
From ZikV genome to vaccine: in silico approach for the epitope-

based peptide vaccine against Zika virus envelope glycoprotein

Aftab Alam,1 Shahnawaz Ali,1

Shahzaib Ahamad,2 Md. Zubbair

Malik1 and Romana Ishrat1

1Centre for Interdisciplinary Research in Basic

Science, Jamia Millia Islamia, New Delhi,

and 2Department of Biotechnology, College of

Engineering & Technology, IFTM, Morad-

abad, India

doi:10.1111/imm.12656

Received 7 April 2016; revised 18 July 2016;

accepted 29 July 2016.

Correspondence: Dr Romana Ishrat,

Assistant Professor, Centre for Interdisci-

plinary Research in Basic Science, Jamia

Millia Islamia, New Delhi-110025, India.

Email: rishrat@jmi.ac.in

Senior author: Dr Romana Ishrat

Summary

Zika virus (ZikV) has emerged as a potential threat to human health

worldwide. A member of the Flaviviridae, ZikV is transmitted to humans

by mosquitoes. It is related to other pathogenic vector-borne flaviviruses

including dengue, West Nile and Japanese encephalitis viruses, but pro-

duces a comparatively mild disease in humans. As a result of its epidemic

outbreak and the lack of potential medication, there is a need for

improved vaccine/drugs. Computational techniques will provide further

information about this virus. Comparative analysis of ZikV genomes

should lead to the identification of the core characteristics that define a

virus family, as well as its unique properties, while phylogenetic analysis

will show the evolutionary relationships and provide clues about the pro-

tein’s ancestry. Envelope glycoprotein of ZikV was obtained from a pro-

tein database and the most immunogenic epitope for T cells and B cells

involved in cell-mediated immunity, whereas B cells are primarily respon-

sible for humoral immunity. We mainly focused on MHC class I potential

peptides. YRIMLSVHG, VLIFLSTAV and MMLELDPPF, GLDFSDLYY are

the most potent peptides predicted as epitopes for CD4+ and CD8+ T

cells, respectively, whereas MMLELDPPF and GLDFSDLYY had the

highest pMHC-I immunogenicity score and these are further tested for

interaction against the HLA molecules, using in silico docking techniques

to verify the binding cleft epitope. However, this is an introductory

approach to design an epitope-based peptide vaccine against ZikV; we

hope that this model will be helpful in designing and predicting novel

vaccine candidates.

Keywords: artificial neural network; epitopes; Immune Epitope Database;

immunogenomics; MHC class; Zika virus.

Introduction

Zika virus (ZikV) has emerged as a mosquito-borne virus

that was first identified in the Zika forest of Uganda in

1947 in rhesus monkeys through a monitoring network

of sylvatic yellow fever. It was subsequently identified in

humans in 1952 at the same place (Uganda) followed by

the United Republic of Tanzania. Outbreaks of ZikV dis-

ease have been recorded in Africa, the Americas, Asia and

the Pacific1. In 2007, the first documented epidemicity of

ZikV occurred in the Federated States of Micronesia

where 185 suspected cases were reported, of which 49

were confirmed and 59 were considered probable.2 The

world is now mobilizing to tackle the latest threat to

global health security – ZikV, which is now spreading

speedily in other parts of the world (Fig. 1) as mentioned

in a CDC report of 9 March 2016 (http://www.cdc.gov/

zika/about/overview.html). ZikV belongs to the Flaviviri-

dae and the genus Flavivirus, and is therefore a relative of

Dengue, Japanese encephalitis, West Nile and yellow fever

viruses. Like other flaviviruses, ZikV is enveloped and

icosahedral with a non-segmented, single-stranded, posi-

tive-sense RNA genome 10 794 kb in length with two

flanking non-coding regions (50 and 30 NCR) and a single

long open reading frame encoding a polyprotein: 50-C-
prM-E-NS1-NS2A-NS2BNS3-NS4A-NS4B-NS5-30, that is

cleaved into capsids (C), precursor of membrane (prM),

envelope (E) and seven non-structural (NS) proteins.3,4 It

ª 2016 John Wiley & Sons Ltd, Immunology, 149, 386–399386

IMMUNOLOGY OR IG INAL ART ICLE

http://www.cdc.gov/zika/about/overview.html
http://www.cdc.gov/zika/about/overview.html


is most closely related to the Spondweni virus and is one

of the two viruses in the Spondweni virus clade.3,5 People

with ZikV infection usually have symptoms that can

include mild fever, skin rashes, conjunctivitis, muscle and

joint pain, malaise or headache. These symptoms are nor-

mally mild and last for 2–7 days. The incubation period

of ZikV is not clear, but is likely to be a few days (WHO

February 2016). Currently, there is no treatment/medicine

or vaccine to cure ZikV infection and there are no good

diagnostic tests, so the development of new therapeutic

agents, vaccines or anti-viral drugs against ZikV is very

important. This development has not yet been reported,

but a group of scientists from Bharat Biotech Interna-

tional Limited at Hyderabad in India have applied to

patent a ZikV vaccine that is not yet approved by WHO.

