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�-Conotoxins represent a large group of pharmacologically
active peptides that antagonize nicotinic acetylcholine recep-
tors (nAChRs). The �3�4 nAChR, a predominant subtype in the
peripheral nervous system, has been implicated in various
pathophysiological conditions. As many �-conotoxins have
multiple pharmacological targets, compounds specifically tar-
geting individual nAChR subtypes are needed. In this study, we
performed mutational analyses to evaluate the key structural
components of human �2 and �4 nAChR subunits that deter-
mine �-conotoxin selectivity for �3�4 nAChR. �-Conotoxin
RegIIA was used to evaluate the impact of non-conserved
human �2 and �4 residues on peptide affinity. Two mutations,
�3�2[T59K] and �3�2[S113R], strongly enhanced RegIIA
affinity compared with wild-type �3�2, as seen by substantially
increased inhibitory potency and slower off-rate kinetics. Oppo-
site point mutations in �3�4 had the contrary effect, emphasiz-
ing the importance of loop D residue 59 and loop E residue 113
as determinants for RegIIA affinity. Molecular dynamics simu-
lation revealed the side chains of �4 Lys59 and �4 Arg113 formed
hydrogen bonds with RegIIA loop 2 atoms, whereas the �2 Thr59

and �2 Ser113 side chains were not long enough to form such
interactions. Residue �4 Arg113 has been identified for the first
time as a crucial component facilitating antagonist binding.
Another �-conotoxin, AuIB, exhibited low activity at human
�3�2 and �3�4 nAChRs. Molecular dynamics simulation indi-
cated the key interactions with the � subunit are different to
RegIIA. Taken together, these data elucidate the interactions
with specific individual � subunit residues that critically deter-
mine affinity and pharmacological activity of �-conotoxins
RegIIA and AuIB at human nAChRs.

Neuronal nicotinic acetylcholine receptors (nAChR)3 are
ligand-gated ion channels endogenously activated by acetyl-
choline (ACh). Presynaptic nAChRs in the central nervous sys-
tem play an important role in synaptic transmission, as they
mediate the release of various neurotransmitters (1). Postsyn-
aptic nAChRs are involved in fast excitatory transmission, and
non-synaptic nAChRs modulate many neurotransmitter sys-
tems by influencing neuronal excitability (2). The widespread
expression and functional diversity makes nAChRs key compo-
nents in numerous physiological functions of the central and
peripheral nervous systems such as learning, memory, atten-
tion, motor control, synaptic plasticity, and analgesia (2, 3).
Based on these versatile physiological roles, any dysfunction of
nAChR subtypes contributes to various disease states, includ-
ing epilepsy, schizophrenia, Parkinson’s disease, depression,
autism, Alzheimer’s disease, and addiction (2–5).

Functional neuronal nAChRs are composed of five trans-
membrane-spanning subunits combining � (�2–�10) and �
(�2–�4) subunits. Combinations of different � and � subunits
yields a variety of heteromeric receptors with individual physi-
ological roles and pharmacological profiles (6, 7). Functional
neuronal nAChRs containing an �2, �3, �4, or �6 subunit also
require a �2 or �4 subunit. The � subunit in these nAChR
subtypes influences pharmacological properties including ago-
nist efficacy, desensitization kinetics, and Ca2� permeability
(3).

The ligand binding site of nAChRs lies at the extracellular
interface between � and � subunits, with the � subunit contrib-
uting the principal (�) face and the � subunit contributing the
complementary (�) face. The ligand binding sites of nAChR
subtypes are structurally very similar and hence the residues
involved in agonist binding are considerably conserved. There-
fore, the development of highly subtype-specific competitive
ligands is a difficult ongoing task (6).

�-Conotoxins are a large group of disulfide-bonded peptides
isolated from the venom of carnivorous marine Conus snails.
They have been found to be specific competitive ligands of
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nAChRs, inhibiting ACh-evoked currents in a concentration-
dependent manner. All �-conotoxins contain two conserved
disulfide bridges and can be subclassified by the number of
residues between the cysteines forming the disulfide bonds (e.g.
�4/3, �4/4, and �4/7) (8). Individual �-conotoxins have their
own selectivity profile and can discriminate between different
nAChR subunit combinations and stoichiometries (9, 10).

To date, a number of highly selective �-conotoxins potently
inhibiting the �3�2* subtype have been identified (* indicates
the presence of potential other subunits) (8). However, few
probes specifically inhibiting single �3-containing nAChR sub-
types exist (6). The �3�4 nAChR is the predominant subtype in
the peripheral nervous system and medial habenula of the brain
and it has been shown to be involved in several pathophysiolog-
ical disease conditions such as lung cancer, nicotine addiction,
and drug abuse (3, 11, 12). Therefore, �3�4 is a promising ther-
apeutic target and pharmacologically active substances modu-
lating this nAChR subtype are sought-after.

The first �3�4 selective �-conotoxin described was �4/6-
conotoxin AuIB, which inhibits rat �3�4 with an IC50 of 0.75
�M, whereas activity at other subtypes was reported as �100-
fold lower (13). Another �4/6-conotoxin, TxID from Conus
textile, was recently described as the most potent �3�4*
nAChR-inhibiting �-conotoxin, however, besides �3�4 it also
inhibits �6/�3�4 with 7.5-fold less potency (14).

�4/7-Conotoxin RegIIA from Conus regius has been
reported to potently inhibit �3�4 besides �3�2 and �7 nAChRs
(15). Interestingly, a non-natural analogue of RegIIA in which
two residues in loop 2 were exchanged by alanines exhibited an
enhanced selectivity for the �3�4 subtype compared with the
wild-type toxin (16). Furthermore, we have previously shown
that the selectivity profile of RegIIA differs between nAChRs of
different species, as RegIIA was equipotent at the rat (r) and
human (h) �3�4 subtypes but significantly less active at h�3�2
compared with r�3�2. This potency difference could be
mapped to a single non-conserved Glu198 on the r�3 subunit
(proline in human) (17).

Here, we investigated the molecular determinants for
nAChR subtype selectivity of �-conotoxins, especially for the
h�3�4 subtype. We tested residues, which are non-conserved
between the homologous �2 and �4 subunits, for their impact
on �-conotoxin affinity and activity using � subunit chimeras
and point mutations. �-Conotoxin RegIIA was used as a probe
for a major part of this study. We aimed to exhibit key � subunit
residues of the ligand-binding interface that profoundly and
subtype specifically affect both RegIIA sensitivity and wash-off
kinetics.

Experimental Procedures

Peptide Synthesis—�-Conotoxin RegIIA was synthesized as
described previously (15). The �-conotoxin AuIB was assem-
bled on Rink amide methylbenzhydrylamine resin using solid-
phase peptide synthesis with a neutralization/2-(1H-benzotria-
zol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate
activation procedure for Fmoc (N-(9-fluorenyl)-methoxycar-
bonyl) chemistry. Cleavage was achieved by treatment with
88:2:5:5 (v:v) ratio of trifluoroacetic acid/triisopropylsilane/
phenol/water at room temperature (20 –25 °C) for 2 h. Trifluo-

roacetic acid was evaporated at low pressure in a rotary evapo-
rator. Peptides were precipitated with ice-cold ether, filtered,
dissolved in 50% buffer A/B (buffer A consists of 99.95% H2O,
0.05% trifluoroacetic acid and buffer B consists of 90% CH3CN,
10% H2O, 0.045% trifluoroacetic acid), and lyophilized. Crude
peptides were purified by RP-HPLC on a Phenomenex C18 col-
umn using a gradient of 0 –50% of buffer B for 50 min, with the
eluent monitored at 214/280 nm. Electrospray mass spectrom-
etry confirmed the molecular mass of the peptides before they
were pooled and lyophilized for oxidation.

