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Interactions among traits that build a complex structure may be represented as

genetic covariation and correlation. Genetic correlations may act as constraints,

deflecting the evolutionary response from the direction of natural selection.

We investigated the relative importance of drift, selection, and constraints in

driving skull divergence in a group of related toad species. The distributional

range of these species encompasses very distinct habitats with important cli-

matic differences and the species are primarily distinguished by differences

in their skulls. Some parts of the toad skull, such as the snout, may have func-

tional relevance in reproductive ecology, detecting water cues. Thus, we

hypothesized that the species skull divergence was driven by natural selection

associated with climatic variation. However, given that all species present high

correlations among skull traits, our second prediction was of high constraints

deflecting the response to selection. We first extracted the main morphological

direction that is expected to be subjected to selection by using within- and

between-species covariance matrices. We then used evolutionary regressions

to investigate whether divergence along this direction is explained by climatic

variation between species. We also used quantitative genetics models to test

for a role of random drift versus natural selection in skull divergence and to

reconstruct selection gradients along species phylogeny. Climatic variables

explained high proportions of between-species variation in the most selected

axis. However, most evolutionary responses were not in the direction of selec-

tion, but aligned with the direction of allometric size, the dimension of highest

phenotypic variance in the ancestral population. We conclude that toad species

have responded to selection related to climate in their skulls, yet high

evolutionary constraints dominated species divergence and may limit species

responses to future climate change.
1. Background
All organisms are complex systems composed of many traits that interact with

each other. In such systems, investigation of whether genetic constraints impose

limits to evolution is of fundamental importance [1–4]. By constraints, we

mean any restrictions or limitations on the course or outcome of evolution

(sensu; [1]). The heritable associations among traits within a complex structure

are represented by the additive genetic variance–covariance matrix (the

G-matrix; [5]), in which the magnitudes of genetic covariation between traits

results from the linkage disequilibrium and pleiotropy of the underlying genes

[6,7]. On the one hand, correlations among traits can constrain the evolutionary

trajectories of population means along the adaptive landscape if the G-matrix

has multivariate directions (i.e. linear combinations of traits) with low genetic

heritable variance [2,8]. On the other hand, multivariate dimensions that accumu-

late most genetic variance embedded in the G-matrix may act as lines of least

evolutionary resistance, attracting population divergence in their direction,

even if selection is not pulling in the same direction [9–13].
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Figure 1. Map shows the distributions of the species (coloured dots) and the variation in precipitation seasonality. Locality coordinates obtained from Narvaes [33] were
plotted on a layer of precipitation seasonality (BIO 15) extracted using the WordClim database in DIVA-GIS. Toad pictures were extracted from Pereyra et al. [34].
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Quantitative genetics theory has been used to model the

response of populations to environmental fluctuations

[14–16]. These models posit that environmental alterations

may produce shifts in the adaptive landscape, as indeed

has been seen in nature [17,18]. Thus, genetic constraints may

facilitate, hamper, or even prevent populations from adapting

to these new selective pressures. Which scenario will occur

depends on the degree of alignment between the direction of

selection and directions of highest genetic variance [9,14–16].

Climate change is expected to act as a new and probably

strong selective pressure, given that it influences several aspects

of species biology, on ecological as well as on evolutionary

timescales [19–21]. The interaction between selection, climate,

and constraints has mainly been investigated in an ecological

framework [22–24], overlooking the potential interplay

between climate and constraints on phenotypic evolution at a

wider phylogenetic scale [25].

