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Most spatial models of host–parasite interactions either neglect the possibility

of pathogen evolution or consider that this process is slow enough for epide-

miological dynamics to reach an equilibrium on a fast timescale. Here, we

propose a novel approach to jointly model the epidemiological and evolution-

ary dynamics of spatially structured host and pathogen populations. Starting

from a multi-strain epidemiological model, we use a combination of spatial

moment equations and quantitative genetics to analyse the dynamics of

mean transmission and virulence in the population. A key insight of our

approach is that, even in the absence of long-term evolutionary consequences,

spatial structure can affect the short-term evolution of pathogens because of

the build-up of spatial differentiation in mean virulence. We show that spatial

differentiation is driven by a balance between epidemiological and genetic

effects, and this quantity is related to the effect of kin competition discussed

in previous studies of parasite evolution in spatially structured host popu-

lations. Our analysis can be used to understand and predict the transient

evolutionary dynamics of pathogens and the emergence of spatial patterns

of phenotypic variation.
1. Introduction
Theoretical epidemiology has produced a comprehensive theoretical frame-

work to understand and predict the epidemiological dynamics of pathogens

[1–4]. To improve these predictions it is often necessary to explicitly describe

the evolution of pathogens [5] but simultaneously taking into account this

evolution and the complex spatio-temporal dynamics of epidemics is a major

theoretical challenge. Several studies, however, indicate that spatial structure

can have a huge impact on the evolution of pathogens. First, most theoretical

studies focus on the long-term consequences of spatial structure on pathogen

evolution using the adaptive dynamics framework [6–12]. These theoretical

studies predict that, in a broad range of scenarios, lower migration selects for

lower pathogen virulence (reviewed in [13,14]). Several experimental studies

using microbial systems support this prediction [15–17]. Second, recent

attempts have been made to model pathogen evolution in spatially spreading

epidemics [18–22]. These studies show that selection at the frontline of the epi-

demics is very different than near an endemic equilibrium. In particular, more

transmissible pathogens are selected for at the front of the epidemics. Interest-

ingly, these models generate new predictions that are testable in field studies. In

particular, these models highlight the build-up of phenotypic variation between

the front and the rear of a spreading epidemic. In accord with these theoreti-

cal results, recent field studies report the existence of patterns of phenotypic

differentiation between pathogens sampled at the front or at the epicentre of

epidemics [19,23–25].

In this article, we model the joint epidemiological and evolutionary dynamics of

spatially structured host–parasite interactions. Earlier attempts to study evolution in

spatially spreading epidemics relied mostly on simulation studies or on partial

differential equations [18–22], with limited connections to classical models of life-

history evolution and quantitative genetics. Here, we extend the evolutionary
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Table 1. Main symbols and notation used.

notation description

life cycle N number of parasite strains

d baseline mortality rate

ai virulence of strain i

bi transmission of strain i

m mutation rate

mij probability to mutate from strain i to strain j

epidemiology pS global density of susceptible hosts

pI global density of infected hosts

pi global density of hosts infected by strain i

qS=i ¼ piS=pi local density of susceptible hosts experienced by an average host infected by strain i

qS=I local density of susceptible hosts experienced by an average infected host

qX=Y local density of sites in state X experienced by an average site in state Y

qX=YZ local density of sites in state X experienced by the Y site of a YZ pair

evolution fi frequency of strain i

fiZ frequency of strain i among all hosts connected to an individual in state Z

�xI ¼
P

i xi fi global mean of trait x

�xIZ ¼
P

i xi fiZ mean of trait x among all hosts connected to an individual in state Z

s
xy
IZ covariance between traits x and y among all hosts connected to an individual in state Z

r
xy
II covariance between traits x and y among two neighbouring infected individuals

network n number of neighbours

f ¼ 1� �f 1/n
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epidemiologyapproach to take into account the spatial dynamics

of epidemics in discrete space. Following Day & Gandon [26,27],

we start from a multi-strain epidemiological model. Evolu-

tionary dynamics are modelled by writing equations for the

dynamics of the mean life-history traits of interest (such as

transmission or virulence). This allows epidemiological and

evolutionary dynamics to be followed simultaneously. How-

ever, in a spatially structured population, we need to account

for the fact that the average trait in a given region of space

need not coincide with the average trait in the total population.