The four cysteines in the peptides were selectively oxidized in
two steps to yield the globular conformation. This was achieved
by incorporating Fmoc-Cys-acetamidomethyl (Acm)–OH at
positions 2 and 8 of the amino acid sequence. In the first step,
the two non-protected cysteines were oxidized in 0.1 M

NH4HCO3 (pH 8 – 8.5) at a concentration of 0.5 mg/ml, and the
mixture was stirred at room temperature for 48 h. The oxidized
peptides were then purified and lyophilized as previously out-
lined. In the second step, the Acm-protected cysteines were
oxidized by dissolving the peptides in iodine solution filled at 1
mg/ml, and the mixture was stirred for 35 min. After two
rounds of oxidation, peptides were purified by RP-HPLC using
a gradient of 0 – 80% buffer B over 180 min. Analytical RP-
HPLC and electrospray mass spectrometry were used to con-
firm the purity and molecular mass of the synthesized peptides.

Protein Sequence Alignment—Protein sequences of h�2
and h�4 nAChR subunit ECDs (RefSeq accession numbers
NP_000739 and NP_000741, respectively) were aligned using
CLC Viewer 7 software (CLC bio, Aarhus, Denmark). Residues
were numbered according to the mature protein sequences.

Site-directed Mutagenesis—Plasmid DNAs encoding human
and rat �3, �2, and �4 nAChR subunits were subcloned into the
pT7TS Xenopus expression vector (Addgene plasmid 17091) as
described previously (17). Two chimeric receptors consisting of
h�2 backbone and portions of the N-terminal extracellular
domain (ECD) (N-terminal T1 to loop D Glu63 and a lesser
conserved Lys70-His86 segment between loops D and E)
replaced with the corresponding h�4 sequences, were gener-
ated by overlap PCR and molecular cloning. Additional
mutants of human � subunit loops D, E and F (Table 1), as well
as rat �2[T59K] were engineered using the Geneart Site-di-
rected Mutagenesis System (Invitrogen). All point mutations
were confirmed by DNA sequencing (Australian Genome
Research Facility, Melbourne, Australia).

Electrophysiological Recordings in Xenopus Oocytes and Data
Analysis—RNA preparation, Xenopus laevis oocyte prepara-
tion, and expression of nAChR subunits in oocytes were per-
formed as described previously (18).

Membrane currents from Xenopus oocytes were recorded
using a single channel two-electrode voltage clamp setup (vir-
tual ground circuit) with a GeneClamp 500B amplifier (Molec-
ular Devices, Sunnyvale, CA) as described previously (17).
Briefly, oocytes were continuously perfused with ND96 solu-
tion containing (in mM) 96 NaCl, 2 KCl, 1.8 CaCl2, 1 MgCl2, and
5 HEPES (pH 7.4) at 2 ml/min. ACh or ACh plus toxin was
applied for �2 s using a manual HPLC injection module. The
effect of the peptides on ACh-evoked currents was defined as
ACh plus peptide peak current amplitude relative to the aver-
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age peak current amplitude of 3–5 control ACh applications
(300 �M for h�3�4 and 50 �M for all other nAChR subtypes)
recorded before preincubation with the peptides (technical
replicates of ACh application). Perfusion was switched off dur-
ing preincubation with the peptide. Concentration-response
curves were fitted by unweighted nonlinear regression to the
logistic equation,

Ex � EmaxXnH/�XnH � IC50
nH� (Eq. 1)

where Ex is the response, X is the antagonist concentration,
Emax is the maximal response, nH is the Hill coefficient, and IC50
is the antagonist concentration that gives 50% inhibition of the
agonist response.

Measurement of the recovery from block (koff) by the
peptides was carried out by incubating the oocyte with the
respective peptide for 5 min followed by repeated ACh applica-
tions at the indicated time points while continuously perfusing
the oocyte with ND96 solution at 2 ml/min. Approximate half-
maximal excitatory concentrations (EC50) of ACh were deter-
mined and used in the wash-off kinetic experiments.

All electrophysiological data were pooled (n � 3–9 for each
data point) and represent arithmetic mean 	 95% confidence
intervals (95% CI) of the fit. Each oocyte was tested only once
with a given peptide concentration, therefore n indicates the
number of oocytes used for generating each data point (biolog-
ical replicates). Curves were fitted and statistics calculated
using GraphPad Prism 6 (GraphPad Software Inc., La Jolla,
CA).

Homology Modeling—Models of RegIIA/AuIB-bound �3�2
and �3�4 nAChRs were built using Modeler (version 9v12), as
described previously (19). The sequences of human �1, �3, �4,
�6, �7, �9, �10, �2, �3, and �4 nAChR subunits were retrieved
from the Uniprot database (20). The crystal structures of
Aplysia californica AChBP in complex with �-conotoxin
PnIA[A10L,D14K] (PDB code 2BR8) (21), and the ECDs of
mouse �1 (PDB code 2QC1) (22) and human �9 (PDB code
4D01) (23) subunits were used as templates to model the
�-conotoxin-bound nAChR complexes (200 models each).
Models with the lowest DOPE score (24) were selected for
further structural refinement using molecular dynamics
simulations.

Protonation State Predictions—The protonation states of
amino acids His, Asp, and Glu were predicted using the PropKa
3.1 method (25). The predictions were made for all 200 homo-
logy models generated by Modeler and the protonation states
predicted for the majority of models were considered in the
starting models for MD simulations.

Molecular Dynamics (MD) Simulations—MD simulations
were performed using the AMBER 12 package (26) and ff12SB
force field (27). The above �-conotoxin�nAChR complexes
were solvated in a truncated octahedral periodic box with
TIP3P water molecules, and neutralized using sodium ions.
Prior to MD simulations, 2000 steps of steepest descent mini-
mization and 3000 steps of conjugate gradient minimization
were performed with the solute restrained using a harmonic
force with a 100 kcal/mol�Å2 spring constant. After the first
round of minimization, the entire system was minimized with-

out position restraints. The minimized systems were gradually
heated from 50 to 300 K over 100 ps using NVT ensemble with
the solute atoms restrained to their positions by harmonic
forces with a spring constant of 5 kcal/mol�Å2. Simulations
were then switched to NPT ensemble, and spring constants of
the restraints were gradually decreased from 5 to 0 kcal/mol�Å2

over 100 ps. In the production phase, 50-ns MD simulations
were carried out with the temperature and pressure maintained
at 300 K and 1 bar, respectively.

In all simulations, all bonds involving hydrogen atoms were
constrained with the SHAKE algorithm and the time step was 2
fs (28). The particle-mesh Ewald method was used to treat long-
range electrostatic interactions (29).

Results

Two Single Non-conserved Residues in Loops D and E of the
Human �2 and �4 nAChR Subunit ECDs Determine the Differ-
ential Sensitivity of �3�2 and �3�4 to �-Conotoxin RegIIA—To
identify potential structural determinants responsible for the
lower potency of �-conotoxin RegIIA at the h�3�2 subtype
relative to h�3�4, we compared the amino acid sequences of
the N-terminal ECDs containing the agonist binding domains
of each subtype. Pairwise alignments of mature protein
sequences of h�2 and h�4 lacking the signal peptide revealed an
overall homology of 70% (149 of the 213 residues in the ECD are
homologous) (Fig. 1A). Interestingly, the amino acids contrib-
uting to the complementary face of the ACh-binding loops that
correspond to the previously identified homologous loops of
the �7 subunit (30) are among the lesser conserved regions in
the sequence. Other less conserved regions include the N ter-
minus preceding loop D and the region from amino acids 70 to
86 (Fig. 1A). Homology modeling and overlay of the h�3�2 and
h�3�4 intersubunit interfaces revealed the side chain differ-
ences between these non-conserved residues on the �2 and �4
subunits (Fig. 1B). These differences could account for the
�-conotoxin nAChR subtype selectivity.

From electrophysiological recordings of oocyte-expressed
nAChRs, RegIIA exhibited an IC50 of 45.6 nM (95% CI 31.5–
65.9 nM; nH � 0.9) at the h�3�4 subtype, whereas an IC50 of
132.4 nM (95% CI 109.8 –159.7 nM; nH � 1.5) was observed at
the h�3�2 subtype (Fig. 2, A and B, and Table 1). To investigate
if the less conserved sequences in the ECDs of the �-subunits
determine the specificity of the peptide, we generated chimeric
h�2-�4 subunits, co-expressed them with wild-type h�3, and
tested the effect of the peptide on ACh-evoked current ampli-
tudes. The first chimeric subunit consisted of h�2 in which the
whole N-terminal region including loop D was replaced by the
respective sequence of h�4 (mutant h�3�2[1– 63�4]) (Fig. 1A).
Although the N-terminal region that precedes loop D is overall
less conserved between the receptors, the loop itself only differs
in one amino acid, the residue at position 59 (Lys in h�4, Thr in
h�2). Mutant h�3�2[1– 63�4] exhibited a similar sensitivity for
RegIIA compared with wild-type h�3�2 with an IC50 of 159.2
nM (95% CI 113.0--224.4; nH � 1.4) (Fig. 2E, Table 1).