Integration of computational techniques provides a novel

approach for integrating immunogenetics and immunoge-

nomics with bioinformatics for the development of vac-

cines. This is known as vaccinomics.6 These approaches

had previously been used to address the development of

new vaccines against diseases such as multiple sclerosis,7

Dengue,8 malaria,9 influenza10 and tumours.11 However,

these methods of vaccine development usually work

through the identification of HLA ligands and T-cell epi-

topes,12 which specify the selection of the potent vaccine

candidates associated with the Transporter of Antigen

Presentation (TAP) molecules.13,14

The purpose of our present study is to promote the

designing of a vaccine against ZikV using in silico meth-

ods, taking envelope glycoprotein of ZikV into considera-

tion. The reason for choosing envelope glycoprotein is

because of its function. These proteins are important for

viral attachment to the host cell surface, and are also

responsible for facilitating an immune response in the

host cell. Therefore, we designed an epitope-based peptide

vaccine against ZikV using the vaccinomics approach,

with an expectation that wet laboratory research will vali-

date our prediction.

Materials and methods

The flow chart (see Supplementary material, Fig. S1)

summarizes the steps followed to predict the most proba-

ble epitopes in the envelope glycoprotein of ZikV.
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Figure 1. Depicts the most infected countries and territories with active transmission of the Zika virus (CDC_report).
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Sequence retrieval

The ZikV envelope glycoprotein is important for viral

attachment and facilitating the immune response on the

host cell surface. Determination of protein/peptide

sequences is a basic requirement for biomedical research,

so ZikV envelope glycoprotein sequences were obtained

from UniProt (www.uniprot.org/) in FASTA format.15

Sequence analysis

Sequence analysis is the process of subjecting a DNA,

RNA or peptide sequence to any of a wide range of ana-

lytical methods to understand its features, function, struc-

ture or evolution. The BLASTp16 program screens

homologous sequences from its database and selects those

sequences that are more similar to our ZikV envelope gly-

coprotein; we also performed multiple sequence align-

ment, analysing the evolutionary divergence in the

envelope glycoprotein of ZikV from other close species

using MUSCLE (http://www.ebi.ac.uk/Tools/msa/muscle/),

a multiple sequence alignment tool.17

Protein antigenicity prediction

To determine the most potent antigenic protein of the

ZikV envelope glycoproteins, we used an online server

VAXIJEN_v2.0,18 with a default threshold value. All the anti-

genic proteins of ZikV with their respective scores were

obtained then sorted in EXCEL. A single antigenic protein

with maximum antigenicity scores was selected for further

evaluation.

Protein secondary and tertiary structure prediction and
validation

We predicted the secondary structure of the envelope gly-

coprotein of ZikV using an online server CFSSP (Chou &

Fasman Secondary Structure Prediction)19,20 because the

antigenic part of the protein is more likely to belong to

the b-sheet region.21 To confirm the predicted three-

dimensional (3D) structures of the selected peptides the

PEP-FOLD Peptide Structure Prediction server22 was used

but they were not all accessible for interaction. So, we

predicted the 3D structure of our protein using I-Tasser

(Iterative Threading ASSEmbly Refinement).23 I-Tasser

introduced an ab initio modelling method using at least

10 templates to build a 3D structure of our protein. This

structure was validated on the basis of basic parameters

such as z-score, which should lie between 1 and 5, C-

score is the confidence score and should be high, root-

mean-square deviation (RMSD) is always considered

≤ 4 �A as appropriate, and in the Ramachandran plot

maximum residues should be in the allowed region

except for some like glycine (85–98% residues can be

considered).24 Each generated 3D structure is then vali-

dated by PROCHECK servers (http://services.mbi.ucla.edu/

SAVES/), which check the stereo-chemical properties of a

protein 3D structure, resulting in a number of Post-Script

plots giving a detailed analysis of its respective 3D struc-

ture overall and of its residue-by-residue geometry. After

analysing these plots we can infer the availability of the

best structure generated by these tool(s). Once we have

built the model, minimization of the energy level of this

model is done using the SWISS_PDB VIEWER tool.25 Pymol

graphics26 was used to superimpose the predicted struc-

ture of peptides with the 3D structure of the ZikV envel-

ope glycoprotein to check whether the peptide was within

the accessible range for interaction with HLA molecules.

T-cell epitope identification

CD8+ T-cell epitope identification. For the identification

of the T-cell epitope, we used the NETCTL_1.2 online tool27

for epitope identification using a 0�95 threshold to main-

tain sensitivity and specificity of 0�90 and 0�95, respec-

tively. The tool expands the prediction for 12 MHC-I

supertypes and integrates the prediction of peptide MHC-I

binding, proteasomal C-terminal cleavage with TAP trans-

port efficiency. These predictions were performed by an

artificial neural network, weighted TAP transport efficiency

matrix and a combined algorithm for MHC-I binding and

proteasomal cleavage efficiency was then used to determine

the overall scores and translated into sensitivity/specificity.

On the basis of this overall score, seven8 best peptides

(epitopes) were selected for further evaluation.

For the prediction of peptides binding to MHC-I, we

used a tool from the Immune Epitope Database (IEDB)

and calculate IC50 values for peptides binding to specific

MHC-I molecules.28 For the binding analysis, all the alleles

were selected with word length of nine residues and bind-

ing affinity < 200 nm for further analysis. Another tool

(named as MHC-NP) provided by the IEDB server was

used to assess the probability that a given peptide was natu-

rally processed and bound to a given MHC molecule.29

Validation of approach. We repeated the analysis for vali-

dating the strategy (see Supplementary material, Fig. S2)

on the well known haemagglutinin protein of a common

influenza strain for the identification of CD8+ T-cell epi-

topes. This analysis supported our approach of prediction

and gave us reliability for considering the predicted pep-

tides as potential candidate epitopes (see Supplementary

material, Table S1). We independently searched each pre-

dicted epitope in the IEDB and found that many of them

were the exact match whereas others had some variation

in the position (start position and end position).