Using spatial moment equations [28–30], we derive equations

for the dynamics of the local as well as global mean traits in

the parasite population. We illustrate the value of our approach

using a biological scenario where the coupled epidemiological

and evolutionary dynamics lead to transient phenomena that

cannot be described by standard invasion analyses.
2. A multi-strain epi-evolutionary model
(a) Life cycle
We consider a large population of hosts infected by N patho-

gen strains. Hosts are assumed to live on a regular network of

sites, where each site can harbour at most one individual and

is connected to n other sites. A host infected with strain i can

transmit the disease to a neighbouring susceptible host at

rate bi. Hosts have a baseline mortality rate d and when

they are infected by parasite strain i they have an additional

mortality ai (virulence). Host can also reproduce to empty

sites, but we leave the details of host demography open for

now, as the results in this section do not depend on the
assumptions on host dispersal and fecundity, provided

there is no vertical transmission of the parasite. Finally, we

assume that a parasite of type i can mutate to parasite type

j at rate mmij, with
P

j mij ¼ 1.

Our aim is to track the epidemiological and evolutionary

dynamics of the population. To follow epidemiological

dynamics, we focus on the total densities of susceptible and

infected hosts, which are pS and pI , respectively. The density

of infected hosts, pI is the sum of the densities of each strain,

that is pI ¼
P

i pi, where pi is the density of hosts infected by

strain i. To follow evolutionary dynamics, we track the fre-

quency of parasite strain i, which is defined as fi ¼ pi=pI ,

and of mean parasite traits �xI ¼
P

i xifi. Table 1 collects the

main notations used throughout the article. We refer the

reader to the electronic supplementary material for more

details on the analysis.
(b) Epidemiology
With the above life cycle, the dynamics of the density of strain

i, pi, can be written as follows:

dpi

dt
¼ ½biqS=i � ðdþ aiÞ�pi � mpi þ m

X
j

m jipj, ð2:1Þ

where qS=i is the average proportion (or local density) of sus-

ceptible hosts among the neighbours of a host infected by

parasite strain i.
Summing over all types i yields the dynamics of the

global density of infected hosts,

dpI

dt
¼ ½�bISqS=I � ðdþ �aIÞ�pI , ð2:2Þ
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which can be understood as follows. First, the total density of

infected hosts will decrease at a rate proportional to the mean

mortality rate in the population, dþ �aI , where �aI ¼
P

i aifi is

the average virulence in the population. Second, the average

transmission rate is given by �bISqS=I, where qS=I is the average

density of susceptible hosts experienced by an infected host

and �bIS denotes the mean transmission rate in infected indi-

viduals connected to at least one susceptible host (i.e. in

hosts that can effectively transmit the disease).

To compute �bIS, we need to consider the densities piS of

pairs between a susceptible host and a host infected by para-

site strain i. Note that we have piS ¼ qS=ipi. The total density of

susceptible–infected pairs is pIS ¼
P

i piS, and the frequency

of strain i among infected individuals in contact with a sus-

ceptible host is fiS ¼ piS=pIS. This allows us to compute
�bIS ¼

P
i bifiS. We can similarly define other global and

local mean traits, such as �bI ¼
P

i bifi and �aIS ¼
P

i aifiS.

(c) Evolution
For a given parasite trait x (such as transmission or virulence),

we are interested in the change over time of the mean value of

x, which is �xI ¼
P

i xifi. Following Day & Gandon [27], the

dynamics of �xI is

d�xI

dt
¼ Cov

I
ðxi, riÞ � mð�xI � �xm

I Þ: ð2:3Þ

The first term represents the effect of selection as the covari-

ance between the trait, xi, and the per capita growth rate of

parasite strain i,

ri ¼ biqS=i � ðdþ aiÞ: ð2:4Þ

The second term represents the effect of mutation bias,

which is proportional to the difference between the mean

trait, �xI , and the mean value of trait x among all new

‘mutations’, �xm
I ¼

P
i
P

j mjixifj [26,27]. Plugging equation

(2.4) into equation (2.3), we obtain the following equation

for the dynamics of mean virulence and transmission (see

electronic supplementary material for details):

d

dt
�aI

�bI

� �
¼ G

�1

qS=I

 !
þ �bISqS=I

�aIS � �aI

�bIS � �bI

� �
� m

�aI � �am
I

�bI � �b
m
I

� �
:

ð2:5Þ

Equation (2.5) allows us to identify three main forces driving

the dynamics of the mean traits. First, the effect of natural

selection on mean virulence and transmission is described

by the product of the genetic (co)variance matrix G with

the selection gradient ð�1 qS=IÞT. This is analogous to classi-

cal quantitative genetics models. However, in a spatially

structured population, the genetic covariance matrix needs

to be computed at the relevant spatial scale. In our model,

we have

G ¼ saa
I s

ab
IS

s
ba
I s

bb
IS

 !
, ð2:6Þ

where sxa
I is the global (co)variance between traits x and a in

the population, whereas s
xb
IS is the local (co)variance between

traits x and b in an infected individual that has at least one

susceptible neighbour. Similarly, the selection gradient

depends on the local density of susceptible hosts, qS=I .