A refined mutation in which only the single non-conserved
Thr residue in loop D was exchanged to the corresponding Lys
residue in h�4 (mutant h�3�2[T59K]) exhibited a concentra-
tion-response curve with an IC50 of 49.4 nM (95% CI 33.4 –73.1;
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nH � 1.2), which was significantly shifted to the left compared
with wild-type h�3�2 and resembled the h�3�4 concentration-
response curve (Fig. 2, A and C, and Table 1). Thus, the higher
RegIIA sensitivity observed with h�3�4 can be (majorly) attrib-
uted to loop D. Conversely, the opposite mutation in h�4
(mutant h�3�4[K59T]) led to a severe loss in sensitivity to
RegIIA, represented by an IC50 of 2795.1 nM (95% CI 2346.6 –
3329.3; nH � 1.4) (Fig. 2, B and D, and Table 1) hence, confirm-
ing Lys59 as a key determinant for human nAChR � subunit
sensitivity to RegIIA.

Similarly, the lesser conserved region between loops D and E
(residues 70 to 86) of h�2 was replaced with the �4 sequence
(mutant h�3�2[70 – 86�4]) and tested in oocytes. However,
this mutation did not decrease the IC50 compared with wild-
type h�3�2 but rather resulted in considerably lowered potency
of the peptide possibly because of structural effects (Fig. 2E,

Table 1). Therefore, it was excluded as a factor for the �2- and
�4-specific differences in sensitivity to RegIIA.

The non-conserved residues Arg113, Ser114, and Asn115 of
h�4 were replaced with the respective residues of h�2 (mutant
h�3�4[113–115�2]) to analyze the contribution of loop E for
RegIIA affinity. This mutant considerably shifted the concen-
tration-response curve for RegIIA to the right (IC50 � 1056.5
nM, 95% CI 924.9 –1206.9 nM; nH � 1.1). Contribution of any of
the three residues to the shift was further dissected with point
mutations in h�4. Of these, only mutant h�3�4[R113S] pro-
foundly shifted RegIIA IC50 to the high nanomolar range (805.3
nM, 95% CI 554.7–1169.0 nM; nH � 0.9) (Fig. 2, B, D, and E, and
Table 1) compared with little contribution of mutations S114Y
and N115D (IC50 of 131.2 nM, 95% CI 112.7–152.7 nM, nH � 1.3,
and IC50 of 275.0 nM, 95% CI 221.3–341.5 nM, nH � 1.6, respec-
tively). The opposite mutation, h�3�2[S113R], exhibited a con-

FIGURE 1. Sequence and structural comparison between human �2 and �4 nAChR ECDs. A, amino acid sequence alignment of the N-terminal ECDs of
human �2 and �4 nAChR subunits shows 70% identity between the sequences (149 of the 213 residues homologous) and reveals several non-conserved
residues in the ACh binding loops. Conserved residues are indicated with dots. Residues that were mutated to the opposite � subunit residue in this study are
framed with red lines. Longer sequences that were replaced in h�2 with the sequences of h�4 are framed with green lines. Blue bars indicate ACh binding
domain loops D, E, and F of the complementary interface (34). B, overlay of the h�3�2 and h�3�4 inter-subunit interfaces to emphasize the overall high
structural similarity between them. The �3(�) interface is shown in green, �2(�) in pink, and �4(�) in cyan. Non-conserved residues from the complementary
�2(�) and �4(�) subunits, respectively, are shown as licorice models and labeled.
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siderable shift of the concentration-response curve to the left
compared with wild-type h�3�2 with an IC50 of 23.7 nM (95%
CI 19.0 –29.4 nM; nH � 1.5) (Fig. 2, A, C, and E, and Table 1),

further confirming the key role of residue 113 in loop E in deter-
mining sensitivity toward RegIIA.

To probe the contribution of loop F to the sensitivity differ-
ence of RegIIA at human h�3�4 and h�3�2 we engineered
three h�4 receptor mutants: h�3�4[M163K�T164S],
h�3�4[P165E], and h�3�4[T166V�M169L]. When tested in
oocytes, none of these three mutants revealed a notable loss of
sensitivity to RegIIA (Fig. 2E, Table 1) indicating loop F does
not play a key role in determining RegIIA sensitivity. Taken
together, the mutational analysis revealed the non-conserved
residue in loop D at position 59 (Lys in h�4, Thr in h�2) and
residue Arg113 in h�4 (Ser in h�2) of loop E as the two major
determinants for the subtype selectivity of RegIIA at human
nAChRs.

Non-conserved Loop D and E Residues Differentially Affect
the ACh Half-maximal Excitatory Concentrations (EC50) at
Human �3�4 and �3�2 nAChRs—We observed an �18-fold
difference in the EC50 for ACh at human �3�4 and �3�2
nAChRs. The EC50 obtained at h�3�2 was 15.6 �M (95% CI
10.9 –22.2 �M; n � 6), whereas an EC50 of 287.6 �M (95% CI
274.1–301.8 �M, n � 8) was observed at h�3�4 (Table 2 and
supplemental Fig. S1). In addition, the approximate EC50 values
of the mutants at positions 59 and 113 as well as other h�3�4

FIGURE 2. The non-homologous residues at position 59 (Lys in h�4, Thr in h�2) and 113 (Arg in h�4, Ser in h�2) of the human � subunits are the key
residues determining the selectivity profile in inhibitory potency of �-conotoxin RegIIA. A and B, concentration-response curves for RegIIA inhibition of
wild-type and mutant human �3�2 (A) and �3�4 nAChRs (B). The two h�3�2 mutants exhibited a shift of the curve to the left compared with wild-type h�3�2
nAChR, indicating an increase in affinity to the peptide, whereas the opposite mutants of h�3�4 exhibited a lower affinity to RegIIA compared with wild-type
h�3�4 nAChR. C, representative superimposed ACh-evoked currents obtained in the absence (control, black line) and presence of 100 nM RegIIA at wild-type
h�3�2 (red), loop D mutant h�3�2[T59K] (green), and loop E mutant h�3�2[S113R] (blue). D, representative superimposed ACh-evoked currents obtained in
the absence (control, black line) and presence of 100 nM RegIIA at wild-type (red) and mutant h�3�4 nAChRs (green and blue, respectively. E, bar graph
summarizing the IC50 values with 95% CI obtained from concentration-response curves for RegIIA at wild-type h�3�2, h�3�4, and the mutants and chimeric
subtypes analyzed. A gain in sensitivity was observed at mutants h�3�2[T59K] and h�3�2[S113R], whereas the most prominent reductions in sensitivity can
be mapped to the opposite mutations h�3�4[K59T] and h�3�4[R113S]. Dotted squares indicate the agonist binding loops in which the respective mutants are
located. All data points represent mean 	 95% CI. The IC50, 95% CI, and Hill slope (nH) values are summarized in Table 1.