A potentially good model for testing an effect of genetic

constraints on multivariate evolution is a group of species

that are distributed along environmental gradients and that

also have differences in several quantitative traits. Populations

or related species that present a wide distributional range are

predicted to have gone through adaptive processes connected

to environmental variation [26], in special climatic differences

[27–30]. We therefore chose to study a group of closely related

toad species, the Rhinella granulosa group [31,32], which are dis-

tributed in distinct open-habitats in Central and South

America, ranging from the warmer and more arid Caatinga

and Cerrado habitats to the colder and more humid Pampas

and Oriental Chaco habitats (figure 1; [32]). These tropical

toad species differentiated around 12–35 Ma and are distin-

guished mainly by the shape of their heads and by specific

skull traits [32].
Specifically, we aimed to investigate the relative contri-

butions of natural selection and constraints in shaping skull

divergence in the studied toad species and the potential inter-

play of those factors with climate. Given that several species of

the R. granulosa complex are to some extent restricted to specific

habitats that present diverse climatic regimes, Narvaes [33] has

speculated that species differentiation was linked to quaternary

climatic cycles [35] in which populations became isolated from

each other and adapted to their specific habitats (morphocli-

matic domains; [36]). Thus, we hypothesize that some of the

skull divergence across the R. granulosa species complex was

produced by selection associated with climate. Yet, considering

that the toad species present very high skull trait correlations

[37], we expect evolutionary constraints to be high, potentially

biasing most of the skull divergence towards the directions of

high within-species genetic variance.
2. Methods
(a) Analysis workflow
In order to test our prediction of climate-associated selection

acting on skull divergence, we performed a complex workflow

of analysis. We first present a summary of our analysis to

make the connections among all the steps clear:

(i) three-dimensional landmarks, (ii) 21 linear distances,

(iii) within-group species phenotypic variance covariance

matrices (P-matrices), (iv) ancestral matrices as weighted

averages of species P-matrices (W-matrices), (v) covariance

matrix of species means (B-matrix), (vi) C-matrix: within- and

between-species difference in variation (C ¼W21 B), (vii) PC1

of C-matrix: axis describing the linear combination of skull

traits subjected to selection (‘most selected axis’), (viii) species

means projected on the most selected axis, (ix) evolutionary
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regressions (ERs): how much of between-species variation in the

most selected axis is explained by climatic variables, and (x)

formal test that species divergence was due to selection.

(b) Sample and linear distances
We analysed 1 034 specimens of 11 toad species belonging to the

Rhinella granulosa group (electronic supplementary material, table

S1). We scanned all the specimens with an X-ray microtomography

system (SkyScan 1176, Konitch, Belgium) from the Instituto de Bio-

ciências at the Universidade de São Paulo (IB-USP, Brazil), with

methods and parameters described in Simon & Marroig [38]. We

placed 22 three-dimensional landmarks in the toad skulls (electronic

supplementary material, table S2) using TINA manual landmarking

tool software [39] in order to extract 21 linear distances that represent

individual bone dimensions, thus capturing local developmental

and/or functional processes. The distances were allocated into

three distinct functional sets: neurocranium, snout, and suspensor-

ium ([40]; electronic supplementary material, figure S1). We opted

to use linear distances to represent skull variation instead of

landmark configurations, normally used in the geometric morpho-

metrics (GM) framework [41] because of potential problems in

estimating species P-matrices with the later method and issues

related to constructing selection gradients. When the variation

across homologous landmarks is not isotropic (i.e. homogeneous),

the superimposition procedure used in the generalized Procrustes

analysis (GPA) spreads the variation of more variable landmarks

to the rest of the landmarks, therefore confounding variation

across the structure [42,43]. Even though Procrustes distances has

been shown to be a better method to estimate shape explicitly and

to detect shape differences between samples than linear distances

[44,45], the adequacy of using GPA to estimate covariance matrices

is still not clear and solutions proposed have not been widely used

[42,46]. In addition, because the interpretation of selection gradients

obtained with GM is disputed [47,48] and because the evaluation of

constraints in a quantitative genetics framework demands the

interpretation of selection gradients [49], our choice of method is

better suited to the objectives that we delineated here.

(c) Evolutionary regression of morphology on climate
We performed ERs [50] to test our first prediction that divergence in

the mean skull morphology of species is caused by selection associ-

ated with variation in mean climatic variables drawn from species

geographical distributions. ER is an extension of Hansen’s [51]

model of evolution by stabilizing selection to continuous predictor

variables that are evolving randomly through time (i.e. Ornstein–

Uhlenbeck model; [52,53]). The analysis uses two parameters:

adaptation half-life (t1/2), the time it takes for an adaptation to a

new selective regime to overcome the influence of ancestral states

(i.e. the strength of phylogenetic inertia), and vy, the expected var-

iance between species that evolved for a period under the same

selective regime [54]. Given that not all variation in the skulls of

species was necessarily produced by selection, we first calculated

the linear combination of skull traits that is expected to be subjected

to selection, using the following equation [55,56]

C ¼W�1B, ð2:1Þ

where W21 is the inverse of the pooled within-group covariance

matrix of the basal most node in the toad phylogeny and B is

the covariance matrix of the species multivariate means. Both

the W-matrix and the B-matrix were divided by their trace (total

variation). The first eigenvector of the C-matrix indicates a multi-

variate direction of most difference between the W-matrix and the

B-matrix [55,56]; that is, the combination of skull traits that differ

the most when comparing within-species variation and variation

among species means. We refer in the text to the first eigenvector

of the C-matrix as the ‘most selected axis’.