Epitope conservancy and immunogenicity prediction. Epi-

tope conservancy tries to elucidate the degree of similarity
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between the epitope and the target (i.e. given) sequence.

This property of epitope gives us the promise of its avail-

ability in a range of different strains. Hence for the analysis

of the epitope conservancy, the web-based tool from

IEDB30 analysis resources was used. Immunogenicity pre-

diction can uncover the degree of influence (or efficiency)

of the respective epitope to produce an immunogenic

response. The T-cell class I pMHC immunogenicity predic-

tor at IEDB, which uses amino acid properties as well as

their position within the peptide to predict the immuno-

genicity of a class I peptide MHC (pMHC) complex.31

Allergenicity assessment. The prediction of allergenicity

for our epitope is important for vaccine development.

Allergenicity assessment aims to predict allergens and non-

allergens with high sensitivity and specificity, without com-

promising efficiency in classification of proteins with simi-

lar sequences to known allergens.32 We used the online

tool AllerHunter server.33 This server predicts allergenicity

through a combinational prediction, by using both incor-

poration of the Food and Agriculture Organization/WHO

allergenicity evaluation system and Support Vector Machi-

nes pairwise sequence similarity. AllerHunter predicts

allergens as well as non-allergens with high specificity.

CD4+ T-cell epitope identification. CD4+ T-cell epitopes

have an important task in eliciting strong protective

immune responses during peptide (epitope)-based vacci-

nation. They also play a key role in humoral immunity

by providing help to B cells, enabling effective antibody

class switching and affinity maturation.34 The prediction

of these epitopes focuses on the peptide-binding process

by MHC class II proteins.35 We predicted that all 129

possible epitopes with an IC50 value < 100 were consid-

ered as potential T-cell epitopes. We used an online tool

PREDIVAC (http://predivac.biosci.uq.edu.au) to predict these

possible epitopes.

HLA and epitope interaction analysis using molecular
docking studies

Epitope model generation. From the computationally pre-

dicted epitopes from the group of 110 different epitopes

from the ZikV envelope glycoprotein sequence according

to all MHC (A1-B62) supertypes, only seven epochal pep-

tide (epitopes) co-ordinates were extracted from a mod-

elled 3D structure of ZikV envelope glycoprotein and

their energy levels were minimized using a SWISS PDB

VIEWER
25 then labelled using PYMOL. Those epitopes show-

ing the higher probable score for further docking analysis

were selected.

Retrieval of HLA allele molecules. Probable 3D structure

of HLA alleles was retrieved from the Protein DataBank

(PDB).36

Molecular docking and analysis. The predicted peptides

(i.e. candidate epitopes) were found to bind in the groove

of their respective HLA alleles. The docking study was

performed using AUTODOCK 4.0,37 using an implementa-

tion of the Lamarckian genetic algorithm (GA), to model

the peptide binding to HLA molecules.38 The output

from 10 independent GA runs for each peptide was pro-

cessed and that with the lowest binding affinity was con-

sidered, taking into consideration weighted terms for van

der Waal’s dispersion/repulsion, hydrogen bonding, elec-

trostatics and dissolution interactions. The interactions

were visualized with PYMOL version 1.7.4.4, a molecular

graphics system (Schr€odinger, LLC, Portland, OR).

Molecular docking studies were required to show whether

the target was binding to the specific region. In our case

it validated results obtained from the epitope prediction

workflow, i.e. its availability for binding (or its presence

on the surface), and the predicted epitope was valid in

inducing immune response.

B-cell epitope identification

B lymphocytes are the cells that are differentiated into

antibody-secreting plasma cells and memory cells. The

prediction of B-cell epitopes was performed to find the

potential antigen that provides an assurance of humoral

immunity. IEDB were used to identify the B-cell anti-

genicity including the classical propensity scale methods

such as the Kolaskar and Tongaonkar antigenicity

scales,39 Parker hydrophilicity prediction,40 Emini surface

accessibility prediction,41 Karplus and Schulz flexibility

prediction42 and the Chou and Fasman b-turn prediction

tool43 as the antigenic parts of a protein belong to the b-
turn regions.44 Parker hydrophilicity prediction was

applied to all the hydrophilicity parameters extensively

used in all of the algorithms to predict which amino acid

residues were antigenic.40 The Bepipred linear epitope

prediction45 tool uses a combinatorial algorithm compris-

ing both hidden Markov model and propensity scale

methods for antigenic propensity and so performs signifi-

cantly better than any of the other methods.46

Results

Sequence retrieval and analysis

We retrieved the envelope glycoprotein of ZikV from the

UniProt (ID:-A0A060H177) database, as the glycoprotein

was considered, and also predicted, to be the most

immunogenic protein.47 Then we performed BLASTp for

the envelope glycoprotein of ZikV, we found that 11

other viruses (Ilheus_virus, Rocio_virus, Alfuy_virus,

Naranjal_virus, Aroa_virus, Bainyik_virus, Saint_Louis_en-

cephalitis_virus, Japanese_encephalitis_virus, Murray_en-

cephalitis_virus, West Nile viruses and Spondweni_virus)
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have similar homologues with > 55% identical sequences.