The second term in equation (2.5) is the product of the aver-

age transmission rate, �bISqS=I , times the difference between the
local and global mean traits, �xIS � �xI . In a well-mixed popu-

lation, this difference is zero and this term vanishes. Hence,

this is a purely spatial effect that reflects the fact that, in

spatially structured epidemics, virulence or transmission may

be locally higher or lower than in the population as a whole.

Finally, the third term in equation (2.5) is the effect of

mutation bias. In the following we assume, for simplicity,

that mutations are uniformly distributed ðmij ¼ 1=ðN � 1ÞÞ.
Whether or not this mutation process yields a mutation bias

depends on the distribution of strain frequencies.

In a well-mixed population, we have qS=I � pS, �xIS � �xI

and s
xy
IS � s

xy
I . Thus, the genetic (co)variance matrix takes

the same form as in classical non-spatial models, and

equation (2.5) collapses to

d

dt
�aI
�bI

� �
¼ G

�1
pS

� �
� m

�aI � �am
I

�bI � �b
m
I

� �
, ð2:7Þ

which is exactly eq. (2.5) in [27]. Equation (2.7) describes the

change of the first moment of the trait distributions (�aI and �bI)

as a function of the second-order genetic moments (the var-

iances saa
I and s

bb
I and covariances s

ab
I and s

ba
I ). By

contrast, equation (2.5) takes one further step by describing

the change in the global means in terms of both local and

global first- and second-order moments.
3. Application: short-term virulence evolution
during an epidemic

In order to better illustrate the value of our approach, we

make two simplifying assumptions. First, using the standard

assumption of a transmission–virulence trade-off [31], we

focus on the change on mean virulence which, from equation

(2.5), is given by

d�aI

dt
¼ ½qS=Is

ab
IS � saa

I �|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
trade-off

þ �bISqS=Ið�aIS � �aIÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
spatial differentiation

�mð�aI � �am
I Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

mutation bias

: ð3:1Þ

Second, we assume that host fecundity is so large that dead

individuals are immediately replaced by a new susceptible

host. Consequently, we can neglect host demography and

consider that all sites are occupied by one host, which

can be either susceptible or infected. In other words, the den-

sity of the host population remains constant while the

prevalence of the infection varies throughout the epidemic.

This corresponds to a spatial version of the classical SIS

epidemiological model [32].
(a) Case study
We will now reveal the main insights gained by our approach

using a specific biological scenario. Following the analysis of

Griette et al. [20], we consider the invasion dynamics of two

parasite strains: a wild-type strain and a virulent strain

with higher transmission and virulence, but with a lower

R0 than the wild-type strain. Mutation occurs between the

two strains. Starting from a small inoculum at the centre of

a lattice of susceptible hosts, we will use stochastic simu-

lations of the underlying individual-based model to track

the joint epidemiological and evolutionary changes over the

course of the epidemic. Furthermore, we contrast two scen-

arios (figure 1). The first scenario assumes global parasite

dispersal: infected individuals may transmit the disease



global

local

Figure 1. In our simulations, infected hosts may either transmit the disease
locally to a susceptible neighbour or globally to a random susceptible indi-
vidual. Each site can be occupied by a susceptible (white circle) or infected
(grey circle) host.
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to a random susceptible individual in the population. The

second scenario assumes local dispersal: infected individuals

may transmit the disease to a random susceptible neighbour.

Under the global-dispersal scenario, the system is expected to

quickly converge to the behaviour of a non-spatial model.

In figure 2a(i),b(i), we show that the virulent strain is transi-

ently favoured by selection before being wiped out, a result

previously shown by Day & Gandon [27]. At the endemic equi-

librium, the mutant strain persists due to a mutation-selection

balance. This is expected from classical, non-spatial theory,

which predicts that the strain with the higher R0 (i.e. the

wild-type strain) is expected to win the competition. Our simu-

lations show that parasite dispersal does not affect this ultimate

outcome. However, parasite dispersal does have an effect on

the transient dynamics of the two strains during the epidemic

phase. First, the overall dynamics is much slower when disper-

sal is local than in a well-mixed population. Second, the

epidemic produced by the virulent strain lasts longer but is

of lower amplitude when dispersal is local than when it

is global. As a consequence, while under global dispersal a

sharp peak in mean virulence is observed shortly after the

start of the epidemic, local dispersal allows mean virulence

to persist at an intermediate level for a longer time.