We estimated the ancestral W-matrix as an average of all

species phenotypic matrices (P-matrices) deriving from the basal
node, weighted by species sample sizes and phylogeny structure

([57–60]; function PhyloW from the ‘evolqg’ R package, [61]).

We controlled for skull trait mean differences owing to geography

and sex within each species to construct P-matrices (using

residuals of linear models; see electronic supplementary material,

table S1 for factors controlled on each species). The inversion of the

W-matrix as done in equation (2.1) is problematic because it is esti-

mated with error owing to sampling, accumulating noise in the

smallest eigenvalues [62]. Given that the smallest eigenvalues

dominate the inverted matrix, causing biases in the estimation of

C, we performed a noise control approach delineated in Marroig

et al. [62]. By analysing the distribution of the W-matrix eigen-

values, we determined the last reliable eigenvalue (minimum

value of the second derivative distribution) as the seventh one

and subsequent eigenvalues (8–21) were replaced by this value

(using the function ExtendMatrix of the ‘evolqg’ R package [61]).

We used the species multivariate means projected on this

most selected axis as the dependent variable in the ER analysis

and we predict that variation among species in this axis will be

explained by variation in climatic variables. We extracted species

climatic data from the WorldClim database that refers to

the period between the years 1950 and 2000 [63]. We used all the

localities in which each species were reported to occur [33], and

we extracted bioclimatic variables using DIVA-GIS software.

Given that several bioclimatic variables are highly correlated (see

electronic supplementary material, table S4), we chose to use as

predictors in the ER only variables that presented the highest con-

trast in the first two PCs extracted from a climatic correlation

matrix (electronic supplementary material, table S5) and that did

not have a correlation higher than 0.7. The bioclimatic variables

tested were mean diurnal range (8C), temperature seasonality

(8C), mean temperature of warmest quarter (8C), annual precipi-

tation (mm), and precipitation seasonality (mm). Because we

only have 11 species, we calculated the regression parameters for

weak and strong phylogenetic inertia (t1/2 reaching 10% or 100%

of the full phylogeny length, respectively) by using a recently pub-

lished molecular Bayesian phylogeny of the toad species [34]. The

weak and strong models were compared by AICc values only if

the ER were significant for both models (i.e. 95% CI for the slope

did not contain the zero value). We did not interpret all the par-

ameter values drawn from the preferred models because we

have a small species sample size [60]. Thus, we only used the inter-

cept and slope estimates of the ER and the percentage of variance

explained. ER was performed using the function oubm.fit from the

‘slouch’ R package.

(d) Random drift tests
Even though we extracted an axis of most difference between the

ancestral W-matrix and the B-matrix, we cannot be sure that

these two matrices are different owing to selection or to other evol-

utionary processes, such as random drift. Thus, to formally test

that selection is underlying species divergence, we used the ana-

lyses grounded on quantitative genetics theory to investigate a

role of genetic drift versus natural selection in skull divergence

[5,57–59,64,65]. The disparity in phenotypic multivariate means,

as a result of random drift, is a function of the ancestral

G-matrix, the time since divergence and effective population

sizes of descendant populations [5]. The key implication is that

variation between descendant populations (i.e. variation between

species multivariate means) is expected to be proportional to the

within-group variation of the ancestral population. Once again,

we used weighted averages of species P-matrices to estimate ances-

tral matrices along the toad phylogeny. We considered our

procedure adequate to estimate the ancestral matrices, because

we previously compared all species P-matrices and they are very

similar (ranging from 0.88 to 0.97 using Random Skewers; [37]).

Furthermore, the regression drift test has nominal type I error

rates when matrix correlation between the G-matrix and the
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P-matrix are higher than 0.7 [65]. The W-matrices are used as

proxies of the ancestral G-matrices [57–59].