TABLE 1
RegIIA inhibition of �3-containing nAChR subtypes and subtype
mutants
IC50 values (nM) with 95% CI. Hill slope (nH) was obtained from concentration–
response curves for RegIIA at wild-type and mutant human �3�2 and �3�4 nAChR
subtypes. Human �3�2 nAChR mutations h�3�2
T59K� and h�3�2
S113R� notably
decrease the IC50 of RegIIA towards the human �3�4 subtype value, whereas the oppo-
site human �3�4
K59T� and �3�4
R113S� result in lower potency of RegIIA and sig-
nificantly increased IC50 values. Data from wild-type nAChRs and the mutants men-
tioned are highlighted in bold font. All data represent mean of n � 3–9 experiments.

nAChR/mutant IC50 95% CI nH

nM

h�3�2 132.4 109.7–159.7 1.5
h�3�4 45.6 31.5–65.9 0.9
h�3�2
1–63�4� 159.2 113.0–224.4 1.4
h�3�2
70–86�4� 1268.1 935.7–1718.5 0.9
h�3�2
T59K� 49.4 33.4–73.1 1.2
h�3�4
K59T� 2795.1 2346.6–3329.3 1.4
h�3�4
113–115�2� 1056.5 924.9–1206.9 1.1
h�3�2
S113R� 23.7 19.0–29.4 1.5
h�3�4
R113S� 805.3 554.7–1169.0 0.9
h�3�4
S114Y� 133.1 105.0–168.6 1.2
h�3�4
N115D� 275.0 221.3–341.5 1.6
h�3�4
M163K�T164S� 138.6 113.2–169.8 2.3
h�3�4
P165E� 217.9 172.9–274.6 1.2
h�3�4
T166V�M169L� 130.2 100.1–169.5 1.9
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mutants were determined. Mutant h�3�2[T59K] had a similar
ACh EC50 to the wild-type h�3�2 (14.3 �M, 95% CI 12.5–16.5
�M, n � 4). In contrast the opposite mutation h�3�4[K59T]
exhibited a considerably lower EC50 than wild-type h�3�4
(29.8 �M, 95% CI 27.9 –31.9 �M, n � 4). Mutant h�3�4[R113S]
also resulted in a considerably lower than wild-type h�3�4
EC50 value of 42.9 �M (95% CI 36.4 –50.5 �M, n � 4). Surpris-
ingly, however, mutant h�3�2[S113R] revealed an EC50 in the
low micromolar range (6.0 �M, 95% CI 5.0 –7.2 �M, n � 5),
which is comparable with wild-type h�3�2 (Table 2 and sup-
plemental Fig. S1). Overall, both �2 mutants retained the high
affinity to ACh as seen in wild-type h�3�2, whereas the oppo-
site mutations in h�3�4 (h�3�4[K59T] and h�3�4[R113S])
considerably increased the affinity for ACh compared with
h�3�4. Other h�3�4 loop E and F mutants that exhibited a
less pronounced increase in RegIIA IC50 also had lower than
wild-type ACh EC50 (Table 2). This is not unexpected given
that these mutations are within the agonist binding loops.

The Non-conserved Residues h�4-Lys59 and h�4-Arg113 Are
the Key Determinants for Recovery from Block by RegIIA—
Human �3�4 and �3�2 nAChRs not only exhibited a difference
in sensitivity to �-conotoxin RegIIA with considerably different
IC50 values, but also differences in the time required to recover
from block. By repeatedly applying ACh under constant perfu-
sion after incubation with the peptide, we measured the time
required for the ACh-evoked current amplitude to recover.

Interestingly, RegIIA revealed notably different wash-off
kinetics at h�3�2 compared with h�3�4. At h�3�2, 95% recov-
ery from block by RegIIA was reached within a minute (Fig. 3, A
and B, and Table 3). In contrast, 95% wash-off at h�3�4 took
�13–14 min (Fig. 4, A and B, and Table 3). A similar difference
was observed at rat nAChRs, with faster recovery for r�3�2
(1–2 min) compared with a considerably slower rate for r�3�4
(16 –18 min) (Table 3).

We next tested if any of the mutations that affected the IC50
of RegIIA also had an impact on the rate of recovery from block.
Mutant h�3�4[K59T] exhibited a rapid off-rate, similar to that
observed for wild-type h�3�2 (95% recovery in �1 min) (Fig. 4,
A and C). Conversely, peptide washout at the opposite mutant
h�3�2[T59K] was very slow with less than 50% washout
achieved after 45 min of perfusion (Fig. 3, A and C, and Table 3).

In rat �2 and �4 subunits, the residue at position 59 is homo-
logous with human (Thr in �2 and Lys in �4). A similar slowing
in wash-off was observed with rat �3�2[T59K] compared with
wild-type r�3�2 although less severe (Table 3), confirming the
key role of residue 59 in loop D for the binding affinity of
RegIIA.

Residue 113 mutants (h�3�2[S113R] and h�3�4[R113S])
also exhibited considerably different wash-off rates compared
with the respective wild-type receptors. Peptide wash-off at
h�3�4[R113S] was very fast, similar to the h�3�2 subtype (95%
wash-off in �1 min), whereas at h�3�2[S113R] it was almost as
slow as at the opposite wild-type h�3�4 nAChR (95% wash-off
in 9 –13 min) (Fig. 3A, D; Fig. 4, A and D, and Table 3).

In addition, mutants h�3�4[P165E] and h�3�4[T166V�-
M169L], which also showed a considerable higher affinity to
ACh than wild-type, were tested for their RegIIA off-rate. Both
mutants exhibited a faster off-rate compared with wild-type,
which is consistent with the higher IC50 and lower EC50
observed. However, the wash-off was not as fast as observed
for h�3�4[K59T] or h�3�4[R113S], placing these mutants
between h�3�2 and h�3�4 with respect to their off-rates
(Table 3).

In summary, these findings show that the residues at posi-
tions 59 and 113 not only affect the sensitivity of each receptor
subtype to RegIIA, but they are also key determinants for the
differences observed in wash-off kinetics. Other residues in the
agonist binding loops also affected the affinities for ACh and
the peptide, but to a lesser extent than the aforementioned
positions and they appear to play an auxiliary role for peptide
binding.

Molecular Modeling Shows the Interacting Mechanisms
between the Non-conserved Residues of Human �3�4 and �3�2
nAChRs and RegIIA—The interactions between RegIIA and the
binding sites of h�3�2 and h�3�4 nAChRs are very similar,
with most of the residues in the first loop forming contacts with
the (�) subunit and most of the second loop residues interact-
ing with the (�) subunit.

The non-conserved residues at positions 59, 111, 113, and
119 of the � subunits form direct interactions with residues
Asn9, Val10, and Asn11 of the second loop of RegIIA (Fig. 5 and
Table 4). The residues at positions 111 and 119 of h�2 and h�4
are hydrophobic and possess similar biophysical properties
thus, explaining their minor effects on the sensitivity of RegIIA
to h�3�2 and h�3�4 nAChRs.

In contrast, biophysical differences for the side chains at
positions 59 and 113 are substantial, with two long and posi-
tively charged side chains contributed by residues Lys59 and
Arg113 at h�4, whereas at the h�2 subunit two neutral and short
side chains from residues Thr59 and Ser113 are present (Fig. 5,
C–F). In our MD simulations, the side chains of �4-Lys59 and
Arg113 formed hydrogen bonds with backbone atoms of Asn9

and Cys16 (for �4-K59), and Asn11 (for �4 Arg113) in the loop 2
of RegIIA, whereas the side chains of �2 Thr59 and �2 Ser113 are
not long enough to form such interactions with the corre-
sponding residues of RegIIA (Figs. 5, C–F, and 6). Residue �2
Ser113 is instead forming hydrogen bonds with the adjacent �2
Asp115 and �2 Ser117 residues, which stabilize it in an orienta-
tion facing away from the peptide binding site (Fig. 5E).