How can we understand these markedly different transient

dynamics? In the lower panels of figure 2, we plot the different

components of equation (3.1) (trade-off, spatial differentiation,

mutation bias). Under global parasite dispersal (figure 2a),

the difference between local and global mean virulence, cap-

tured by the second term of equation (3.1) (in orange),

quickly converges to zero. As a result, the change in mean viru-

lence is solely governed by the balance between mutation bias

(in green) and the trade-off effect sab
IS qS=I � saa

I (in blue). In the

first phase of the epidemics, infected hosts have access to many

susceptible hosts and the strain with the higher per capita
growth rate (i.e. the virulent strain) is favoured. This is reflected

by the positive value of sab
IS qS=I � saa

I (in blue). The frequency

of the virulent strain then shoots up, and as the frequencies of

each strain get closer, the bias in mutation is eroded. At this

point, the supply of susceptible hosts is close to its equilibrium

value and the virulent strain becomes counter-selected.

When parasite dispersal is local (figure 2a), the avail-

ability of susceptible hosts is lower (because qS=I , pS) and,
as a result, the trade-off effect is much weaker and actually

tends to drag the mean virulence downwards (in blue). At

the same time, a difference between local and global mean

traits (�aIS � �aI) rapidly builds up (in orange). Equation (3.1)

shows that this differentiation pulls the mean virulence

upwards. The balance between the trade-off, competition

and mutation terms allows the virulent strain to be main-

tained in the population at intermediate frequencies for a

longer time compared with well-mixed populations. The

virulent strain can only be transiently favoured due to viru-

lence being higher in hosts that can actually transmit the

disease, as captured by the �aIS � �aI term.

In electronic supplementary material, figure S1, we show

that as the number of neighbours increases, the dynamics of

the spatial epidemic get closer to those observed under global

dispersal. This is expected because both an increase in the

number of contacts and an increased dispersal tend to

decrease spatial structure.
(b) Dynamics of spatial differentiation
Equation (2.5) shows that, in spatially structured epidemics,

selection is affected by the difference between local and

global mean traits �aIS � �aI . To better understand how this

spatial differentiation builds up under local parasite disper-

sal, we derive in the electronic supplementary material the

following dynamical equation:

dð�aIS � �aIÞ
dt

¼ ð �fqS=SIs
ab
ISS � s

ab
IS qS=IÞ�sab

IS ðfþ �fqI=SIrSÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
transmission

ð3:2aÞ

� ðsaa
IS � saa

I Þ þ saa
I

qI=I

qS=I
r|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

mortality

ð3:2bÞ

� �bISqS=I þ
dþ �aII

qS=I

� �
ð�aIS � �aIÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

mixing

ð3:2cÞ

� m
N

N � 1
ð�aIS � �aIÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

mutation

: ð3:2dÞ

The latter equation is valid in the limit of high host

fecundity (see the electronic supplementary material for a

more general treatment). In addition, we neglect for simplicity

some higher-order terms that depend on another measure of

spatial differentiation, �aISS � �aIS. This corresponds to the

classical pair approximation [28,30].

Equations (3.2a–d) show that the dynamics of differentiation

is driven by four different forces.

— First (3.2a), selection on transmission may be hetero-

geneous in space. Typically, at the front of the epidemic,

the availability of a higher number of susceptible hosts

selects for higher transmission and, because of the genetic

covariance sab between transmission and virulence, it

also selects for higher virulence. This effect may be

eroded by the relatedness rS between pathogens separ-

ated by a susceptible host (highlighted in grey, see the

electronic supplementary material for a full expression

of rS ). As explained in figure 3a, in a ISI configuration a

transmission event destroys two IS pairs and may thus

impact the spread of a focal strain if the competing
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Figure 2. Two strains w and m compete on a 100 � 100 triangular lattice (n ¼ 6) with periodic boundary conditions. Initially, all sites are occupied by susceptible
hosts, except for 37 infected hosts in the centre of the lattice. The initial frequency of mutants is 0.1. Mutation occurs between types at rate m ¼ 0:01, and we
have mwm ¼ mmw ¼ 1 and mww ¼ mmm ¼ 0. Strain w has traits bw ¼ 2, aw ¼ 1, which corresponds to R0,w ¼ 2. Strain m has traits bm ¼ 7:2, am ¼ 4,
which corresponds to R0,m ¼ 1:8. Dispersal is global in (a) and local in (b). (i) – (ii) Show the dynamics of mean virulence and the densities of each type of host
(S in light blue, qS=I in dotted blue, Iw in black, Im in red). (a)(iii) and (b)(iii) Show the components of the Price equation (equation (3.1)) for the change in mean
virulence: trade-off effect (sab

IS qS=I � saa
I , in blue), spatial differentiation effect (�bIS qS=Ið�aIS � �aIÞ, in orange), mutation bias (in green) and the sum of the

previous three components (in black). The average of 100 runs of the stochastic process is plotted in all figures. Note that the timescale is different in (a)(iii).
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strain (two sites away) is related to the focal strain. This

effect will tend to limit differentiation.

