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Spontaneous emergence of fast attractor dynamics
in a model of developing primary visual cortex
Thomas Miconi1, Jeffrey L. McKinstry1,w & Gerald M. Edelman1

Recent evidence suggests that neurons in primary sensory cortex arrange into competitive

groups, representing stimuli by their joint activity rather than as independent feature

analysers. A possible explanation for these results is that sensory cortex implements attractor

dynamics, although this proposal remains controversial. Here we report that fast attractor

dynamics emerge naturally in a computational model of a patch of primary visual cortex

endowed with realistic plasticity (at both feedforward and lateral synapses) and mutual

inhibition. When exposed to natural images (but not random pixels), the model

spontaneously arranges into competitive groups of reciprocally connected, similarly tuned

neurons, while developing realistic, orientation-selective receptive fields. Importantly, the

same groups are observed in both stimulus-evoked and spontaneous (stimulus-absent)

activity. The resulting network is inhibition-stabilized and exhibits fast, non-persistent

attractor dynamics. Our results suggest that realistic plasticity, mutual inhibition and

natural stimuli are jointly necessary and sufficient to generate attractor dynamics in primary

sensory cortex.
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S
ensory neurons are often studied for their properties as
individual feature analysers1–4. However, recent evidence
suggests that sensory neurons form coherent groups,

which represent stimuli by their collective activity besides their
individual responses. Bathellier et al.5 showed that local cortical
microcircuits in mouse primary auditory cortex (B70 cells) were
constrained into a small number of possible response patterns
(typically one or two, sometimes three), each associated with a
subset of stimuli. This small number of response patterns is
surprising, since with even a simple binary on-or-off readout, a
population of N cells could in principle produce 2N different
response patterns. Importantly, the patterns were competitive
and all-or-none: mixed stimuli evoked only one of the
possible response patterns, rather than blended responses, with
sharp transitions as the mixture of stimuli varied. These results
expand and strengthen previous findings by Luczak et al.6 that
the joint firing rates of local neurons only occupy a subspace of all
possible patterns, both in stimulus-evoked responses and in
spontaneous activity. Similarly, in mouse visual cortex, Miller
et al.7 showed that neurons tended to respond as ‘cortical
ensembles’ of jointly firing neurons, with a simultaneity that
could not be explained solely by the response properties of
individual neurons. Furthermore, the same ensembles observed
in evoked responses were also observed during spontaneous
activity, emphasizing their intrinsic nature; this confirms previous
findings that spontaneous, stimulus-absent cortical activity
resembles stimulus-evoked responses8–10.

There are several possible explanations for this group
behaviour among sensory cortical neurons. It might be inherited
from upstream sources (sensory or thalamic); or it might reflect
common distant inputs for each group of neurons. An alternative
possibility, however, is that the group behaviour among sensory
neurons actually emerges within cortex from attractor dynamics,
in which local connectivity automatically drives population
activity towards one of a few stereotypical patterns.

Attractor dynamics in recurrent neural networks have been
thoroughly studied in the context of auto-associative memory,
in which stimulus-selective assemblies show persistent activity after
stimulus offset11–15, possibly with slow switching dynamics
between the groups16,17. Such persistent-activity networks suggest
a natural formation mechanism, namely Hebbian plasticity forming
symmetric excitatory connections between similarly responding
cells. Symmetric connections ensure that network activity descends
the gradient of a well-defined potential (or Hamiltonian11), with
the minima of this potential acting as attractors. Interestingly,
recent studies of anatomical and functional connectivity in sensory
cortical microcircuits are highly consistent with such attractor
network configurations. Connections between nearby excitatory
cells tend to be bidirectional, sparse and cliquish18. Symmetric
connectivity also extends to inhibitory cells, whose connectivity
with nearby principal cells is largely all-to-all and nonspecific19,20.
Furthermore, lateral connections between nearby excitatory cells
preferentially link cells with similar tuning21,22 and the lateral,
intra-cortical input to principal cells has tuning similar to their
feedforward, geniculate input23–25, which is precisely the expected
pattern in an attractor network organized into a number of
reciprocally connected, jointly active neuronal groups.