TABLE 2
ACh EC50 values for wild-type and mutant human �3�2 and �3�4
nAChRs
EC50 values (�M) with 95% CI. The Hill slope (nH) was obtained from
concentration–response curves for ACh at wild-type and mutant human �3�2 and
�3�4 nAChR subtypes. ACh concentrations from 0.01 �M to 10 mM (the highest
applicable concentration) were tested. All data represent mean of n � 4 – 8 experi-
ments.

nAChR/mutant EC50 95% CI nH

�M

h�3�2 15.6 10.9–22.2 0.7
h�3�4 287.6 274.1–301.8 2.3
h�3�2
T59K� 14.3 12.5–16.5 1.0
h�3�4
K59T� 29.8 27.9–31.9 1.1
h�3�2
S113R� 6.0 5.0–7.2 0.9
h�3�4
R113S� 42.9 36.4–50.5 1.1
h�3�4
S114Y� 65.1 56.3–75.3 1.1
h�3�4
N115D� 140.8 123.8–160.0 1.0
h�3�4
M163K�T164S� 63.1 58.6–67.9 1.0
h�3�4
P165E� 43.9 38.6–50.0 1.2
h�3�4
T166V�M169L� 17.5 15.8–19.4 1.1

Key Determinants for �-Conotoxin Interaction with �3�4 nAChRs

23784 JOURNAL OF BIOLOGICAL CHEMISTRY VOLUME 291 • NUMBER 45 • NOVEMBER 4, 2016



MD simulation of a RegIIA-bound mutant h�3�4[K59T]
model revealed that the �4 Lys59 to Thr mutation removed
the hydrogen bond between the RegIIA amide terminus and the
position 59 side chain, thereby significantly decreasing the
affinity of RegIIA compared with wild-type h�3�4. Although
the conformation of residues near position 59 was not signifi-
cantly perturbed by the mutation, the non-conserved residues
near the binding site have an unfavorable effect for RegIIA

binding at h�3�4[K59T]. MD simulation indicates the oppo-
site mutant h�3�2[T59K] exhibits higher affinity to RegIIA
compared with wild-type h�3�2, because RegIIA is stabi-
lized by additional hydrogen bonds formed between �2
Lys59, Asp170, and the amide group of RegIIA. However, this
mutation also introduced significant local conformation
changes of the �2 binding interface, thereby decreasing con-
tacts between RegIIA and the �2 residue side chains Phe119

and Lys163. These effects counteract the affinity gain result-
ing from introduction of Lys59, and are likely responsible for
the overall only mildly increased RegIIA activity at mutant
h�3�2[T59K].

Computational studies on a RegIIA-bound mutant h�3�2-
[S113R] model revealed that residue �2 Arg113 forms salt
bridges with Asp115, similar to Ser113 in wild-type h�3�2 (see
Fig. 5E), instead of directly interacting with Asn11 of RegIIA.
Interestingly we observed that the backbone oxygen atom of
Asn11 forms a hydrogen bond with Lys79 rather than Arg113

due to the relocation of the latter. Thus, our MD simulation
indicates that Arg113 of h�3�2[S113R] strengthens the bind-
ing of RegIIA through stabilization of the local conformation

FIGURE 3. Wild-type human �3�2 and �3�4 nAChRs display different wash-off kinetics from block by �-conotoxin RegIIA. Single residue �2 mutations
in h�3�2 are sufficient to switch off-rates to those of the opposite subtype. A, graph summarizing the wash-off kinetics data. The h�3�2 nAChR subtype (black
circles) exhibits fast recovery of ACh-evoked currents from block by RegIIA, with full recovery achieved in less than 2 min. In contrast, at h�3�4 (black squares)
currents recovered from RegIIA block after a 13–14-min washout. When loop D residue 59 in h�2 was replaced with the respective residue of h�4 (mutant
h�3�2[T59K], green circles) the off-rate of RegIIA was dramatically slowed. A similar replacement of loop E residue 113 in h�2 (mutant h�3�2[S113R], blue
circles) slowed the recovery rate similar to h�3�4. Representative ACh-evoked currents of h�3�2 (B), h�3�2[T59K] (C), and h�3�2[S113R] (D) illustrate the
recovery from the RegIIA block differs between wild-type and the two mutant h�3�2 nAChR subtypes. Numbers at the respective ACh-evoked current peaks
indicate the duration (in min) of washout and C indicates a representative control ACh application before incubation with the peptide. Oocytes were incubated
with RegIIA for 5 min followed by repetitive application of ACh under continuous perfusion with ND96 solution. Approximate EC50 values for ACh and RegIIA
concentrations giving major to full block of ACh-evoked currents under these conditions were used for each subtype tested. All data points in A represent
mean 	 95% CI, n � 3–7. The times required to reach 95% recovery from block are summarized in Table 3.

TABLE 3
Recovery time from block by �-conotoxin RegIIA

nAChR/mutant t95
a

min
h�3�2 1
h�3�4 13–14
r�3�2 1–2
r�3�4 16–18
h�3�2
T59K� �45
h�3�4
K59T� �1
r�3�2
T59K� �45
h�3�4
R113S� �1
h�3�2
S113R� 9–3
h�3�4
P165E� 3–5
h�3�4
T166V�M169L� 5–7

a Time to reach 95% recovery after continuous peptide washout.
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near the binding site, thereby making mutant h�3�2[S113R]
even more RegIIA-sensitive than wild-type h�3�4.

Furthermore, we computationally analyzed RegIIA binding
to other h�3�4 mutants that exhibited a major loss in RegIIA
activity. The loop F mutation in h�3�4[P165E] created a local
conformation change to the entire agonist binding loop F. We
identified that the angle defined by the C� atoms at 164, 165,
and 166 positions became significantly larger (right shift). We
conclude that this local conformation change might affect
RegIIA binding to the �3�4[P165E], but that Pro165, or its
neighboring residues, are not determinants for RegIIA binding
in the wild-type nAChR subtypes.

The h�3�4[N115D] mutant, which also showed significantly
decreased sensitivity to RegIIA compared with wild-type
h�3�4, was analyzed further. Based on MD simulation data we
suggest �4 Asp115 might compete with residues of RegIIA to
interact with Arg113. Similar to the interaction of �2 Ser113 in
h�3�2 (Fig. 5, A and E) residue �4 Arg113 forms salt brid-
ges with Asp115 rather than with residues of RegIIA
in h�3�4[N115D]. This explains the mutational effects of
[N115D] to the binding affinity of RegIIA. Although the oppo-
site mutation in �2 (mutant h�3�2[D115N]) would weaken the
H-bond with Ser113, the overall effect would not be a reciprocal

gain in RegIIA affinity, because the Ser113 residue is too short to
directly interact with RegIIA.

Overall, our computationally directed mutational studies
suggest that mutants h�3�4[P165E] and h�3�4[N115D] nega-
tively affect RegIIA binding through mildly altering the local
conformation of either the backbone or the side chains of the
residues near the binding site. But those non-conserved posi-
tions do not appear to determine the difference in RegIIA sen-
sitivity between wild-type h�3�2 and h�3�4 to a similar extent
as do residues 59 and 113.

The non-conserved � subunit residues at positions 34, 36, 71,
78, 79, 114, 115, 163, 164, 165, and 166 are far from the binding
site, and their side chains merely form weak interactions with
RegIIA. Their effects to the binding affinity of RegIIA are
mostly indirect, by forming hydrogen bonds with neighboring
residues to affect the local conformation of the binding site
(Fig. 5).

Taken together, MD simulations indicate the non-conserved
residues 59 and 113 of the (�) interface are crucial for the
observed differences in RegIIA activity, due to their consider-
ably different mode of interaction with the peptide. In h�3�4
nAChRs, hydrogen bonds are formed between the respective
residues and RegIIA loop 2, but they are absent in h�3�2.