Multiple sequence alignment was performed to identify

regions of similarity that may be a consequence of func-

tional, structural, or evolutionary relationships among

their sequences. We divided all viruses into two groups

for good alignment results. In the first group, we noted

that the residues C3, G5, R9, D10, F11, E13, G14, S16, G17,

T19, W20, D22, V24, L25, E26, C30, T32, M34, D37, K38, P39,
T40, D42, Y61, C75, P76, T77, G79, E80, K85, D87, C92, D98,

R99, G100, W101, G102, N103, G104, C105, G106, L107, F108,

G109, K110, G111, S123, T115, C116, A117, K118, R119,C212,

G127, I130, E133, Y137, V143, H144, P175, G182, G185, C191,

E192, R194, G196, Y203, T206, K210, L213, V214, H215, W218,

F219, D221, L224, P225, W226, W237, E241, L243, E245, F246,

H250, A251, Q254, L259, G260, S261, Q262, E263, G264, H267,

A269, L270, A271, G272, A273, S287, G288, H287, L290, K291,

C292, R293, K295, K298, K302, G303, Y306, C309, F313, F315,

P319, T322, H324, G325, T326, E330, Y333, G334, G337, P338,

C339, P342, G357, R358, T361, N363, P364, N372, K374, E378,

P381, P382, F383, G384, D385, S386, Y387, I388, G391, G393, E397,

H399, H400, H401, W402, H403 were totally conserved and

residues 1, 4, 12, 21, 23, 31, 33, 35, 37, 41, 45, 51, 52, 53,

65, 68, 69, 70, 72, 80, 81, 86, 90, 91, 113, 120, 134, 135,

136, 139, 141, 155, 159, 164, 169, 171, 172, 175, 184, 189,

190, 195, 197, 198, 205, 207, 212, 215, 217, 222, 228, 232,

244, 244, 248,255, 257, 267, 274, 285, 296, 297, 299, 301,

Zika_virus]
Spondweni_virus]
St_L_Enc_Virus]
gWest_Nile_Virus]
Japanese_en_virus]
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Figure 2. Multiple sequence alignment, showing the fully conserved region highlighted in yellow blocks; identical and similar regions are indi-

cated by ‘*’ and ‘:’, respectively, including all species. Moreover, the rectangles designate the predicted T-cell epitope regions in two colours: red

(CD8+) and green (CD4+).
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305, 320, 321, 329, 331, 334, 337, 342, 353,354, 360,368,

366, 367, 375, 377, 380, 390, 391,398, 401, and 406 were

strongly similar in ZikV, Spondweni_virus, St_L_Enc_-

Virus, West_Nile_viruses, Japanese_encephalitis_virus and

Murray_encephalitis_virus. In a second group, residues

C121, I130, E133, N134, Y137, K167, P174, G181, G184, C190,

E191, P192, R193, L196, D197, Y202,V213, W217, D220 L223, P224,

W236, N238 E244, F245, H249,A250, Q253, V255, L258, Q261,

E262, G263, A269, L270, G272, A273, G290, H291, L292, K293,

C294, R295, K300, K304, G305 were totally conserved and

residues 124, 135, 139, 143, 154, 156, 169, 170, 180, 184,

189, 190, 195, 205, 206, 209, 211, 212, 217, 218, 220, 224,

242, 243, 247, 256, 264, 265, 266, 273, 287, 289, 296, 298,

299, 301 and 303 were strongly similar in ZikV,

Naranjal_virus, Aroa_virus, Bainyik_virus, Alfuy_virus,

Ilheus_virus and Rocio_virus. On analysing multiple

sequence alignment carefully with respect to epitopic

conservancy and comparing it with the epitope predic-

tion, we found 15 highly conserved information blocks

(shown as yellow rectangles) that inhabit almost all epi-

topes (see Fig. 2).

Antigenic prediction

We predicted the most potent antigenic protein of ZikV

envelope glycoprotein using an online server VAXIJEN_v2.0,

which is based on auto-cross covariance transformation of

protein sequences into uniform vectors of principal amino

acid properties.18 The overall antigenic prediction score

was 0�6178 (probable antigen) at 0�4 threshold value.

Protein structure prediction and validation

The secondary structure of protein from its amino acid

sequence describes the a-helix, b-sheets and random

coil. Our ZikV envelope glycoprotein is 504 residues

long, of which 180 residues(35�7%) form sheet, 61 resi-

dues form turn and 305 residues (60�5%) form helix

regions of the protein (Fig. 3). In the secondary

structure, 35�7% region of the target protein remains as

b-sheet. In several experiments, it was shown that the

antigenic part of the protein was more likely to belong

to the b-sheet region.21 For the docking analysis, the 3D

structures of the selected peptides were designed (see

Fig. 4) using the PEP-FOLD Peptide Structure Prediction

server that searches for known 3D protein structures

from PDB that are homologous to the epitope source

sequence. Keeping this in mind we carried out homol-

ogy modelling of full ZikV glycoprotein instead of pep-

tide. The 3D structure built by the I-TASSER used the top

three templates 3J65A, 3J27A and 4CCTA of 10 PDB

templates. The average confidence score of the predicted

model was 1�50; the z-scores were 2�96, 4�11 and 3�55
for the top three templates, respectively; and the average

RMSD of our predicted structure was 0�481 from the

top three templates. The Ramachandran plot for our

model showing residues in the allowed region was

> 85% (Fig. 5). Verified 3D48 predicted that 87�50% of

the residues had an average 3D score of 0�2 for the best

predicted model and at least 80% of the amino acids

should have scored ≥ 0�2 in the 3D/1D profile. We

superimposed predicted peptides with the our modelled

3D structure and found that mostly epitopes were in the

accessible area of proteins, which means that interactions

occur easily.