However, the concept of attractor dynamics in primary sensory
cortex (as opposed to memory or cognitive areas) remains
controversial. First, requirements for primary sensory cortices are
very different from those for memory networks. The hallmark of
sensory cortex is precisely to show much reduced activity in the
absence of stimuli, in opposition to the persistent stimulus-absent
activity that characterizes memory networks. In particular,
Goldberg et al.26 point out that attractor-generating recurrent
excitatory connectivity would also cause a slowing of network

dynamics (that is, persistence), to an extent that is difficult to
reconcile with observations. By contrast, Murphy and Miller27

argue that, under strong inhibition by a separate population
of inhibitory neurons, appropriate network connectivity
can generate attractor dynamics with fast fluctuations,
transitions and decay, in accordance with observations;
however, their simulations use hand-tuned connectivity, leaving
open the question of how the required connectivity might arise.

Furthermore, primary sensory cortex neurons also possess
highly selective receptive fields, which dynamically adapt to visual
experience. For example, in rodent primary visual cortex, while
individual cells are already orientation-selective at eye opening21,
their receptive fields remain highly labile over development,
especially during the so-called critical period. A striking example is
binocular matching, whereby binocular neurons have initially
discordant orientation preferences for either eye, but gradually
reconcile their binocular orientation preferences over the critical
period28. In fact, visual selectivity (for example, ocular dominance)
retains plasticity throughout adulthood29,30. Therefore, any model
of emerging attractor connectivity in sensory cortex must
accommodate the joint emergence and maintenance of precise
receptive fields for individual cells. To our knowledge, there is
currently no model for the joint development of attractor network
connectivity and realistic feedforward receptive fields within a
given network.

Here we investigate this problem through computational
modelling of developing mouse primary visual cortex. Our main
result is that realistic synaptic plasticity, mutual inhibition and
exposure to natural stimuli are jointly necessary and sufficient to
produce the emergence of competitive neural groups with attractor
dynamics, as well as realistic feedforward receptive fields. We built
a model of a small patch of cortex, containing 100 principal
neurons (similar to the field typically captured by calcium imaging
experiments5,7), with indiscriminate, random connections to and
from a local pool of 20 inhibitory neurons, in which both lateral
and feedforward excitatory connections are subject to spike-
timing-dependent plasticity (Fig. 1). We exposed this model to
subregions of natural images pre-processed to emulate retinal
filtering. We found that this model spontaneously self-organizes
into an attractor network, such that network responses to stimuli
tend to fall within a small repertoire of possible multi-cell
patterns, reflecting the formation of neuronal groups.
Importantly, the learned receptive fields of single cells show the
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Figure 1 | Organization of the model. We model a small local field of

rodent V1 cortex, in which all cells have similar retinotopy. Input images

(17� 17 pixels in size) are first processed through an ON-centre and an

OFF-centre surround filter, generating a total of 17� 17� 2 inputs (each of

which emulates an ON-centre or OFF-centre retinal ganglion cell). Each

principal neuron (E) receives one excitatory connection from each retinal

input, as well as one excitatory connection from every other principal

neuron. In addition, principal neurons send excitatory connections to a

population of inhibitory interneurons (I). Inhibitory neurons send inhibitory

connections to principal neurons and to each other. Feedforward and E-E

connections are plastic; E-I, I-I and I-E connections are fixed. See Methods

for a full description of the model.
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expected ‘oriented-edge’ tuning, showing that group behaviour
does not sacrifice individual selectivity. Spontaneous
(stimulus-absent) activity exhibits the same firing patterns as
stimulus-evoked responses (though at a much lower rate), and
mixtures of stimuli tend to evoke ‘all-or-none’, discrete responses,
with sharp transitions, rather than mixed responses, demonstrating
the internally generated nature of these patterns. Furthermore,
network dynamics remained fast, showing little persistence
of activity after stimulus offset. Our model allows us to
make predictions about the results of network manipulations
which, if confirmed experimentally, might conclusively
demonstrate the presence of connectivity-driven attractor
dynamics in primary sensory cortex.