FIGURE 4. Single residue �4 mutations in h�3�4 increase the �-conotoxin off-rate of RegIIA to values similar to wild-type h�3�2. A, graph summarizing
the wash-off kinetics data. Wild-type h�3�2 and h�3�4 data are the same as described in the legend to Fig. 3 and shown for comparison. Replacing loop D
residue 59 in h�4 with the respective residue in h�2 (mutant h�3�4[K59T], green squares) is sufficient to shift the off-rate to the opposite subtype. A mutant in
which residue Arg113 of h�4 is replaced with Ser, as in h�2, (h�3�4[R113S], blue squares) similarly exhibits a fast wash-off rate resembling h�3�2. Represent-
ative ACh-evoked currents of h�3�4 (B), h�3�4[K59T] (C), and h�3�4[R113S] (D) illustrate the recovery from the RegIIA block differs between wild-type and the
two mutant h�3�4 nAChR subtypes. Experimental conditions were the same as those described in the legend to Fig. 3. All data points in A represent mean 	
95% CI, n � 3–7. The times required to reach 95% recovery from block are summarized in Table 3.
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The �3�4 nAChR-selective �-Conotoxin AuIB Is Less Active
at the Homologous Human nAChR Subtype—The 4/6 �-cono-
toxin AuIB has been shown to selectively inhibit the rat �3�4
nAChR with an IC50 of 0.75 �M (13). Activity at human nAChRs
has not yet been reported. Therefore, we determined the activ-
ity of AuIB at wild-type h�3�2, h�3�4, and relevant � subunit
mutants. Interestingly, 1 �M AuIB was inactive at h�3�4 and
exhibited a minor block of ACh-evoked currents (10.7 	 3.2%,
n � 9) at h�3�2 nAChR. The nAChR � subunit mutants that

distinctly affected the RegIIA activity profile (positions 59 and
113) were all relatively insensitive to 1 �M AuIB (Fig. 7A). Con-
centration-response analyses with wild-type h�3�2 and h�3�4
nAChRs confirmed the low sensitivity of both nAChR subtypes
to AuIB. �-Conotoxin AuIB at 30 �M, reduced ACh-evoked
currents mediated by h�3�2 to 75.9 	 3.7% of control (n � 10)
and h�3�4-mediated currents to only 79.6 	 4.0% (n � 10) of
control, indicating that the IC50 is considerably higher than 30
�M at either nAChR subtype (Fig. 7B).

FIGURE 5. Molecular docking models illustrate the binding modes of RegIIA to h�3�2 (A) and h�3�4 (B), respectively. Several hydrogen bonds (dashed lines) are
formed between pairwise interacting residues of different loops or �-sheets, thereby affecting their local conformation or dynamics, which in turn affects the
binding of RegIIA. Note that hydrogen bonds are formed by several non-conserved �2-subunit (Ser113, Asp115, Ser164, Glu165) and �4-subunit residues (Asn115,
Thr164). The �3(�) interface is shown in green, �2(�) in pink, �4(�) in cyan, and RegIIA in orange. Residues near the agonist binding site that affect RegIIA
binding are shown as licorice models. Residues from the receptor and RegIIA are labeled using normal and italic fonts, respectively. Key interaction sites
responsible for the differences in �-conotoxin RegIIA binding are highlighted with dashed circles. C–F, magnification of the key sites in h��2 (C and E) and h��4
(D and F) highlighted with circles in A and B.

TABLE 4
Contacts of �-conotoxin RegIIA with h�3�2 and h�3�4 nAChR, respectively
Contacts between nAChR and RegIIA are defined as van der Waals interactions if the distance between heavy atoms of RegIIA and nAChR is between 2.6 and 4 Å. Residues
of the nAChR forming hydrogen bonds with RegIIA are underlined. Residues that are non-conserved between �3�2 and �3�4 nAChRs, as well as RegIIA residues making
contact with them are shown in bold.

Residuea

�3�2 nAChR �3�4 nAChR
�b �c �b �c

Ser4 Asp171 Asp171

His5 Tyr93, Tyr190, Tyr197 Tyr93, Tyr190, Tyr197

Pro6 Tyr93, Trp149 Trp57 Tyr93, Trp149 Leu121

Ala7 Ser150, Tyr197 Ser150, Tyr197

Asn9 Trp57, Thr59, Phe119, Leu121 Lys59, Leu121

Val10 Ser150 Arg81, Val111, Phe119, Leu121 Ser150 Arg81, Ile111, Leu119, Leu121

Asn11 Asp152, Glu195, Tyr197 Lys79, Arg81, Val111 Asp152, Glu195, Tyr197 Ile79, Arg81, Ile111

Asn12 Cys192, Cys193, Glu195 Cys192, Cys193, Glu195

His14 Cys192, Cys193 Cys192, Cys193

Ile15 Cys192, Cys193 Cys192, Cys193

a Only RegIIA residues making direct contact with the nAChRs are listed.
b Residues of the principal side of the binding site.
c Residues of the complementary side of the binding site.
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FIGURE 6. MD simulations of 50-ns duration show the evolution of distances between �4 Lys59 heavy atoms and RegIIA residues Asn9 as well as Cys16

(A), and between �4 Arg113 and RegIIA Asn11 (B), respectively. The strengthening of the hydrogen bond is reversely proportional to the distance between
hydrogen bond donor and hydrogen bond acceptor. When the distance between the heavy atoms is more than 3.5 Å, the strength of the hydrogen bond is
believed to be weak. Red and black colors are used to discriminate the two simulations performed with �4 Lys59. The labels K59&NZ-N9&OD and K59&NZ-C16&O
designate the distance between the heavy atom NA of residue �4 Lys59 and the heavy atom OD of residue RegIIA Asn9, and the distance between heavy atom
K59&NZ and the heavy atom O of residue RegIIA C16, respectively. The label R113&NH2-N11&O refers to the distance between the heavy atoms NH2 of �4 Arg113

and O of RegIIA Asn11.

FIGURE 7. �-Conotoxin AuIB has minor activity at human �3�2 and �3�4 nAChRs. A, bar graph representing potency of block by �-conotoxin AuIB (1 �M)
at wild-type and mutant human �3�2 and �3�4 nAChRs. Data represent mean 	 S.E., n � 3–9. B, concentration-response analysis of AuIB at wild-type �3�2
and �3�4 nAChRs indicated the IC50 is considerably higher than 30 �M at both nAChR subtypes. AuIB (30 �M) reduced ACh-evoked current amplitude mediated
by �3�2 to 75.9 	 3.7% of control (n � 10) and �3�4 currents to 79.6 	 4.0% (n � 10), respectively. C and D, molecular dynamics simulation predicted binding
modes of AuIB to �3�2 (C) and �3�4 (D). Several hydrogen bonds are formed between pairwise interacting residues of different loops and between toxin and
receptor, e.g. AuIB Asp14 with �4 Arg113 (dashed circle, hydrogen bonds as dotted lines). The �3(�) interface is shown in green, �2(�) in pink, �4(�) in cyan, and
AuIB in orange. Non-conserved residues are shown as licorice models and labeled. Residues from the receptor and AuIB are labeled using normal and italic fonts,
respectively.
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MD Simulation of �-Conotoxin AuIB Binding to h�3�2 and
h�3�4 nAChRs, Compared with RegIIA, Indicates Other Key
Interactions Affect Binding—In MD simulations, the �4/6-
conotoxin AuIB binds at the interface between the subunits and
overlaps with the agonist binding sites of h�3�2 and h�3�4
nAChRs. Overall molecular interactions are relatively similar to
those with RegIIA, as most of AuIB loop 1 residues form con-
tacts with the (�)-subunit and most of the residues at loop 2
interact with residues at the (�)-subunit (Fig. 7, C and D, and
Table 5). However, despite the general similarity of RegIIA and
AuIB binding to h�3�2 and h�3�4 nAChRs, several side
chains, including the non-conserved residues at positions 59
and 113 of both nAChR � subunits, formed remarkably differ-
ent interactions with residues in loop 2 of AuIB (Fig. 7, C and D,
and Table 5). These differences are a result of a significant shift
in orientation between the two �-conotoxins. Direct compari-
son of the orientation of AuIB with RegIIA at the �3(�)�4(�)
binding interface revealed that the shifted AuIB backbone
places AuIB Phe9 far away from the �4 Trp57 side chain.
Thereby no direct interaction between the aromatic ring of
AuIB Phe9 and the tryptophan can occur. Instead AuIB Phe9 is
in relatively close proximity to �4 Leu119 and �4 Lys59 (Fig. 7D).
It is likely the missing interaction between the AuIB Phe9 aro-
matic ring and �4 Trp57 is a significant factor for the lack of
activity of AuIB at h�3�4, whereas for h�3�2 it is the insuffi-
cient stabilization of AuIB Phe9 by residue �2 Thr59.

Discussion

The �3�4 nAChR subtype represents an important pharma-
cological target as it is involved in several pathophysiological
disease conditions such as lung cancer, nicotine addiction, and
drug abuse (3, 11, 12). To date, only a few �-conotoxins have
been found to be active at the �3�4 nAChR subtype and even
fewer are highly specific for it. A problem complicating the task
of developing specific �3�4 receptor antagonists is that the
ligand binding sites are structurally very similar among nAChR
subtypes. However, the small structural differences between
subtypes can cause profound pharmacological effects, as seen
with the selectivity profiles of various �-conotoxins.

