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Viral vaccines have had remarkable positive impacts on human health as well

as the health of domestic animal populations. Despite impressive vaccine suc-

cesses, however, many infectious diseases cannot yet be efficiently controlled

or eradicated through vaccination, often because it is impossible to vaccinate a

sufficient proportion of the population. Recent advances in molecular biology

suggest that the centuries-old method of individual-based vaccine delivery

may be on the cusp of a major revolution. Specifically, genetic engineering

brings to life the possibility of a live, transmissible vaccine. Unfortunately,

releasing a highly transmissible vaccine poses substantial evolutionary risks,

including reversion to high virulence as has been documented for the oral

polio vaccine. An alternative, and far safer approach, is to rely on genetically

engineered and weakly transmissible vaccines that have reduced scope for

evolutionary reversion. Here, we use mathematical models to evaluate the

potential efficacy of such weakly transmissible vaccines. Our results demon-

strate that vaccines with even a modest ability to transmit can significantly

lower the incidence of infectious disease and facilitate eradication efforts.

Consequently, weakly transmissible vaccines could provide an important

tool for controlling infectious disease in wild and domestic animal populations

and for reducing the risks of emerging infectious disease in humans.
1. Introduction
The development of viral vaccines has had remarkable and long-lasting impacts

on human health and on the health of domestic and wild animal populations.

For instance, viral vaccines have been instrumental in the worldwide eradication

of smallpox and rinderpest, the elimination of polio within much of the developed

world, and the effective control of many other diseases [1–4]. Despite these

impressive successes, many infectious diseases cannot yet be efficiently controlled

or eradicated through vaccination programmes, either because an effective vaccine

has not yet been developed (as with HIV) or because it is impossible to vaccinate a

sufficient proportion of the population to guarantee herd immunity [5]. This pro-

blem is particularly acute for diseases of wildlife, including emerging infectious

diseases such as Ebola, Middle East respiratory syndrome (MERS) and rabies

where direct vaccination is impractical, cost-prohibitive or even impossible [6].

Recent advances in molecular biology suggest that the centuries-old method

of individual-based vaccine delivery could be on the cusp of a major revolution.

Specifically, genetic engineering brings to life the possibility of a transmissible

or ‘self-disseminating’ vaccine [6,7]. Rather than directly vaccinating every indi-

vidual within a population, a transmissible vaccine would allow large swaths of

the population to be vaccinated effortlessly by releasing an infectious agent
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Table 1. Model parameters.

parameter description

b birth rate of susceptible individuals

s proportion of individuals directly vaccinated at birth

bV rate of vaccine transmission

bW rate of disease transmission

d disease independent death rate of hosts

dV recovery rate of vaccine infected individuals

dW recovery rate of disease infected individuals

v increase in death rate of infected hosts caused

by disease
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genetically engineered to be benign yet infectious. This

concept may sound like science fiction, but the oral polio

vaccine already does this to a limited extent [8], and transmis-

sible vaccines have now been developed and deployed

in wild animal populations [6]. For instance, recombinant

transmissible vaccines have been developed to protect wild

rabbit populations against myxomatosis [9] and to interrupt

the transmission of Sin Nombre hantavirus in reservoir

populations of deer mice [10,11]. In addition, a transmissible

vaccine is currently being developed to control Ebola within

wildlife reservoirs [12]. Given the current pace of technologi-

cal advance in genetic engineering, it is only a matter of time

before transmissible vaccines can be easily developed for a

wide range of infectious diseases.

Although promising, transmissible vaccines are not with-

out risks. The most obvious and significant risk posed by a

live transmissible vaccine is the potential for increased

virulence to evolve. For instance, if a transmissible vaccine

is developed through attenuation involving only a few genetic

substitutions, reversions to wild-type virulence may evolve

rapidly, as has occurred repeatedly with the oral polio vaccine

[8,13]. The risk of reversion to high virulence can be minimi-

zed by genetically engineering transmissible vaccines using

techniques that impede evolution, such as inflicting a large

number of mildly deleterious mutations, rearranging the

genome or imposing deletions [7]. Still, even the best engin-

eered transmissible vaccine may ultimately evolve elevated

virulence if sufficiently long chains of transmission are allowed

to occur. Thus, the safest implementation would also engineer

the vaccine so that it can transmit only weakly (R0 , 1), such

that chains of transmission are short and stutter to extinction

without continuous reintroduction. Transmissible vaccines

designed in this way would be much less likely to evolve

increased virulence or self-sustaining epidemics [14]. What

remains unknown, however, is whether these safe but only

weakly transmissible vaccines would significantly enhance

our ability to control and eradicate infectious disease.