To compare the within- and between-population variation, we

used the regression test developed by Ackermann & Cheverud [59]

which is based on principal components (PCs; function TreeDrift-

Test; [61]). Within-population variation is represented by the

variance explained by each of W-matrices’ PCs (eigenvalues),

whereas between-population variation (B-matrix) corresponds to

the variance of the phylogenetic independent contrasts (PIC;

[66,67]), calculated using species/ancestors multivariate means,

projected on W-matrices’ PCs (yielding species scores). By using

PIC, we acknowledge that not all the descendant species origi-

nated from the same ancestor [67] and that skull trait means of

closely related species may be more similar to each other than to

distantly related species [66]. We estimated ancestral trait means

using the maximum-likelihood (ML) approach developed by

Schluter et al. [68] that assumes a Brownian motion (BW) model

of evolution in which changes in the means do not follow any ten-

dency (function fastAnc of ‘phytools’ R package; [69]). We have

also estimated the ancestral means using linear parsimony (using

Mesquite; [70,71]) and the results are similar to ML (mean vector

correlation among ancestral means estimated by both methods

equals 0.99). The regression slope is expected to be one if W-

matrix eigenvalues and B-matrix (in log scale) are proportional

(see §1.1 in the electronic supplementary material for mathematical

details). To investigate deviations from proportionality, we com-

pared the empirical regression slopes with 95% confidence

intervals obtained by simulating random drift, while accounting

for the phylogeny (details in §1.1 of the electronic supplementary

material). We rejected drift whenever the empirical slope was

below or above the lower and upper limits of the drift intervals,

respectively. We performed the regression test only for five

nodes in the phylogeny (black nodes in figure 3), because we did

not test nodes that had less than four descendant populations

(grey nodes in figure 3) owing to potentially low statistical

power. We also checked that differences in P-matrices across

species did not bias the drift regressions tests (see §1.2 in electronic

supplementary material, SI and figure S2).

In addition to the regression test, we also computed Pearson

product–moment correlations between species scores on

W-matrix eigenvectors [59,60,64], also using PIC. These PCs are

by definition orthogonal to each other at the within-group level,

and therefore independent. Under random drift, we expect the

species divergence in the PCs scores to remain independent.

However, under the alternative hypothesis of natural selection

producing population divergence, species PC scores could be

correlated if selective pressures on these dimensions were also cor-

related (selective covariance; sensu Felsenstein [64]). We correlated

n 2 1 number of PCs, with n corresponding to the number of taxa

in each of the five nodes tested. We performed univariate tests of

PC pairwise correlations, also computing type I error rates for

these tests (see electronic supplementary material, table S3). We

rejected drift when at least one PC correlation was significantly

different from zero at a ¼ 0.05.
(e) Selection and evolutionary constraints
We tested our second prediction of an effect of constraints on

skull divergence by comparing the direction accumulating

most phenotypic variance within the ancestral W-matrices (PC1

of each W-matrix) with both the direction of selection (b vectors)

and the direction of the evolutionary response (Dz vectors). The

direction accumulating most variance (PC1) is called pmax [5],

and it is expected to present the highest constraining effect.

Any selection gradient non-orthogonal to pmax will produce a

response biased in this direction [72]. A good estimation of

constraints, therefore, depends on the quality of the ancestral

matrix estimation. Considering that ancestral matrices were
estimated using the species P-matrices (average number of

individuals ¼ 94) and these present very high repeatabilities

(ranging from 0.96 to 0.99; [37]), we argue that constraints are

reasonably well estimated in our study. All the toad species pre-

sent very high trait correlations resulting in a high percentage of

the total variance explained by the PC1 (ranging from 50% to

80%; [37]). If directions accumulating phenotypic variance do

indeed influence evolution, then we would expect high vector

correlations between PC1 and Dz, indicating that divergence is

aligned with constraints.

The evolutionary response is a vector of differences in skull

traits between descendant – ancestral pairs ([species means

directly derived from the node] 2 [ancestral trait means from

the specific node]). Selection gradient reconstruction was done

by rearranging the multivariate breeder’s equation [5,11]

b ¼W�1Dz, ð2:2Þ

where W21 is the inverse of the pooled within-group matrix for

each node in the phylogeny (figure 3a). We once again used the

noise control approach on the W-matrices to avoid biasing the esti-

mates of b. Marroig et al. [62] showed that selection gradient

reconstruction is improved by this procedure using simulations.