T-cell epitope identification

CD8+ T-cell epitope identification

The NetCTL server predicted 110 different epitopes in

ZikV envelope glycoprotein but only seven most potential

peptides were selected, based on their high combinatorial

score, for further analysis. Using the MHC-I binding pre-

diction tool, which is based on SMM, we chose those

MHC-I alleles for which the epitopes showed higher affin-

ity (IC50 < 200 nm). For cleaving of the peptide bonds, so

converting the protein into peptide, proteasomes played a

key role. The peptide molecule allied with class I MHC

molecules and the peptide–MHC molecule after proteaso-

mal cleavage were transported to the cell membrane where

they were presented to T helper cells. The total score of

each epitope–HLA interaction was considered and a higher

score meant higher processing efficiency. The two peptides

E1 and E2 (MMLELDPPF and GLDFSDLYY) among

seven were found to interact with most of the MHC-I alle-

les, including HLA-A*32:01, HLA-B*53:01, HLA-A*02:06,
HLA-B*35:01, HLA-A*02:01, HLA-A*29:02, HLA-

A*23:01, HLA-C*05:01, HLA-C*14:02, HLA-B*15:01,
HLA-C*53:01, HLA-A*01:00, HLA-C*12:03 and HLA-

0 100 200 300 400 500 504

Coil

Turn

Sheet

Helix

Figure 3. Represents the composition of secondary structure from amino acid residues of Zika virus envelope glycoprotein. Only 35�7% residues

form sheet, 60�5% form helices and 3�8% residues form the turn region.
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(a) (b) (c)

Figure 5. (a) Modelled three-dimenasional structure of Zika virus envelope glycoprotein; (b) Top three templates superimposed with our mod-

elled protein with an average of RMSD = 0�481; (c) Ramachandran plot of our modelled protein showing the residues in allowed the region.

(a) (b) (c)

(d)

(g)

(e) (f)

Figure 4. Modelled peptide structure of seven CD8+ T-cell epitopes represented by sequence as (a) CTAAFTFTK, (b) MMLELDPPF,

(c) RLKGVSYSL, (d) HQIFGAAFK, (e) GLDFSDLY, (f) SYSLCTAAF, (g) IRCIGVSNR, respectively.
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C*03:03. The MHC-NP prediction tool29 was used to find

the highest probable score of our predicted pep-

tides – both E1 and E2 had highest probable scores of

0�7516 and 0�6756, respectively, for HLA-B*53:01. All the
predicted peptides had maximum identity for conservancy

hit and 100% maximum identity was found, except for one

epitope which had identity of 44�44%. I-pMHC immuno-

genicity prediction49 analysis of epitopes E1 and E2 had the

highest I-pMHC immunogenicity scores of 0�7356 and

0�96115, respectively (Table 1).

Table 1. The seven potential CD8+ T-cell epitopes along with their interacting MHC class I alleles and total processing score, epitopes conser-

vancy_hits and pMHC-I immunogenicity score

Epitopes Position

NetCTL

Combined score

Epitope_Conservancy_Hit

(MAX. Identity %)

MCH-I interaction with

an affinity of IC50 < 200

and the total score (proteasome

score, TAP score, MHC-I score,

processing score)

pMHC-I

immunogenicity

score

CTAAFTFTK 308–316 0�8605; B62
0�9834; A3

100 HLA-A*68:01; 7�79 (0�2) 0�08405
HLA-A*11:01; 10.00(0�2)
HLA-C*12:03; 43�15 (�6�7)
HLA-C*03:03; 67�08 (0�42)
HLA-A*03:01; 68�99 (0�4)
HLA-A*31:01; 196�55 (2�4)

MMLELDPPF 374–382 0�9556; A2
0�9841; A24

100 HLA-B*35:01; 12�11 (0�3) 0�7356
HLA-C*14:02; 18�31 (2�8)
HLA-A*32:01; 19�54 (0�3)
HLA-B*15:01; 29�58 (0�2)
HLA-A*02:01; 112�49 (1�8)
HLA-B*53:01; 96�43 (0�4)
HLA-A*29:02; 126�49 (0�8)
HLA-C*03:03; 67�08 (0�42)
HLA-A*23:01; 164�22 (0�6)
HLA-B*15:02; 7�76 (1�17)
HLA-A*02:06; 24�19 (0�3)

RLKGVSYSL 299–307 1�1578; A2
1�5559; B8

44�44 HLA-C*12:03; 21�15 (27) 0�07322
HLA-A*32:01; 36�55 (0�3)
HLA-C*03:03; 111�84 (56)