Here, we develop and analyse a mathematical model

that allows us to quantify the extent to which a transmissible

vaccine could facilitate efforts to eradicate infectious disease.

Although our results apply to vaccines with arbitrary transmis-

sion rates, we will focus primarily on weakly transmissible

vaccines (R0 , 1) because these represent the safest implemen-

tation. Our model is a straightforward extension of existing

models of direct vaccination, differing only by including the

potential for vaccine transmission among hosts. We use our

model to answer two specific questions. First, how much does

vaccine transmission facilitate disease eradication? Second,

when eradication is impossible, how much does vaccine trans-

mission reduce the incidence of infectious disease within the

host population? Answering these questions provides an

important first step in quantifying the potential gains that

could accrue through the use of a transmissible vaccine.
2. The model
Our model assumes populations are large and well mixed,

allowing us to capitalize on the well-developed SIR modelling

framework [5]. Specifically, we assume hosts are either suscep-

tible to the disease and vaccine (S), infected by the vaccine (V ),

infected by the disease (W ) or immune/resistant to both

vaccine and disease (R). Individuals are assumed to be born
at a constant rate, b, which is independent of population

size. A constant fraction of these newborn individuals, s, are

assumed to be vaccinated directly. Individuals infected

with the live vaccine transmit the vaccine to susceptible indi-

viduals at rate, bV, and recover and become immune at rate,

dV. Individuals infected with the disease transmit the disease

to susceptible individuals at rate, bW, recover and become

immune at rate, dW, and succumb to the disease at rate, v. Indi-

viduals in all classes are assumed to die at a constant

background rate, d. Together, these assumptions lead to the

following system of differential equations:

dS
dt
¼ bð1� sÞ � bVSV � bWSW � dS, ð2:1aÞ

dV
dt
¼ bsþ bVSV � dVV � dV, ð2:1bÞ

dW
dt
¼ bWSW � dWW � ðdþ vÞW ð2:1cÞ

and
dR
dt
¼ dVV þ dWW � dR, ð2:1dÞ

where all variables and parameters are described in table 1.
3. Mathematical analyses
Employing a transmissible vaccine could make it possible to

eradicate infectious diseases that have been recalcitrant to

direct vaccination alone, and could be particularly useful for

eliminating disease in domestic and wild animal populations.

We explored this possibility by solving for the conditions

under which a transmissible vaccine drives an infectious dis-

ease to extinction. Specifically, results derived in appendix A

reveal that the fractional reduction in the vaccination threshold

arising from use of a transmissible vaccine is given by

fEradicate ¼
R0,V

R0,W
, ð3:1Þ

where the quantities R0,W and R0,V are the basic reproductive

numbers for the infectious disease and vaccine, respectively.

Result (3.1) reveals that the extent to which vaccine trans-

mission facilitates eradication efforts depends on the relative

R0 values of vaccine and disease (figure 1). Thus, the closer

the R0 of the vaccine to that of the disease, the greater the

reduction in direct vaccination effort required for disease eradi-

cation. For the particular class of weakly transmissible vaccines

we focus on here (i.e. R0,V , 1), this result suggests a transmis-

sible vaccine will have its most appreciable (more than 10%)
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Figure 1. The fractional reduction in vaccination effort required to eradicate
an infectious disease as a function of vaccine and disease R0. The fractional
reduction in vaccination effort increases with the R0 of the vaccine and
decreases with the R0 of the disease.

Table 2. Examples of important diseases with small R0.

disease R0 references

rabies ,2 [15]

bovine TB ,2 [16,17]

avian influenza ,3 [18,19]

foot and mouth disease ,3 [20]

Ebola ,2 [21]
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Figure 2. The fractional reduction in abundance of disease infected hosts (W)
as a function of vaccine and disease R0. The direct vaccination rate was set at
s ¼ 0.5 in this figure. Areas shown in white result in disease eradication.
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impacts on the wide range of moderately infectious diseases

with R0,W , 10 (e.g. those shown in table 2). Additional ana-

lyses performed in the electronic supplementary materials

demonstrate that this result remains unchanged even when

vaccination is imperfect such that vaccinated individuals

return to the susceptible state at some fixed rate.