We reconstructed 20 b vectors in total for the whole phylogeny,

using each node ancestral W-matrix (nodes 12–21 in figure 3a)

and its corresponding Dzs. To test if the evolutionary response is

aligned with the direction of selection, we computed the vectors

correlations between each Dz with its corresponding b vector for

each branch in the phylogeny [11]. To test if selection is aligned

with constraints, we computed vector correlations between PC1

and b vectors. Finally, we evaluated the alignment of b vectors

with the most selected axis to inspect the contribution of individual

reconstructed selection vectors to the divergence between

W-matrix and B-matrix variation. All vector correlations were

done with normalized vectors (each vector element divided by

the vector length), so that only vector directions are compared.

The significance of the vector correlations was determined by con-

structing a random distribution of 1 000 21-element vector

correlations drawn from a random multivariate distribution of

zero mean and s.d. ¼ 1.0. 95% of all values ranged between

20.45 and 0.45, and any value outside this range can be considered

significant at a ¼ 0.05.
3. Results
(a) Between-species climatic variation explains skull

morphological variation
Between-species variation in temperature and precipitation

seasonality (figure 3a,b), as well as in mean temperature of

the warmest quarter, explains 90%, 79.5%, and 73.5% of vari-

ation on species means projected on the most selected axis,

respectively (electronic supplementary material, table S7).

Although these climatic variables do not have the highest

correlations in the climatic correlation matrix (see electro-

nic supplementary material, table S5), they are moderately

correlated. Thus, part of the morphological variance explained

by each climatic variable is shared with the other two variables.

The most selected axis represents a contrast between prenasal,

nasal, and frontoparietal bones (distances in red in figure 2)

against distances from maxillary, squamosal, and pterygoid

bones (distances in blue in figure 2; electronic supplementary

material, table S5), which belong to the suspensorium func-

tional unit. Species that have longer prenasal, nasal, and

frontoparietal bones and shorter maxillary, squamosal, and

pterygoid bones are subjected to less temperature seasonality
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Table 1. Vector correlations between evolutionary response (Dz), selection (b), and PC1. Evolutionary responses are the differences between descendant-
ancestral mean trait values. Selection gradients were reconstructed along species phylogeny using the multivariate breeder’s equation. PC1 represents the
direction accumulating most phenotypic variance. Most selected axis is the linear combination of skull traits indicating the direction of most difference between
within- and among-species variation. Significance of vector correlations was determined by constructing a distribution of correlations among vectors of
21 elements drawn from a random multivariate normal of zero mean and unit standard deviation. Vector correlations above the 95% upper limit of the random
vector correlations were considered significant (. 0.45; values in italics).

phylogeny branches

vector correlations

DZ 3 b DZ 3 PC1 PC1 3 b b 3 most selected axis

1. node 19 – R. centralis 0.75 0.03 0.38 0.56

2. node 19 – R. humboldti 0.33 0.17 0.41 0.99

3. node 18 – node 19 0.40 0.12 0.10 0.95

4. node 18 – R. merianae 0.36 0.14 0.15 0.97

5. node 20 – R. granulosa 0.57 0.03 0.64 0.83

6. node 20 – R. mirandaribeiroi 0.88 0.01 0.82 0.45

7. node 17 – node 18 0.95 0.00 0.06 0.07

8. node 17 – node 20 0.68 0.03 0.87 0.74

9. node 16 – node 17 0.65 0.03 0.96 0.77

10. node 16 – R. major 0.37 0.07 0.46 0.95

11. node 15 – R. azarai 0.57 0.02 0.42 0.80

12. node 15 – R. bergi 0.67 0.02 0.50 0.73

13. node 14 – node 15 0.33 0.13 0.03 0.98

14. node 14 – node 16 0.45 0.05 0.88 0.92

15. node 13 – node 14 0.75 0.02 0.90 0.66

16. node 13 – R. pygmaea 0.95 0.00 0.21 0.14

17. node 12 – node 13 0.64 0.04 0.90 0.78

18. node 12- node 21 0.64 0.04 0.90 0.78

19. node 21 – R. fernandezae 0.34 0.12 0.57 0.97

20. node 21 – R. dorbignyi 0.35 0.10 0.62 0.96
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and more precipitation seasonality than species with the