Results
Emergence of cell clusters. We exposed the network to 1,000,000
image stimuli, with each presentation taking 300 ms of simulated
time, separated by 50ms periods of null input. The high number
of stimuli was chosen to ensure stabilization (correlation between
lateral weight vectors at 500,000 and 1,000,000 presentations:
r¼ 0.98. Feedforward weight vectors: r¼ 0.98). We then froze the
connections of the network and recorded the model’s response to
1,000 further presentations of (different) image stimuli.

Figure 2 shows the total responses of all model cells to each
successive stimulus presentation, first in their original order

(Fig. 2a), then sorted by similarity through hierarchical clustering
(Fig. 2b). The correlation matrix in Fig. 2c displays the correlation
between the similarity-grouped response patterns in Fig. 2b.
The responses show strong clustering, such that the vast majority
of population response patterns fall into one of a few different
possible response patterns.

Meanwhile, the lateral connectivity is highly bidirectional: the
lateral connection matrix correlates highly with its own transpose,
excluding the zero diagonal weights (Pearson r¼ 0.79, Po1e� 4)
(Fig. 3b). The connectivity is also sparse, with 98% of the
total connection weight accounted for by the 10% strongest
connections (5% strongest connections: 60% of the sum of all
weights). Furthermore, the 5% pairs of cells with the most
correlated responses over time represented 50% of the total
synaptic connection weight. This is comparable with recently
reported results31, in which 7% most correlated cell pairs
accounted for 50% of the total connection weight. Firing rates
for principal neurons show a large range: over 1,000 stimulus
presentations, the median principal neuron firing rate was 4 Hz,
the absolute maximum firing rate was 122 Hz, and the median
maximal response (that is, the median of the set defined by the
firing rates of the most active cell for each stimulus) was 58 Hz.

Individual neurons develop selective receptive fields. The
clustering of responses does not compromise the selectivity of
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Figure 2 | Network responses form discrete clusters as observed in vivo. (a) Total number of spikes in response to 1,000 stimulus exposures (350 ms

duration each), for each cell and each stimulus. (b) Same data as in a, with columns (network responses) sorted by similarity. The population responses fall

within a limited number of discrete patterns. (c): Correlation matrix of columns of b. Each location i,j in this matrix represents the correlation between

response vectors i and j in b. Clusters of highly correlated response patterns are readily apparent. (d) Correlation matrix of recorded responses in mouse

auditory cortex for comparison, redrawn from data provided by Bathellier et al.5 using the same procedure as c. (e) Voltage traces of three neurons, two of

which (2 and 39) belong to a common cluster and have similar selectivities and receptive fields, while the third (8) has a different selectivity and belongs to

a different cluster. The voltage trace covers two stimulus presentation, followed by 100 ms stimulus-absent ‘relaxation’ periods indicated by dotted vertical

lines (see Methods); the first stimulus is preferred by neurons 2 and 39, while the third is preferred by neuron 8. Neurons 2 and 39 show highly similar,

though not identical traces, while cell 8 follows a very different activity pattern.
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individual neurons: the learned receptive fields, reconstructed by
subtracting OFF-centre inputs from ON-centre inputs, exhibit the
familiar pattern of biphasic oriented-edge detector (Fig. 3a).
Mutually connected cells also exhibit highly similar receptive
fields: among the 10% most strongly connected pairs (accounting
for 98% of the total synaptic weight), the median correlation
between both receptive fields of the pair was r40.9. The dis-
tribution of learned weights showed a very high peak at zero
weight, and a single, smoothly decaying non-zero mode (Fig. 3c),
which is qualitatively similar to reports from the literature32 (note
that, this smoothly decaying mode results from a modification we
brought to the voltage-based STDP algorithm—see Methods).

