functions of MSCs [58-62]. 
Although transplantation of human MSCs from 
all patients can improve the heart function in 
rats with myocardial infarction (MI), the ability 
to ameliorate MI is significantly reduced in 
MSCs from aged subjects than that from young-
er ones [58]. Also, the angiogenic potential  
of adipose-derived mesenchymal stromal cells 
from aged patients declines, even though they 
can maintain stable mesenchymal stromal cell 
properties [60]. Moreover, human MSC-medi- 
ated T-cell suppression also markedly reduced 
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in aged, T2DM and atherosclerotic subjects 
[61]. Further, MSCs isolated from experimen- 
tal type II diabetes displayed the impaired re- 
generative capacity in post-ischemic neovas- 
cularization [62]. The hyperinsulinemia-induced 
oxidant stress brought by experimental type II 
diabetes in MSCs may help to explain the im- 
pairment of MSCs. Nonetheless, hypoxic sti- 
mulation conversely promotes the immuno-
modulatory properties of GMSCs by inhibit- 
ing the proliferation of PBMCs as well as in- 
creasing the apoptosis of PBMCs, which was 
thought to associate with the Fas ligand (FasL) 
expression of GMSCs [63].

Given to the anti-inflammatory and immune 
regulatory function, as well as their effect on 
restoring endothelial function [64], one can 
conclude that MSCs may be a promising can- 
didate for the treatment of atherosclerosis. 
Since the vast majority of patients that may 
benefit from MSCs therapies in atherosclero- 
sis are elderly individuals, clarifying the under-
lying molecular mechanism by which MSCs 
function and by which aged-MSCs are weaken, 
as well as proper MSCs donors selection are 
important to maximize the therapeutic effect  
of MSCs in atherosclerosis.
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