HLA-A*30:01; 156�66 (2�4)
HLA-B*08:01; 166�17 (0�6)

HQIFGAAFK 446–456 1�2774; A3
0�9725; B62

100 HLA-C*03:03; 29�55 (21) 0�5754
HLA-C*12:03; 29�87 (43)

HLA-A*30:01; 97�27 (1�6)
HLA-A*68:01; 138�19 (2�1)
HLA-A*11:01; 180�43 (1�4)

GLDFSDLYY 195–203 3�844; A1
0�9025; A3

100 HLA-A*29:02; 35�54 (0�3) 0�96115
HLA-C*14:02; 57�76 (11)

HLA-A*01:01; 110�8 (0�2)
HLA-C*05:01; 4�25 (0�5
HLA-C*12:03; 10�67 (12)

HLA-B*53:01; 43�76 (0�51)
SYSLCTAAF 304–312 1�4265; A24

0�8502; B62
100 HLA-C*14:02; 7�76 (1�2) 0�08405

HLA-C*03:03; 59�1 (39)

HLA-A*24:02; 85�83 (0�3)
HLA-C*07:02; 92�29 (3�4)
HLA-C*12:03; 93�16 (96)

HLA-A*23:01; 104�58 (0�4)
IRCIGVSNR 1–9 1�7210; A1

0�657; B27
100 HLA-C*12:03; 38�92 (61) 0�5675

HLA-C*07:02; 124�5 (5�2)
HLA-C*14:02; 128�71 (29)

HLA-C*07:01; 199�6 (9�4)
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Allergenicity assessment

The allergenicity prediction was precisely calculated using

the AllerHunter tool and predicted the query sequence as

non-allergen with a score of 0�01 with 91�67% sensitivity

and 89�3% specificity.

CD4+ T-cell epitope identification

For the identification of MHC class II potential peptide

epitopes, we used the MHC class II binding prediction

tool PREDIVAC, which predicted 129 epitopes for HLA-

DRB_1 with IC50 < 100. After analysis of all the possible

epitopes, we found that of 129 epitopes only

two – YRIMLSVHG and VLIFLSTAV – interacted with

mostly HLA_DRB_1 and could act as potential CD4+ T-

cell epitopes (Table 2).

Molecular docking studies for HLA and epitopes
interaction analysis

To ensure the interaction between HLA molecules and

our predicted potential epitopes, we performed molecular

docking using AUTODOCK 4.0. Among all the MHC class 1

alelles, only HLA-A*53:01 had a maximum probable

score for our most potent epitopes E1 and E2. The crystal

structure of HLA-A*53:01 molecules retrieved by PDB.

As a result we found that both the epitopes E1 and E2

interacted with HLA-A*53:01 with strong binding affini-

ties of �8�34 kcal/mol and �8�1 kcal/mol, respectively

(Fig. 6 and 7). The epitope E1 is bound in the groove of

the HLA-B*53:01 molecules with residues ASN-63, GLN-

70, ASN-80, TYR-84 and THR-143 forming regular

hydrogen bonds whereas residues TYR-7, TYR-9, ILE-66,

THR-73, SER-77, TYR-99 and GLU-163 form bonds as a

result of sharing electrons (which may happen as a result

of charge distribution) between oxygen atoms with

covalent characters. E2 interact with the residues GLN-70,

SER-77 and ASN-80 forming regular hydrogen bonds

while residues ILE-66, THR-73, ASP-74, TYR-84, SER-

143, TYR-116, ASN-114 and GLU-163 form bonds as a

result of sharing electrons (which may happen due to

charge distribution) between oxygen atoms with covalent

characters.

B-cell epitope prediction

We predict B-cell epitope identification, here using an

amino acid scale-based method. We used different analy-

sis methods for the prediction of a continuous B-cell epi-

tope.

The Emini surface accessibility prediction method anal-

ysed the surface accessibility. The average surface accessi-

bility was 1�0106 and minimum 0�074, and region 159–
164 was found to have the maximum surface accessibility

with a score of 6�347.
For antigenicity prediction we used the the Kolaskar

and Tongaonkar antigenicity prediction method, which

evaluated the analysed antigenicity on the basis of the

physicochemical properties of amino acids and their

abundances in experimentally known epitopes. The aver-

age antigenic propensity of our ZikV envelope glycopro-

tein was 1�034 with a maximum of 1�05 and minimum

0�966. The set threshold value for determination of anti-

genicity was 1. Region 163–172 residues were found to

have more propensity for antigenicity.

The Chaus and Fasman b-turn prediction method pre-

dicts the b-turn. The b-turns are frequently accessible

and significantly hydrophilic in nature. The properties

possessed by the b-turns are also applicable to the anti-

genic regions of the protein.50 The region 151–161 resi-

dues were considered as a b-turn region. It has been

proved experimentally that the flexibility of the peptide is

correlated to antigenicity. The Karplus and Schulz flexi-

bility prediction method predicts an average flexibility of

0�9537 and minimum of 0�883 and the region 159–167
was found to be the most flexible with a maximum score

of 1�140. The Parker Hydrophilicity Prediction tool pre-

dicts the hydrophilicity of ZikV envelope glycoprotein

with an average score of 1�46, minimum 0�074 and the

region 154–160 was found to be 7�23 with maximum

hydrophilicity.