— Second (3.2b), the classical cost of virulence is expected to

affect differentiation if the amount of variation for this

trait varies between pairs IS and I. The amount of related-

ness r between parasites in neighbouring sites may also

affect differentiation because when an infected host dies

in a pair II it creates a new IS (figure 3b). This effect

will tend to increase differentiation. See the electronic

supplementary material for a full expression of r.

— Third (3.2c), transition between IS and II states, and vice

versa, via transmission and mortality will generally tend
to mix the trait values between these different types of

pairs and will decrease differentiation.

— Fourth (3.2d ), in our model mutation generates a bias

towards low frequency strains that tend to homogenize

the distribution of strains between different types of

pairs. This is also an effect that limits differentiation.

(c) The start of an epidemic
If the epidemic starts from a random spatial configuration of

strains, we may neglect the initial differentiation of the differ-

ent moments of the trait distributions (mean, variance and
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covariance). This greatly simplifies the equation for the

dynamics of spatial differentiation �aIS � �aI , which can be

written as follows:

dð�aIS ��aIÞ
dt

¼ s
ab
IS ð�fqS=SI � qS=IÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

epidemiological effect

�sab
IS ðfþ �fqI=SIrSÞ þsaa

I
qI=I

qS=I
r|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

genetic effect

:

ð3:3Þ

This equation highlights the two forces that are initially driving

the build-up of spatial differentiation. First, the build-up of

differentiation is driven by the quantity �fqS=SI � qS=I which is

expected to be high in the early stage of a spreading epidemic.

The abundance of SSI triplets at the frontline of epidemics gen-

erates differentiation because selection for transmission is

particularly high at the tip of the front [20]. Second, relatedness

between strains located one or two sites away can also affect

differentiation in this model. Simulations indicate that the posi-

tive effect of relatedness r acting on mortality outweighs the

negative effect of relatedness rS acting on transmission (elec-

tronic supplementary material, figure S1). Hence, both forces

select for higher virulence in the pairs IS.

The build-up of spatial differentiation can be visualized

by showing the mean virulence at different locations across

several realizations of the process (figure 4); the hosts infected

by the virulent strain (darker shades of red) tend to be located at

the front of the epidemic compared with those infected by the

milder strain (lighter shades of red). As the frequency of

the virulent strain increases, this spatial differentiation becomes

more pronounced.
(d) Reaching the endemic equilibrium
The build-up of differentiation during the initial phase of the

epidemic ultimately feeds back on the dynamics of the differ-

ence between local and global traits (equations (3.2a–d)). In

the end, this results in an equilibrium level of differentiation

that results from the balance between selection and mutation.

This equilibrium differentiation can be calculated from
equations (3.2a–d), and simplified by noting that at equilibrium

in the SIS model, we have �fqS=SI ¼ qS=I [33]. Thus, under pair

approximation [28,30], we have �fqS=SIs
ab
ISS � qS=Is

ab
IS � 0. For

convenience, we calculate the equilibrium differentiation

scaled by the variance, D ¼ ð�aIS � �aIÞ=saa
I . We obtain:

D̂ ¼
ðqI=I=qS=IÞr� ðsab

IS =s
aa
I Þðfþ �fqI=SIrSÞ � ðsaa

IS � saa
I Þ=saa

I
�bISqS=I þ �aII=qS=I þ mðN=ðN � 1ÞÞ :

ð3:4Þ

Hence, at equilibrium, spatial differentiation is solely deter-

mined by the amount of local and global variation, saa
IS � saa

I ,

and by the indirect effect of genetic structure. In our example,

the frequency of the virulent strain will tend to be higher in IS

pairs than globally, so we have �ðsaa
IS � saa

I Þ , 0. By contrast,

the indirect genetic effect will tend to be positive. The balance

between these two forces determines the equilibrium level of

spatial differentiation.
(e) The role of host demography
So far, we have assumed that host fecundity is infinite, so

that all sites on the lattice are occupied by either a suscepti-

ble or an infected individual. Relaxing the assumption of

large fecundity has two main consequences: first, we need to

consider the interplay between epidemiological and demo-

graphical dynamics; second, we need to account for the

possibility that infected hosts may have empty sites (o) in

their neighbourhood. Although equations (2.1)–(2.7) and

(3.1) remain valid, the dynamics of �aIS � �aI is different from

equations (3.2a–d) and now depends on the dynamics of

another measure of spatial differentiation, �aIo � �aI . In the elec-

tronic supplementary material, we show how equations for the

joint dynamics of �aIS � �aI and �aIo � �aI can be derived. A key

difference is that the effect of the relatedness coefficient r

vanishes from the dynamics of �aIS � �aI , but affects instead

the dynamics of �aIo � �aI . This can be understood by noting

that, when host fecundity is finite, a mortality event in an II
pair creates an Io pair, and not an IS pair as in the SIS life cycle.