opposite morphological pattern.
(b) Natural selection signature on toad skulls
We rejected drift in all nodes of the phylogeny that were

tested, three of them with the regression test and four of

them with the PC correlation test (figure 3a and electronic

supplementary material, table S3). The highest regression

slope was found for the basal most node (figure 3b). PIC

scores on morphological PC5 are correlated with PIC scores

on PC1 and PC2 (figure 3c) for the basal most node. PC5 is

also correlated with PC3 for nodes 13 and 16, being the high-

est correlation for this last node (electronic supplementary

material, table S3). Type I error rates are acceptable for both

the regression and the PC correlation tests (see electronic sup-

plementary material, table S3). Interestingly, the most

selected axis, when extracted using PIC (i.e. B-matrix is a

covariance matrix of empirical PIC), has a vector correlation

of 20.65 ( p ¼ 0.03) with PC5, the morphological axis with

significant PC correlations.

Coefficients for the first five morphological PCs are

shown in electronic supplementary material, table S6. PC1

vectors from the ancestral matrices may be considered allo-

metric size vectors (all of its coefficients have the same sign,
indicating that skull traits all increase or decrease together

along its direction), although presenting very high corre-

lations with an isometric vector in log scale (0.96–0.99).

PC2 is a contrast between distances from the parasphenoid

bones and all other distances. PC3 opposes distances between

the nasal bones and frontoparietal, maxillary, pterygoid, and

mandible bones. PC5 is a contrast between frontoparietal and

squamosal bones against nasal and maxillary bones.
(c) Interplay between selection and constraints on skull
divergence

Several of the evolutionary responses are aligned with the

direction of the reconstructed selection gradients along the

toad phylogeny (12 out of 20 phylogeny branches, Dz � b

mean vector correlation¼ 0.58+0.21), yet most of them are

also aligned with PC1 (Dz � PC1 mean vector correlation¼

0.75+0.27; table 1). However, no selection gradient is aligned

with the PC1 direction (b � PC1 mean vector correlation¼

0.06+0.05). Interestingly, only when b is orthogonal to PC1

(vector correlation less than 0.02) is the evolutionary response

highly aligned with b (Dz � b vector correlation� 0.88;

table 1). Several selection gradients are aligned with the most
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selected axis (11 out of 20 branches;b �most selected axis mean

vector correlation ¼ 0.54+0.32; table 1).
spb.royalsocietypublishing.org
Proc.R.Soc.B

283:20161783
4. Discussion
(a) Climatic variables as selective agents acting on toad

skull variation
In this study, we integrated quantitative genetics and phyloge-

netic methods to investigate divergence in skull morphology

and its potential relationship with distinct evolutionary pro-

cesses as well as with climatic variation in a group of related

toad species. The ER results suggest that climatic pressures if

not directly were at least related to the selective agents that

pulled a set of skull traits towards different optima in the dif-

ferent species. The rejection of random drift in all nodes

tested supports that natural selection has acted directly on

specific skull traits or as a co-selection of different sets of

traits, mostly on the snout region. Narvaes [33] hypothesized

that these toad species had an ancestral population widely dis-

tributed in South American open-habitats that got split owing

to the expansions and retractions of forest habitats during the

Quaternary climatic cycles. This hypothesis implies that

species differentiation was facilitated by gene flow interruption

and subsequent divergence among lineages by accumulation

of genetic differences owing to drift/mutation and selection.

This scenario may seem incompatible with our results favour-

ing selection as a driver of skull divergence among species.

However, rejecting drift at a particular node in the phylogeny

indicates the action of selection, but does not give any insight of

whether speciation was linked to selection. Thus, initial diver-

gence on the history of the R. granulosa species complex could

have occurred by neutral processes and afterwards each line-

age could start to respond to divergent selective pressures

specific to their habitats [73]. Even though we cannot be certain

that climate-related selection was relevant to speciation events

of the R. granulosa complex, given that the climatic data used in

the ERs refer to very recent time periods (1950–2000), high

vector correlations between the selection gradients with the

most selected axis suggest that climatic selective pressures

were relevant in the deep divergence of these toad species.