�-Conotoxin RegIIA has previously been shown to exhibit a
species-specific difference in activity between human and rat

�3�2 nAChRs, whereas this species difference was not
observed at the �3�4 nAChR subtype (17). Given that both the
species and subtype selectivity profiles are well described for
RegIIA, it represents a suitable probe to investigate pharmaco-
logical differences between �3�2 and �3�4 nAChR subtypes in
detail.

RegIIA inhibits ACh-evoked currents competitively, like
most �-conotoxins, indicating that its binding site overlaps
with the agonist binding site (16). Sequence alignment between
human �4 and �2 subunits shows their extracellular agonist
binding regions are moderately conserved on the amino acid
level between subtypes (70% homology, Fig. 1A). A mutational
approach was chosen to elucidate how non-conserved struc-
tural elements account for functional differences in �-cono-
toxin binding.

Using receptor chimeras and point mutations to exchange
individual residues to those of the opposite subtype, we identi-
fied two key residues (at positions 59 and 113, respectively) that
crucially determine the selectivity of RegIIA. Exchange of �2
Thr59 to Lys increased RegIIA sensitivity similar to that
observed at h�3�4, whereas the opposite exchange of �4 Lys59

to Thr resulted in a 61-fold loss of sensitivity compared with
wild-type h�3�4. Furthermore, the rate of recovery from block
by RegIIA differs considerably between h�3�2 and h�3�4. By
exchanging the single residue at position 59 of the � subunit, we
were able to swap the wash-off rate of subtypes.

Residue 113 on the � subunit has a similarly important role
for RegIIA selectivity. Exchange of �2 Ser113 to Arg made the
mutant h�3�2[S113R] receptor twice as sensitive to RegIIA
than wild-type �3�4. In contrast, the opposite mutation in �4
made the mutant receptor (h�3�4[R113S]) 18-fold less sensi-
tive to RegIIA than wild-type h�3�4 and 34-fold less sensitive
than mutant h�3�2[S113R]. In addition, the single exchange of
residue 113 between �2 and �4 was sufficient to switch the
off-rate of RegIIA to that of the opposite subtype. To our
knowledge, this is the first time Arg113 at the complementary
agonist binding interface of nAChRs has been identified as a key
determinant in antagonist binding. Computational modeling of
RegIIA-bound mutant h�3�2[S113R] provided insights about
why this mutant is even more sensitive to RegIIA than h�3�4.

TABLE 5
Contacts of �-conotoxin AuIB with h�3�2 and h�3�4 nAChRs, respectively
Contacts between nAChR and AuIB are defined as van der Waals interactions if the distance between heavy atoms of AuIB and nAChR is between 2.6 and 4 Å. Residues of
the nAChR forming hydrogen bonds with AuIB are underlined. Residues that are non-conserved between �3�2 and �3�4 nAChRs, as well as AuIB residues making contact
with them are shown in bold.

Residuea

�3�2 nAChR �3�4 nAChR
�b �c �b �c

Ser4 Asp171 Asp170

Tyr5 Tyr93, Tyr190, Asp199 Tyr93, Tyr190, Asp199
Pro6 Trp149 Trp57, Leu121 Trp149 Trp57, Leu121

Pro7 Trp149, Ser150, Tyr197 Trp149, Ser150, Tyr197

Phe9 Met36, Trp57, Thr59, Phe119, Leu121 Lys59, Glu61, Leu119, Leu121

Ala10 Ser150 Arg81, Val111, Phe119 Ser150 Arg81, Ile111

Thr11 Asp152, Glu195, Tyr197 Asp152, Glu195, Tyr197

Asn12 Cys192, Cys193 Cys192, Cys193

Pro13 Lys79, Val111, Phe119 Ile111, Arg113

Asp14 Lys79 Arg113

a Only AuIB residues making direct contact with the nAChRs are listed.
b Residues of the principal side of the binding site.
c Residues of the complementary side of the binding site.
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When Arg113 is introduced into the �2 backbone it forms salt
bridges with Asp115, similar to Ser113 in wild-type h�3�2 (see
Fig. 5E). However, in the case of Arg113 this interaction also
affects the conformations of residues near the binding site in
such way that residue �2 Lys79 can form a hydrogen bond with
the backbone oxygen atom of RegIIA Asn11.

It is important to note that the ACh EC50 at h�3�2 is �18-
fold lower than at h�3�4. As the aforementioned �-subunit
residues are both within the agonist binding region at the inter-
face between the � and � subunits, it can be assumed that point
mutations would affect the EC50 of ACh. Indeed mutant
h�3�4[R113S] exhibited �7-fold lower EC50 than wild-type
h�3�4. However, unlike the IC50 of RegIIA, there was no recip-
rocal effect on ACh EC50 with the opposite mutant
h�3�2[S113R]. This mutant exhibited an even slightly lower
EC50 than h�3�2. Comparably, both h�3�2[T59K] and
h�3�4[K59T] revealed an EC50 similar to h�3�2 (Table 2). This
discrepancy suggests the mutations affecting ACh EC50 most
likely impact the observed RegIIA potencies as well, as ACh
competes with RegIIA for the agonist binding site. Mutants
h�3�2[T59K] and h�3�2[S113R] are already more RegIIA sen-
sitive than wild-type h�3�2, but it can be assumed they would
be even more sensitive if their ACh EC50 values were not con-
siderably lower than the EC50 seen with h�3�4.

Other h�3�4 mutants, primarily within loop F, also
decreased RegIIA sensitivity and increased ACh affinity.
Compared with the aforementioned h�3�4[K59T] and
h�3�4[R113S] mutants, we observed a less extensive increase
in RegIIA IC50 and RegIIA wash-off kinetics. We hypothesize
the other mutants play an auxiliary role for the subtype selec-
tivity of RegIIA.

Residue 59 on the � subunits of rat nAChRs has previously
been identified as a determinant for �-conotoxin LvIA potency
and wash-off kinetics (31). �-Conotoxin LvIA exhibited a
17-fold higher selectivity for rat �3�2 over �3�4, and the rat
�3�2[T59K] mutation further increased the the activity of the
peptide by �10-fold. Furthermore, similar to our findings with
RegIIA, mutant r�3�2[T59K] considerably slowed the recovery
from block by LvIA compared with wild-type �3�2 (31).

In our MD simulations, the evolution of distances between
key RegIIA and receptor residues over 50 ns revealed the
involvement of the �4 Lys59 residue side chain in forming
hydrogen bonds with main chain atoms of RegIIA Asn9 and
Cys16 residues, and similarly, �4 Arg113 formed a hydrogen
bond with the Asn11 in loop 2 of RegIIA (Figs. 5 and 6). Both
RegIIA and LvIA have an asparagine at position 9. Therefore, it
is likely the Asn9 residue interacts with �4 Lys59 via a direct
hydrogen bond in both peptides. The increased potency and
slower wash-off caused by the point mutation of �2 Thr59 to Lys
could then be explained by gain of these additional hydrogen
bonds, resulting in tighter binding of the peptide to the mutant
nAChR. The side chain of �2 Thr59, however, is not long
enough to form such interactions with the corresponding resi-
dues in loop 2 of RegIIA (Fig. 5C), which would explain the
faster wash-off at wild-type �3�2 and mutant h�3�4[K59T], as
well as lower potency of the peptide compared with h�3�4 and
mutant h�3�2[T59K], respectively.

Furthermore, MD simulation of RegIIA binding to mutant
h�3�4[K59T] revealed that the mutation also removed a
H-bond between the RegIIA amide terminus and the position
59 side chain, thereby significantly decreasing RegIIA affinity
compared with wild-type h�3�4. In addition, non-conserved
residues near the RegIIA binding site cannot compensate the
affinity decrease of RegIIA with the �4 Lys59 to Thr mutation,
which explains the observation that h�3�4[K59T] is even sig-
nificantly less sensitive to RegIIA than h�3�2.