(b) (c) (d) (e)(a) ( f )

Figure 4. Snapshots of the lattice at different time points. Each snapshot represents the average of 100 runs for the same scenario as in figure 2b. For each time point,
each site is coloured in grey if the host is uninfected in all runs, or in red if it has been infected in at least one run. The mean virulence among runs where the focal site is
occupied by an infected individual is shown, and colour-coded using various shades of red (higher levels of red indicate higher virulence). See electronic supplementary
material, figure S2, for snapshots of the epidemic under global dispersal. (a) t ¼ 0, (b) t ¼ 10, (c) t ¼ 20, (d ) t ¼ 50, (e) t ¼ 70 and ( f ) t ¼ 150.
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4. The weak-selection limit
Up to now, we have made no assumption on the strength of

selection. However, if we further assume that selection is

weak, we can use a quasi-equilibrium argument to simplify

the dynamics of mean traits. In this section, we show that

this allows us to recover previous expressions obtained by

standard invasion analysis techniques [12] and to make

long-term predictions on evolutionarily stable (ES) virulence.

We first consider equation (3.1). Assuming low mutation

rates, we can drop the mutation bias term. If we further

assume that selection is weak (i.e. the variance in the population

is small), we can rewrite equation (3.1) as

d�aI

dt
¼ saa

I
db

da

����
a¼�aI

qS=I � 1þ �bIqS=ID

" #
, ð4:1Þ

where db=da is the trade-off between transmission and viru-

lence, and D is the difference between local and global

virulence, scaled by the global variance. In the electronic sup-

plementary material, we show that the variable D is a fast

variable, in the sense that, under weak selection, D changes

on a fast timescale compared with �aI . We can, therefore, use

a quasi-equilibrium assumption to compute the value of D.

(a) SIS model
In the electronic supplementary material, we show that,

in the limit of large host fecundity, the change in mean

virulence under weak selection is given by

d�aI

dt
¼ saa

I 1�
qI=Ir

1þ qS=I

� �
S, ð4:2Þ

where S ¼ dþ �aI
�bI

db

da

����
a¼�aI

�1 ð4:3Þ

is the selection gradient in the well-mixed population. Equation

(4.2) reveals that potential evolutionary endpoints are given by

S ¼ 0. We, therefore, recover the marginal value theorem and

the result that selection will tend to maximize the b=ðdþ aÞ
ratio. The only effect of spatial structure is to slow down the

convergence to the ESS. Equation (4.2) shows that the intensity

of selection is decreased at a rate proportional to the relatedness

measure r, which is now calculated in a neutral population at

equilibrium. Hence, using our formalism, we can recover the

exact expression for the selection gradient derived in [12,34]

using standard invasion analysis techniques.

(b) oSI model
In the electronic supplementary material, we further show that,

when host fecundity is finite, the change in mean virulence can

be written under weak selection as

d�aI

dt
¼ saa

I 1�
qI=Ir

k

� 	
S, ð4:4Þ
where

S ¼ ½1� vðqI=Ir� �fqS=SI þ qS=IÞ�
dþ �aI

�bI

db

da

����
a¼�aI

�1: ð4:5Þ

Both k and v are positive functions of genetic and epidemiolo-

gical structure (see the electronic supplementary material).

Equation (4.4) has the same form and interpretation as

equation (4.2), but the expression of S shows that host demo-

graphy causes a deviation from the marginal value theorem,

which is quantified by the factor vðqI=Ir� �fqS=SI þ qS=IÞ.
Because v is proportional to the local density qo=I, it vanishes

in the limit of high host fecundity, and we recover the result

of the SIS model. However, when v is non-zero, equation

(4.4) shows that the ES virulence will no longer coincide

with the prediction of non-spatial theory. In particular,

under a concave-down trade-off between transmission and

virulence, we recover the result of Lion & Boots [12] that ES

virulence will be lower than predicted by non-spatial

theory if genetic relatedness, measured by qI=Ir, is greater

than a threshold solely determined by epidemiological

structure (�fqS=SI � qS=I).
5. Discussion
We present a novel theoretical framework to study the evol-