Even in cases where a transmissible vaccine does not

allow an infectious disease to be eradicated, it may still

reduce disease incidence substantially. We investigated this

possibility by solving for the equilibrium incidence of the

infectious disease in the absence and presence of vaccine

transmission. By comparing these equilibria, we were able

to quantify the proportional reduction in disease incidence

attributable to vaccine transmission:

fIncidence ¼
sR0,VR0,W

ðR0,V � R0,WÞð1� R0,Wð1� sÞÞ , ð3:2Þ

where s is the fraction of newborns directly vaccinated and is

less than the critical value guaranteeing disease eradication

given by equation (A 5) (figure 2). The key implication

of (3.2) is that even weakly transmissible vaccines can signifi-

cantly reduce the incidence of an infectious disease,

particularly in cases where the infectious disease is not

excessively transmissible (e.g. those shown in table 2).
4. Simulations and numerical analyses
To evaluate the robustness of our analytical results to random

variation in transmission, vaccination rate and population

sizes, we conducted stochastic simulations of our model. Simu-

lations used the Gillespie stochastic simulation algorithm [22]

to study the probability of disease elimination with a transmis-

sible vaccine. Simulations were run for three different vaccine

transmission rates and initiated with the susceptible popu-

lation at its disease and vaccine free equilibrium (1000

individuals) and an initial seed of 50 individuals infected

with the wild-type disease; resistant hosts and vaccine infected

hosts were initially absent. For each transmission rate, 1000

simulations were run for a 100-year burn-in period followed

by introduction of a vaccination programme. Simulations

were then run for an additional time period and the proportion

of simulations in which the disease was eradicated recorded.
Overall, the results of the simulation runs provided strong

support for our analytical solutions. Specifically, under

conditions where our analytical results predict a traditional,

non-transmissible vaccine would fail to eradicate the disease,

eradication occurred in only 2.4% of simulations (24 of 1000

simulations; figure 3a). By contrast, a modestly transmissible

vaccine (R0 ¼ 0.93) resulted in the eradication of this disease

in 99.9% of simulations (999 of 1000 simulations), in cases

where our analytical results predicted eradication (figure 3c).

In intermediate scenarios (R0 ¼ 0.33) where our analytical

results predicted vaccine transmission would reduce infection

rates but fail to completely eradicate the disease, simulations

showed vaccine transmission reduced the number of infected

individuals by 61.8% relative to a non-transmissible vaccine

and resulted in disease eradication in 39.2% of simulations

(392 of 1000 simulations; figure 3b).

Additional simulations evaluated the probability of dis-

ease extinction as a function of vaccine R0, by conducting

1000 replicate simulations for values of vaccine R0 ranging

from 0 to 1. These values of vaccine R0 bracketed the critical

value for disease eradication predicted by equation (A 5), and

show that reductions in disease incidence caused by the

transmissible vaccine result in a high probability of disease

eradication even before the critical threshold of vaccine trans-

mission is reached (figure 4). The reason disease eradication

occurs prior to reaching the eradication threshold is that vac-

cine transmission reduces the number of individuals infected

with the disease sufficiently for stochastic extinction to

become likely.

Finally, to evaluate the sensitivity of a transmissible vaccine

to reversion, we simulated a slightly modified model where
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Figure 3. The densities of susceptible host individuals (black lines), vaccine
infected individuals (blue lines) and disease infected individuals (red lines) pre-
dicted by the stochastic simulations ( jagged line showing one of the 100 runs)
and deterministic model (smooth line) over the 50 years following initiation of
the vaccination programme in year 100. Panel (a) shows results for a conven-
tional, non-transmissible vaccine, (b) for a very weakly transmissible vaccine
with R0 ¼ 0.33 and (c) for a modestly transmissible vaccine with R0 ¼ 0.93.
In all cases, the disease had an R0 ¼ 3.23. Individual parameters were as
follows: s ¼ 0.5, dV ¼ dW ¼ 0.2, b ¼ 100, d ¼ 0.1, v ¼ 0.01 and
bW ¼ 0.001 in all panels. The transmission rate of the vaccine was bV ¼ 0
in (a), bV ¼ 0.0001 in (b) and bV ¼ 0.00028 in (c).
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Figure 4. The proportion of stochastic simulations resulting in disease era-
dication 150 years after vaccine introduction as a function of vaccine R0. In
all cases, the disease had an R0 ¼ 3.23. The black vertical line shows the
value of vaccine R0 that should result in the deterministic eradication of
the infectious disease as predicted by equation (A 5) in appendix A.
Parameters are identical to figure 3 in the main text, with the exception
of bV which varied from 0 to 0.003 in 0.000015 increments.
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individuals infected with the vaccine (V ) were converted to