An association between skull and climatic variation has

also been found in other natural systems, such as rodents

[74–76], lizards [30], and monkeys [27,77]. In general, the

explanation for skull–climate associations are based on the

effect that divergent climate has on food type and availability.

Thus, climate is interpreted as having an indirect effect on skull

morphology through feeding mechanics. However, most

anuran amphibians present very similar diets, especially Bufo-

nidae species, which are considered ant feeders [78]. There is

little information on diet preferences for the species composing

the R. granulosa complex, yet both R. dorbignyi and R. granulosa
eat ants and beetles [79,80], despite being subjected to very

distinct precipitation and temperature patterns. Thus, we

argue that diet probably does not account for the differences

found in skull morphology of the toad species. Instead, we

suggest that these skull differences are related to the reproduc-

tive ecology of the species, especially, because precipitation

seasonality is known to be very relevant for anuran life-history

traits [81–83]. The species from the R. granulosa group are

explosive breeders dependent on ephemeral pools to repro-

duce [32], and the ability to detect sites for reproduction is
probably fundamental to population persistence, especially

in more seasonal habitats. The part of the toad skull more rel-

evant to perceive water cues is the snout region that protects

and supports the olfactory capsules [40]. In Rhinella arenarum,

Jungblut et al. [84] showed that a new epithelium emerges

after metamorphosis and it can detect water-borne cues.

Thus, we may speculate that this epithelium has a functional

importance to the ability of the adult toads to reach water

sources for reproduction or even for maintaining water balance

in the dry season. In more seasonal and dry habitats, longer

snouts may provide better protection for this olfactory epi-

thelium or it may be more developed. Further studies with

anatomical comparisons of the snout region of different toad

species may support this speculation.

(b) Size variation as the major constraint underlying
skull divergence

Even though the toad species responded to some extent to

climate-associated selection on their skulls (as variation in the

most selected axis and on morphological PC5 shows), practi-

cally, all the divergence across species was governed by

evolutionary constraints as we have anticipated (table 1).

Given that the reconstructed selection gradients are not aligned

with PC1, the size direction that concentrates most phenotypic

variance, we may infer that almost all evolutionary responses

were severely deflected to the allometric direction. Interest-

ingly, even a very low alignment of selection with PC1

(vector correlations between 0.05 and 0.1) was enough to bias

the evolutionary responses against following the direction of

selection (see §1.3 in electronic supplementary material and

figure S3). Variation in the most selected axis and in PC5 indi-

cate local variation in the skull that reflect shape differences

across the toad species. Hence, we may interpret that climate-

associated selection was acting on skull shape (sensu [85,86]),

but the evolutionary responses were strongly biased to the

allometric size direction.

The evolutionary implications of multivariate genetic con-

straints expressed in the G-matrix are still underappreciated in

natural systems [2], though studies that estimated G-matrices

show that few dimensions accumulating most genetic variance

is a common phenomenon [3,25,87]. Although there are theor-

etical models of genetic constraints hampering the response of

populations to selection associated with environmental vari-

ation [14–16], few empirical studies have investigated the

interplay between constraints and climatic variables as the

agents of selection [22–24], especially for multivariate systems

as we have done here. An understanding of the interaction

between genetic, ecological, and evolutionary processes in the

past is critical to the evaluation of the evolutionary potential

of species to respond to future climatic changes. Yet, we must

be aware that we used phenotypic matrices as substitutes for

genetic matrices, ignoring not only the possibility of phenotypic

plasticity, but also the possibility of other ecological responses

to habitat change, such as niche tracking. Thus, toad species

may be able to compensate for future climate change with

physiological, behavioural, or even morphological plasticity.

Distinguishing between genetic and plastic responses in relation

to climatic variation is an important issue that can only be dealt

with G-matrix estimation and common garden experiments.

Still, divergence in size is a common pattern of several amphi-

bian species [88–90], suggesting that variation within species

might have also acted as a constraint in other systems. Even
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though body size has been shown to be an important fitness

component of amphibians [91,92], the study of within-species

variation is essential to test whether evolution of size was

indeed adaptive or the consequence of genetic constraints [72].
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