Our hypothesis that the RegIIA Asn9/�4 Lys59 contact is crit-
ical for the activity of RegIIA at �3�4 is also corroborated by
RegIIA alanine-scanning mutagenesis data. It has been shown
that the [N9A]RegIIA analogue was inactive at r�3�4 and �7,
but maintained inhibitory activity at r�3�2 (16). This study also
noted that alanine analogues [N11A]RegIIA, [N12A]RegIIA,
and [N11A,N12A]RegIIA had improved selectivity for �3�4
compared with the native RegIIA. However, these analogues
were less active than RegIIA at �3�4 and the overall higher
selectivity for �3�4 resulted from considerable loss of activity at
the �3�2 and �7 nAChR subtypes. MD simulation also showed
that for �3�2, this was mainly due to destabilization of peptide
contacts with multiple residues at the plus (�) and minus (�)
interfaces (16).

�-Conotoxin LvIA remarkably revealed a considerable spec-
ificity for �3�2 over �6/�3�2�3 rat and human nAChRs, a rare
feature not shared by other �-conotoxins such as RegIIA (32).
As loops 1 of the two peptides are identical, these specificity
differences must be conferred by the second loop in which three
residues (11, 12, and 14) are different. Indeed, in our modeling
most of the residues in the first loop of RegIIA form contacts
with the principal �3 subunit and most of the residues of the
second loop form contacts with the complementary subunits
(Table 4). At �3�2 and �3�4 nAChRs, we identified RegIIA
residues Asn9, Asn11, and Asn12 as main determinants for inter-
action with the � subunit. We speculate that the residues at
positions 11 and 12 primarily account for the differences in
�3�2* subtype sensitivity between LvIA and RegIIA.

Zhangsun et al. (31) also identified residues 111 and 119 in
loop E of �2 and �4 subunits as determinants for LvIA potency,
whereas for RegIIA, only residue 113 was responsible for the
potency of the peptide in loop E. As mentioned previously, our
modeling suggests that that the � subunit specificity of RegIIA
is conferred via interactions of its residues Asn11 and Asn12

with loop E of the receptor, specifically �4 residue Arg113. As
LvIA has different residues at these positions, the data on LvIA
regarding key interacting residues with loop E (31) cannot be
directly compared with RegIIA. However, as Asn9 is present in
both RegIIA and LvIA, the interaction with �4 Lys59 likely
occurs via the same mechanism leading to the similar observa-
tions in mutational analyses.

�-Conotoxin AuIB has been characterized as a selective
inhibitor of the rat �3�4 nAChR subtype (13), however, to our
knowledge, its specificity profile at human nAChRs had not
been evaluated. We tested AuIB at h�3�2 and h�3�4 nAChRs
and selected mutants. AuIB appeared to be considerably less
active at h�3�4, as 1 �M AuIB did not inhibit ACh-evoked
currents at this nAChR subtype and higher concentrations
caused minimal inhibition, suggesting that the IC50 is consid-
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erably �30 �M (Fig. 7, A and B). This is in contrast to the ho-
mologous rat �3�4 nAChR where an IC50 of 0.75 �M was
reported (13). Interestingly, we observed some inhibitory activ-
ity of AuIB at the h�3�2 subtype. However, inhibition was
slight with ACh-evoked current amplitude inhibited by �50%
in the presence of 30 �M AuIB, similar to that observed for
h�3�4 (Fig. 7B).

Molecular modeling and docking simulation was also per-
formed with �-conotoxin AuIB, indicating that many of the
non-conserved residues in the complementary face of the ago-
nist binding site are also involved in the binding of this peptide,
although in a different way (Fig. 7, C and D, and Table 5). For
example, residue Asp14 of AuIB forms a hydrogen bond with �4
Arg113, whereas at the �3�2 nAChR, �2 Lys79 interacts with
Asp14. Residue Phe9 of AuIB interacts with several of the non-
conserved residues, similar to Asn9 of RegIIA.

AuIB F9 has previously been identified as the key residue for
the specific binding of AuIB to the rat �3�4 nAChR (33). AuIB
Phe9 interacts with Trp57 and Lys59 residues of the WLK pocket
in rat �4 loop D, (designated Trp59 and Lys61 in this paper),
most likely via �-� stacking due to the deep insertion of its
aromatic ring (33). An alanine substitution substantially
reduced �3�4 inhibition and decreased subtype specificity.
Additional AuIB analogues with other side chains at this posi-
tion demonstrated that size, aromaticity, and hydrophobicity at
position 9 of AuIB are important for interaction between the
peptide and �4 subunit of the rat �3�4 pentamer (33).

Direct comparison of the orientation of RegIIA and AuIB at
the �3(�)�4(�) binding site by MD simulation revealed that
the �4 subunit interface is largely unchanged in conformation,
whereas the orientation of the two bound �-conotoxins differs
significantly. RegIIA Asn9 is in close proximity to the �4 Trp57

and �4 Lys59 side chains, but the AuIB backbone is shifted rel-
ative to RegIIA, locating AuIB Phe9 outside of the WLK pocket
(Fig. 7D). Thereby, AuIB Phe9 forms contact with �4 Lys59 and
�4 Leu119, but the crucial �-� interaction with �4 Trp57 is
absent. As the tryptophan residue was indispensable for the
inhibitory effect of AuIB at the rat homologue, and �4 Lys59

appeared to play an auxiliary role (33), the lack of interaction
between AuIB F9 and �4 Trp57 could explain the loss of AuIB
activity at the h�3�4 subtype. At h�3�2, our modeling revealed
contacts between AuIB and �2 Trp57, Thr59, and other residues
(Fig. 7C and Table 5). Although the crucial interaction of AuIB
Phe9 with the Trp57 residue in loop D is present, residue Thr59

does not form an effective binding pocket for AuIB Phe9, unlike
�4 Lys59. The hydrophilic side chain of �2 Thr59 is likely unfa-
vorable to interact with the aromatic phenyl ring of AuIB Phe9.
In summary, our modeling offers an explanation for the lower
inhibitory activity of AuIB at h�3�2 and h�3�4 nAChRs. The
characteristic binding pocket for AuIB F9 formed by the two rat
�4 subunit loop D residues is absent in the human �2 and �4
counterparts, resulting in ineffective stabilization of AuIB.

In addition, nAChR subtype selectivity and wash-off kinetics
has also been investigated for �-conotoxin BuIA (34, 35). A
slow recovery from the BuIA block at �3�4 compared with
significantly faster recovery at �3�2 has been observed in dif-
ferent species, including human (35). Mutational studies at rat
�2 and �4 subunits have identified residues 59, 111, and 119 as

critical for the off-rate differences. Similar to our findings with
RegIIA, the off-rate of BuIA was slower in the �2[T59K] mutant
compared with wild-type �3�2 (34).

Mutation of �2 T59K has also been shown to be critical for
dihydro-�-erythroidine and neuronal bungarotoxin sensitivity
of �3�2 (36), as well as affecting the affinity of the agonists, ACh
and nicotine to the �2�2 nAChR (37). The high selectivity of
�-conotoxin MII for the �3�2 nAChR subtype (�200-fold less
active at other nAChR subunit combinations) has been mapped
to three sequence segments using �3�2 chimeras. Within the
segments, �2 residue Thr59 was identified as one factor deter-
mining the higher sensitivity of �2 to MII compared with �4
(38).

In summary, these findings confirm that subtype-selective
nAChR antagonists often work through common mechanisms
by interacting with the same structural components and sites
on the receptor. Knowing the key residue interactions by which
antagonists (such as �-conotoxins) can discern between struc-
turally very similar nAChR subtypes provides us with the tools
to design novel potent and highly subtype-selective drugs.

Here, we show that residues in loop 2 of �-conotoxins often
form direct interactions with specific non-conserved residues
in the agonist binding loops at the complementary interface of
�3�2 and �3�4 nAChRs. In the future, generating toxin ana-
logues with mutations in loop 2 to either improve or decrease
binding to receptor key residues, such as Lys59 or Arg113 of the
�4 subunit, might be a way to direct the selectivity of �-cono-
toxins to different subtypes of nAChRs. Given that h�3�4 sub-
type-selective �-conotoxins are scarce, the design of new pep-
tides targeting this nAChR subtype is desirable.
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