individuals infected with wild-type virus (W ) at a constant

rate r (see the electronic supplementary material for details).

Results of these simulations demonstrated that our qualitative

result, that vaccine transmission facilitates disease eradication,

is robust to reversion. Reversion does, however, reduce the

benefits provided by vaccine transmission. Only when rever-

sion becomes very frequent can vaccine transmission actually

reduce the likelihood of disease eradication, and even then

this only occurs for vaccines that transmit very, very weakly

(electronic supplementary material, figure S1).
5. Discussion
Our results show that even a weakly transmissible vaccine can

substantially facilitate efforts to control or eradicate infectious

disease. There are two important consequences of this result.

First, if it is impossible to directly vaccinate a sufficient fraction

of a population for disease eradication, whether due to limit-

ations of public health infrastructure or prohibitive cost,

vaccine transmission can tip the balance in favour of eradica-

tion. Second, even modest amounts of vaccine transmission

can substantially reduce the effort and cost required to achieve

a target level of vaccination within a population. These results

are important because they demonstrate that it may be feasible

to engineer transmissible vaccines that are effective while

maintaining the greater margin of safety that comes from

being only weakly transmissible (R0 , 1).

Unfortunately, even a weakly transmissible vaccine

has some potential to revert to wild-type virulence. This is

particularly true for live, attenuated vaccines developed

using traditional methods that adapted a virus to unnatural

conditions in the hope that growth in the focal host would

decline and pathogenesis would wane. Because these old

methods were haphazard, vaccines developed in this way

may require only a few genetic changes to revert to wild-type

virulence, as has been observed for the oral polio vaccine

[13]. Fortunately, recent developments in genetic engineering

provide considerable improvements in attenuation methods

and the promise of reduced scope for reversion. One especially

promising method is attenuation by introducing many silent

codon changes [7,23,24]. For reasons still not fully understood,

some types of silent codon changes reduce fitness slightly, and

when dozens to hundreds of such changes are combined in the

same genome, fitness can be reduced to arbitrary levels. Del-

etions and genome rearrangements have similar attenuating

effects and also appear to be suitable for different degrees of

attenuation. When combined with weak transmission, the

reduced probability of reversion provided by the new genetic

technologies may make development of safe transmissible

vaccines feasible.

Even if it becomes possible to genetically engineer transmis-

sible vaccines that have very low probabilities of reversion,
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ethical and safety concerns will likely preclude using them

directly within human populations except under extraordinary

circumstances [25,26]. Instead, the real power of transmissible

vaccines likely lies in their ability to improve vaccine coverage

in populations of livestock and wildlife where direct

vaccination of a significant proportion of the population is

excessively costly or even impossible in many cases. Although

transmissible vaccines have not yet been used in this capacity

on a large scale, a recombinant transmissible vaccine has been

developed to protect wild rabbit populations against myxoma-

tosis [9] and to interrupt the transmission of Sin Nombre

hantavirus in reservoir populations of deer mice [6]. Similar

approaches could be used to develop transmissible vaccines

against invasive wildlife diseases, such as West Nile virus

[27], to protect threatened wildlife populations from infectious

disease [28] or to eliminate diseases like rabies from wild

reservoir populations.