utionary epidemiology of spatially structured host–parasite

interactions. This framework allows us to study both the

short-term and the long-term evolution of parasite life-history

traits. Using a specific biological scenario, we show that, even

when spatial structure has little effect on the long-term

dynamics, it can have important effects on the transient

evolutionary dynamics during an epidemic. First, epidemiolo-

gical dynamics is slower when infections are local because of

the lower availability of susceptible hosts. Second, transient

evolutionary dynamics are affected by the interplay between

spatial structuring and epidemiological feedbacks. The transi-

ent increase of the virulent and more transmissible strain

during the epidemic has a lower amplitude but a longer dur-

ation in the spatially structured habitat. Our analysis shows

that a key driver of this dynamics is the build-up of a spatial

differentiation during the initial phase of the epidemic: viru-

lence tends to be higher among infected hosts with a higher

density of susceptible neighbours. In an expanding epidemic

this leads to phenotypic differentiation between the front and

the rear of the epidemic.

Our approach is an extension of the evolutionary epi-

demiology framework introduced in [26,35,36], which bridges

the gap between quantitative genetics and epidemiology.

This theoretical framework provides a way of tracking the tran-

sient dynamics of the mean life-history traits in the population

as a function of epidemiological densities and genetic
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covariances between traits. When infections are long-range, the

change in mean trait depends only on the genetic (co)variance

matrix between traits, on the density of susceptible hosts and

on the effect of mutation [26,36]. Our analysis shows that

spatial structure has two main consequences. First, the relevant

genetic (co)variance matrix depends on the dispersal kernel of

parasites. If infections are local, we need to consider both

global and local covariances between traits. Similarly, the selec-

tive effect of transmission is weighted by the local density of

susceptible hosts, qS=I , rather than the global density pS.

Second, spatial structure introduces a new selective force that

is proportional to the phenotypic differentiation, �aIS � �aI ,

which measures the difference between global and local

mean traits. Recent theoretical studies have also highlighted

the build-up of spatial patterns of phenotypic variation

during epidemics [18–20]. In particular, Osnas et al. [19] pre-

sent a Price equation formulation of their result that is very

similar to our description of pathogen evolution (cf. equation

(3.1) with their eqn (4.2)). Indeed, it is interesting to note that

spatial differentiation �aIS � �aI is akin to the effect of migration

in the multi-habitat version of the Price equation discussed in

[19,26]. This term also takes the form of a difference in the

mean trait values in each habitat. In our model, however, the

‘habitats’ are emergent properties of the dynamics, rather

than extrinsic properties of the environment. However, none

of these earlier theoretical studies explicitly track the dynamics

of differentiation. By contrast, our analytical framework allows

us to tease apart the forces driving the build-up of this differen-

tiation. In a similar way, in multi-locus models of pathogen

evolution the indirect effect of linkage disequilibrium on selec-

tion is a consequence of the non-random distribution of genetic

variability between loci [37]. In other words, the genetic covari-

ance between loci is analogous to the spatial differentiation

between habitats. All these structured models highlight the

importance of the distribution of phenotypic variation across

different units of population structure to understand the

evolution of average phenotypic traits.

We show that the dynamics of phenotypic differentiation

(i.e. �aIS � �aI) depends on generalized coefficients of related-

ness (the r and rS coefficients) and on selection (through the

covariance terms). Starting from an initial random configur-

ation, a difference between local and global mean virulence

builds up as a result of the availability of susceptible hosts in

an expanding epidemic (measured as �fqS=SI � qS=I). Genetic

structure tends to reduce both the transmission benefit

(because competition for susceptible hosts tends to take place

between related parasites) and the cost of virulence (because

death creates new opportunities for the transmission of related

parasites). Because the scales of these processes are different,

different relatedness coefficients are needed to quantify the

effect of genetic structure.

In our model, under the simplifying assumptions of

low mutation rates and weak selection, we use a quasi-

equilibrium approximation of spatial differentiation. This

quasi-equilibrium captures the influence of kin competition

between parasites and allows us to recover previous long-

term predictions derived from classical invasion analyses

[7,12,14]. When host population size is fixed, relatedness

erodes the transmission benefit and the cost of virulence with

equal weight. As a result, only the rate of evolution is affected

by relatedness and the ES virulence is the same as in the non-

spatial model [12,34]. By contrast, when host population

size depends on host fecundity, we recover the analytical
expression for the selection gradient of [12] and show that

the predicted ES virulence will, in general, deviate from the

non-spatial prediction. We show in the electronic supplemen-

tary material that this requires us to track two measures of

spatial differentiation, �aIS � �aI and �aIo � �aI . Hence, extending

our approach to even more complex life cycles (e.g. with recov-

ered or vaccinated hosts) is feasible, provided we track the

dynamics of other measures of phenotypic differentiation

between different types of pairs of sites. Such extensions of

our method would also allow us to take into account more rea-

listic biological scenarios, such as age, class or environmental

heterogeneity (e.g. vaccination, see [36,38]).