Finally, Bepipred linear epitope prediction was used,

which is based on a Hidden Markov model, the best sin-

gle method for predicting linear B-cell epitopes. We pre-

dicted that the peptide sequences from 157 to 166 amino

acids were capable of inducing the desired immune

response as B-cell epitopes. After the comparative and

cross reference analysis, we found that the region between

150 and 175 amino acid residues in the ZikV envelope

glycoprotein was capable of inducing the desired immune

response as B-cell epitopes.(Table 3) (Fig. 8).

Table 2. Presents two most potential CD4+ T-cell epitopes along

with their interacting MHC class II alleles with affinity IC50 < 100

and PREDIVAC scores

Position Epitopes

Interacting MHC class II allele

with an affinity of IC50 < 100

(IC50 values; PREDIVAC score)

314–322 FTKIPAETL HLA-DRB1*15:01; 14 (89�35),
HLA-DRB1*01:01; 16 (83�76)
HLA-DRB1*04:04; 37 (87�34),
HLA-DRB1*07:01; 80 (82�86)
HLA-DRB1*04:01; 81 (87�34)

137–145 YRIMLSVHG HLA-DRB1*01:01; 14 (94�08),
HLA-DRB1*15:01; 40 (81�01)
HLA-DRB1*04:01; 60 (87�88),
HLA-DRB1*04:04; 61 (91�01)
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Discussion

Vaccine development is a long, complex process, often

lasting 10–15 years and requiring a combination of public

and private involvement. With the advancement of

sequence-based technology, we have gained information

about the proteomics and genomics of the different

viruses. Vaccine development for ZikV is based on

screening of multiple epitopes with the most antigenic

properties that direct the immune system to protect

human beings from ZikV infection The purpose of our

study was to screen new, high-potential immunogenic

epitopes for T cells because vaccines against T-cell epi-

topes are more promising as they evoke a long-lasting

immune response, and because with antigenic drift, an

antigen can easily escape the memory response of anti-

body.51 We have designed a peptide-based vaccine using

various bioinformatics tools and a vaccinomics approach.

This in silico approach has already been used to address

the development of new vaccines for combating diseases

like multiple sclerosis, Dengue, malaria, influenza and

tumours. In the present study we focused on MHC class

I potential peptide epitopes only, and we also identified

MHC class II and B-cell epitopes in ZikV envelope glyco-

protein. There are many criteria that need to be fulfilled

by a vaccine candidate epitope, and the predicted seven

most potent peptides fulfilled all the criteria. The initial

criterion is the conservancy of the epitopes, which was

measured by the IEDB conservancy analysis tool and we

found 100% maximum identity of all except one epitope,

which had only 44�44% identical. Of these seven peptides,

only MMLELDPPF and GLDFSDLYY were found to inter-

act with most of the MHC class I alleles, but HLA-B*53:0
had the highest probable score for both peptides

(Table 4).

However, in vaccine development, allergenicity is a

prominent hurdle. Today, most vaccines stimulate the

immune system into an ‘allergic’ reaction, through induc-

tion of type 2 T helper cells and immunoglobulin E.

Here, our proposed peptide has allergenicity scores of

Figure 6. Represents the epitope MMLELDPPF, which binds in the groove of the HLA-B*53:01 molecules. Residues ASN-63, GLN-70, ASN-80,

TYR-84 and THR-143 form regular hydrogen bonds while residues TYR-7, TYR-9, ILE-66, THR-73, SER-77, TYR-99 and GLU-163 form bonds

as a result of electron sharing (which may happen due to charge distribution) between oxygen atoms with covalent characters.
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0�01 for both, and so it was considered as a non-allergen.

Molecular docking studies are required to confirm that

the target is binding to the specific region. In our case it

validated our results obtained from the epitope prediction

workflow, i.e. its availability for binding (meaning its

presence on the surface), to show if the predicted epitope

is valid in inducing an immune response. We have found

promising binding of ≤ �8�0 kcal/mol affinity of binding

with HLA antigen, which verifies the binding cleft epitope

interaction with the HLA molecule when it is applied

in vivo. T-cells work to transfer information from the

inflammation site by recognizing pathogens using signa-

tures (often called epitope), so providing cell-mediated

innate immunity. So, the identification of CD4+ T-cell

epitopes is important and we found 129 epitopes for

HLA-DRB_1 with an IC50 < 100. After filtration criterion

is applied, only two epitopes (YRIMLSVHG and VLIFL-

STAV) were found to interact with most of the

HLA_DRB_1 molecules and could be considered as

potential CD4+ T-cell epitopes. The identified B-cell epi-

topes in the ZikV envelope glycoprotein were from region

150–170 amino acid residues. This region is identified as

Figure 7. Epitope MMLELDPPF binding in the groove of the HLA-B*53:01 molecules. Residues GLN-70, SER-77 and ASN-80 form regular

hydrogen bonds while residues ILE-66, THR-73, ASP-74, TYR-84, SER-143, TYR- 116, ASN-114 and GLU-163 form bonds as a result of sharing

electrons (may happen due to charge distribution) between oxygen atoms with covalent characters.

Table 3. Combined B-cell linear epitope prediction showed the region from 150 to 170 amino acid residues have the highest antigenic propensity

for B-cell linear epitopes in Zika virus envelope glycoprotein

Method Region Residues

Score

Max. Avg. Min.