The models we have studied here are obvious simplifica-

tions designed to make a first-pass estimate at the potential

benefits that may be realized by using weakly transmissible

vaccines. There are, of course, many ways in which our

models could be generalized to evaluate the more nuanced

biology of real populations, including spatial structure

[29–31], heterogeneities in host populations [32–37], imper-

fect vaccines [38,39] and the potential for vaccine and

disease evolution [14,40,41]. Circumscribing the conditions

under which transmissible vaccines will provide benefits

that exceed their potential risks will ultimately require

exploration of these additional complexities.
6. Conclusion
The potential for a transmissible or self-disseminating vaccine

to facilitate efforts to control and eradicate infectious disease

has long been appreciated [42], but the oral polio vaccine

and vaccines designed for wildlife remain the only well-

documented examples [1,6,8–12]. Much of the reticence

surrounding the development of transmissible vaccines stems

from the justifiable concern that the potential for evolutionary

reversion to wild-type virulence outweighs their potential

benefits. Our results show, however, that even weakly trans-

missible vaccines can facilitate disease eradication and reduce

disease incidence. When combined with new developments

in genomic engineering that facilitate the development of

transmissible vaccines that cannot easily evolve to be self-

sustaining [7], these results suggest weakly transmissible

vaccines may provide a safe and effective tool in the battle

against infectious disease.
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Appendix A. Analyses of equilibria and local
stability
Mathematical analyses of equation (2.1a–d) reveals three poss-

ible equilibria, only two of which exist. The first equilibrium is

given by

Ŝ ¼ dþ vþ dW

bW

, ðA 1aÞ

Ŵ ¼ � d
bW

þ b� bs
dþ vþ dW

þ bsbV

�bWðdþ dVÞ þ bVðdþ vþ dWÞ
ðA 1bÞ

and V̂ ¼ bsbW

bWðdþ dVÞ � bVðdþ vþ dWÞ
ðA 1cÞ

and the second equilibrium is given by

Ŝ ¼
d2 þ bbV þ ddV �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4bdsbVðdþ dVÞ þ ðbbV � dðdþ dVÞÞ2

q
2dbV

,

ðA 2aÞ

Ŵ ¼ 0 ðA 2bÞ

and

V̂¼
�d2þbbV�ddVþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4bdsbVðdþdVÞþðbbV�dðdþdVÞÞ2

q
2bVðdþdVÞ

:

ðA2cÞ

Local stability analyses of (A 1) and (A 2) reveal that the

equilibrium where the infectious disease is extinct (A 2) is

stable if:

s.
ð�bbWþdðdþvþdWÞÞð�bWðdþdVÞþbVðdþvþdWÞÞ

bb2
WðdþdVÞ

:

ðA3Þ

When this stability condition holds, the alternative equili-

brium where the infectious disease is present (A 1) is locally

unstable. If local stability condition (A 3) does not hold, the

situation reverses and only the equilibrium with a positive

density of individuals infected by the disease is locally

stable. Thus, condition (A 3) is sufficient to completely

predict the qualitative dynamics of this system.

Defining the basic reproductive numbers of the vaccine

and disease in the standard way as

R0,V ¼
bbV

dðdþ dVÞ
ðA 4aÞ

and

R0,W ¼
bbW

dðdþ vþ dWÞ
, ðA 4bÞ

allows condition (A 3) to be re-written in a more insightful

form defining the critical level of direct vaccination required

for disease eradication:

scrit ¼ 1� R0,V

R0,W

� �
1� 1

R0,W

� �
: ðA 5Þ

In the absence of vaccine transmission, (A 5) reduces

to the classical expression for the critical fraction of a

population that must be vaccinated directly for disease
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eradication to occur

s�crit ¼ 1� 1

R0,W

� �
: ðA 6Þ

To make the benefits of vaccine transmission more

transparent, we calculate the percentage reduction in vacci-

nation effort provided by a transmissible vaccine relative to

a traditional, non-transmissible, vaccine

fEradicate ¼ 1� scrit

s�crit

¼ 1� ð1� R0,V=R0,WÞð1� 1=R0,WÞ
ð1� 1=R0,WÞ

¼ R0,V

R0,W
: ðA 7Þ

This is equation (3.1) of the text.
To quantify the reduction in disease incidence provided by

vaccine transmission, we calculated the following quantity:

fIncidence ¼ 1� Ŵ

Ŵ
� , ðA 8Þ

where Ŵ is the equilibrium incidence of the infectious

disease when confronted with a transmissible vaccine

(equation (A 1b) with bV . 0), and Ŵ� is the equilibrium inci-

dence of the infectious disease when confronted with a non-

transmissible vaccine (equation (A 1b) with bV ¼ 0). Making

use of the previous definitions for R0,V and R0,W allows

expression (A 8) to be simplified to the more intuitive

expression (3.2) in the main text.
c.B
283:2
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