Because it allows us to shed light on the effect of genetic

structure, our approach differs from previous works based on

partial differential equations [18–20,39]. Indeed, models based

on partial differential equations assume implicitly that local

population sizes are very large. As a result, there is no local

drift and relatedness coefficients tend to zero. These models

thus neglect the impact of kin competition. By contrast, our fra-

mework considers finite local population sizes and, therefore,

allows us to take into account genetic structure in the population

through generalized coefficients of relatedness. On the other

hand, a major advantage of reaction–diffusion models over

our theoretical framework is that they allow the computation

of the speed of the invasion wave [20]. Although attempts have

been made to compute invasion speed using spatial moment

equations (e.g. [40]), a systematic method to handle this in

multi-strain epidemics on networks remains to be developed.

A limitation of our approach is that the dynamics of the

first moments of the distribution of traits depends on other

moments that need to be computed over the distribution of

strains in various spatial configurations. As typical of

spatially extended systems, we are faced with an infinite hier-

archy of moments, and these equations do not form a closed

system. Nevertheless, we show that these equations can be

used to understand the results of simulations of the spatial

stochastic process of which they represent the expected trajec-

tory. For instance, equation (3.1) is an exact description of the

dynamics of mean virulence. However, it depends on

the dynamics of spatial differentiation �aIS � �aI described by

equations (3.2a–d ), which is an approximation of the full

dynamics obtained by neglecting some higher-order terms

(as in the standard pair approximation [28,30]). However,

equations (3.1) and (3.2a–d ) can be used to gain analytical

insight without exactly solving the dynamical system.

Throughout this study, we assumed that each site is con-

nected to a constant number of sites. However, empirical

contact networks for infectious diseases are typically character-

ized by variation in the number of contacts per host [41,42].

Theoretical studies have shown that the existence of

‘superspreaders’ could have important consequences on the

evolution and epidemiology of infectious diseases [10,42,43].

Although the definition of an invasion front on such contact

networks is not as straightforward as on a lattice, it is still

possible to measure the phenotypic differentiation between

virulence in hosts that have a susceptible contact and

mean virulence in the population as a whole. Furthermore,

wave-like propagation fronts can be obtained on complex

heterogeneous networks by replacing geographical distance

by a measure of effective distance [44]. A tentative prediction

from the current study would be that, during an epidemic,

virulence in the most recently infected individuals would

tend to be higher than the mean virulence.
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Other realistic features of infectious diseases have also

been shown to interplay in non-trivial ways with pathogen

evolution in spatially structured populations. First, although

theoretical studies typically assume that disease events are

exponentially distributed, the introduction of a constant dur-

ation of infection leads to selection for maximal outbreak

frequency [45,46] Second, empirical data show a diversity

of parasite disersal kernels [47,48]. Little is currently known

on how these different dispersal distributions affect the evol-

ution of pathogen traits. Although we focus on two extreme

cases of parasite dispersal (global versus local dispersal), a

potential extension of our framework would be to consider

more realistic dispersal kernels combining local and global-

dispersal events (see, e.g. [7,12,14] for a review) or even

study the joint evolution of dispersal with other pathogen

life-history traits (e.g. [19]).

A major aim of evolutionary epidemiology theory is to

make short-term predictions in a realistic spatially structured

environment [5]. The current framework helps identify quan-

titative variables required to generate such predictions. In

particular, the present study highlights the importance of

phenotypic differentiation. It is interesting to note that several

empirical studies in different pathosystems support the exist-

ence of similar patterns of phenotypic variation in spreading
epidemics. For instance, Mondet et al. [25] observed that the

virus affecting honeybee colonies in New Zealand are often

more virulent at the front of the spreading epidemic. Simi-

larly, Phillips & Puschendorf [24] discuss some evidence

that Batrachochytrium dendrobatidis (Bd), a pathogenic fungus

known to be a major driver of the recent decline of many

amphibian populations around the world, may also induce

more virulence at the front line of the epidemics. Empirical

studies measuring phenotypic differentiation across space in

spreading epidemics remain, however, very limited. We

believe the accumulation of data on the spatial distribution

of genetic and phenotypic variation of pathogens is key to

provide the information needed to generate accurate predic-

tions on the epidemiology and evolution of infectious

diseases. In this respect, we hope our work will guide

future experimental and empirical studies on the evolution

of pathogens in spatially structured environments.
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