Chou & Fasman Beta-Turn Prediction 152–161 IVNDTGHETD 1�205 1�098 1�0055
Emini Surface Accessibility Prediction 159–164 ETDENR 6�347 1�015 0�074
Karplus & Schulz Flexibility Prediction 159–167 ETDENRAK 1�104 0�955 0�875
Kolaskar & Tongaonkar Antigenicity 163–170 NRAKVEI 1�054 1�003 0�966
Parker Hydrophilicity Prediction 154–160 NDTGHET 7�234 1�464 -6�100
Bepipred Linear Epitope Prediction 157–166 GHETDENRAK 1�884 0�027 -2�366
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being most capable of inducing the desired immune

response as B-cell epitopes and also important for devel-

oping peptide vaccine. This region has the capability to

induce the desired immune response and so can be used

by immunologists as a B-cell epitope.

At present, vaccines are mostly based on B-cell immu-

nity. But recently, vaccine based on the T-cell epitope has

been encouraged because the host can generate a strong

immune response by CD8+ T cells against the infected

cell. Further, our results (similarity analysis and epitope

prediction) showed that the epitopes we predicted were

found conserved in all the selected viruses during the

course of evolution (presented in multiple sequence align-

ment) and noticed a high degree of similarity with their

results.52 This implies that the predicted candidate epi-

topes (peptide) will be considered as a broad-spectrum

potential vaccine if developed.

This type of in silico study has recently received experi-

mental validation,53 they identified a multi-epitope cluster

secretory protein of Mycobacterium tuberculosis (Ag85B)

that bound to 15 HLA class I and three class II molecules

and later their prediction was experimentally validated

in vitro. Comparing this with our study, we found that we

have followed the same in silico approach but in some cases

were more specific in the selection of MHC class I and class

II molecules. Khan et al. had chosen MHC-I and MHC-II

alleles for which the epitopes showed higher affinity

(IC50 < 500 nm) but in our case we selected those peptides

that showed higher affinity (IC50 < 200 nm and

IC50 < 100 nm) for MHC-I and MHC-II alleles, respec-

tively, because the immunogenic property of each predicted

T-cell epitope was characterized by its IC50 value, which

indicates the peptide’s binding affinity to HLA molecules

and the number of corresponding restricting HLA alleles.

Peptides with lower IC50 values showed good inhibition.54

We also predicted immunogenicity and allergenicity assess-

ment of the peptides. All predictions were that high speci-

ficity would be maintained, which we can define by a

stringent threshold value. Additionally, we identified that

B-cell epitopes can potentially guide experimental epitope

mapping and may also be valuable for the interpretation of

results from experiments based on antibody affinity bind-

ing such as ELISA, radioimmunoassay and Western blot-

ting. We have suggested that the proposed epitopes would

be able to trigger an efficacious immune response as a pep-

tide vaccine in vivo.

Conclusion

Immunoinformatics has emerged as a promising field for

predicting epitope agents. Viruses (such as ZikV, human

immunodeficiency virus and Ebola virus) elicit both the

Table 4. Results obtained after docking of epitopes (MMLELDPPF and GLDFSDLYY) with HLA-B*53:01 molecules

Potential

epitopes ΔGb H-bonds Other Forces involved Contact residues

MMLELDPPF

(E1)

�8�34 kcal/mole 5 Hydrogen bonds,

Hydrophobic and

p-p interactions

TYR-7, TYR-9, ASN-63,

ILE-66, GLN-70, THR-73,

SER-77, ASN-80, TYR-84,

TYR-99, THR-143, GLU-163

GLDFSDLYY

(E2)

�8�1 kcal/mole 3 ILE-66, GLN-70, THR-73,

ASP-74, SER-77, ASN-80,

TYR-84, SER-143, TYR-116,

ASN-114

Chou & Fasman beta-turn prediction
Emini surface accessibility prediction
Karplus & Schulz flexibility prediction
Kolaskar & Tongaonkar antigenicity
Parker hydrophilicity prediction
Bepipred linear epitope prediction

1·104

1·884

6·347

1·205

1·0547·234

150 170

Figure 8. Combined B-cell linear epitope prediction showed the region from 150 to 170 amino acid residues had the highest antigenic propensity

for B-cell linear epitopes. Surrounded by six differently coloured lines, which cover the region 150–170 amino acid residues in Zika virus envel-

ope glycoprotein, each line indicating different analysis methods with the maximum scores.
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humoral and T-cell immunity. Hence, our analysis infers

the epitopes (we found say E1, E2) that help to promote

immunity against ZikV. This is done in a sense that as

soon as the virus tries to attach to the host cell, the pep-

tide (as vaccine) will recognize it and present this infor-

mation to a broad spectrum of protector cells (T and B

cells). As our epitopes elicit the sense of interaction to

both CD8 and CD4 they can mimic antigen presentation

and so help antibody formation inside the host. In this

way these computational approaches save both the expen-

diture and the time needed to screen a large number of

possible epitopes compared with experimental techniques

and also guide the experimental work with high confi-

dence of finding the desired results.
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Figure S1. Flow chart showing the complete Epitope

prediction protocol.

Figure S2. Flow chart showing repeated analysis for

validation.

Table S1. Predicted immunogenic sequences of hemag-

glutinin protein of a common influenza strain.
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