Evidence of attractor dynamics. Groups of jointly firing neurons
do not, by themselves, indicate attractor dynamics, since it is

possible that their joint firing might simply be a direct
consequence of their similar receptive fields generated by
feedforward connections. To demonstrate that the coherent
patterns are internally generated, we followed a procedure similar
to that used by Miller et al.7. We recorded spontaneous model
activity, in the absence of any stimulus, during a 1,000 ms period;
this spontaneous activity is caused by a constant barrage of ‘noise’
spikes with a fixed frequency (see Methods). We binned the
activity of each cell in 50 ms time bins and then selected the 30%
time bins with highest total number of spikes. The resulting
correlation matrix of the spontaneous population responses,
when sorted by similarity, exhibits the same coherent neural
clusters as the stimulus-evoked responses (Fig. 4).

If the network is driven by attractor dynamics between discrete
response patterns, we expect abrupt, nonlinear transitions
between response patterns as the stimulus gradually changes
from one stimulus to another, as observed in vivo5. To investigate
this question, we followed the same procedure as Bathellier et al.5.
We selected two input patterns, namely those that generated the
highest maximum firing across the population in the first and
second clusters in Fig. 2c. We then generated 30 linear mixtures
of these stimuli, such that the respective proportions of the first
and the second source stimulus in the mixture gradually
changed from 100% Stimulus 2 and 0% Stimulus 1 to the 100%
Stimulus 1 and 0% Stimulus 2. We then recorded the response of
the model to each of these mixed stimuli (Fig. 5a). The response
to the mixed stimuli shows an abrupt transition between the
two response modes evoked by either source stimulus alone.
In particular, when the stimuli were combined (Fig. 5a), the range
of intensities over which either response pattern occurred was
much smaller than for either stimulus in isolation: in Fig. 5b,c
(individual, decaying stimuli), the horizontal extent of either
response mode is much longer than in Fig. 5a (mixed stimuli).
Thus, the abrupt transition is not merely the result of decreasing
response to a change in component stimulus intensity, but rather
it actually results from competition between the two response
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Figure 3 | Learned receptive fields and connectivity. (a, left) Feedforward

receptive fields after development (obtained by subtracting the OFF-centre

weight from the ON-centre weight for every input pixel). Following

exposure to natural stimuli, the 100 principal cells developed oriented,

biphasic receptive fields. (b, centre) Connection matrix between the cells

(that is, lateral connections). The matrix is sparse and highly symmetrical,

revealing strongly bidirectional connectivity. (c, right) Distribution of

learned E-E weights. Most connections have zero weight, with the non-zero

weights forming a single smoothly decaying mode, due to the stabilizing

weight-dependent plasticity (see Methods).
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Figure 4 | Spontaneous activity patterns recapitulate evoked network responses. (a) All spontaneous spikes over 500 ms, showing the sparseness of

spontaneous activity. (b) Spontaneous spiking activity over 100 s is collected into 50 ms time bins, and the B30% most active time bins are selected

(almost all time bins have either 0 or 1 spike for each neuron). (c) Same data as in b, with columns (time bins) sorted by similarity (same procedure

as for Fig. 2b). Spiking activity is dominated by discrete patterns, which are the same multi-cell patterns evident in stimulus-evoked network responses,

in a different order (Fig. 2b–see also e). (d) Correlation matrix for the columns in c. Clustering of response patterns is as evident as in Fig. 3c.

(e) Cross-correlation matrix between the columns of c and of Fig. 2b. The high correlation between patterns in c and Fig. 2b reveals that the firing patterns

in spontaneous and evoked activity are highly similar.
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patterns. This competitive selection further demonstrates that
network responses are driven by internally generated attractor
dynamics.

To quantify how much the response patterns to the mixed
stimuli resemble responses to either stimulus in isolation, we
again used a procedure described by Bathellier et al.5. We used a
simple linear regression model rn¼b1n r1þ b2n r2 , where rn is
the network response to the nth of the 30 mixtures, and r1 and r2

are responses to either component stimulus in isolation
(after normalizing all vectors to norm 1, to control for
differences in overall activity). The b1n and b2n series are
plotted in Fig. 5d (solid lines), illustrating the sharpness of the
transition. Importantly, this abrupt transition was dependent on
lateral connections, as the same procedure with disabled
lateral connections produced a noticeably shallower transition
(Fig. 5d, dotted lines).

To determine the role of stimulus structure in group formation,
we ran the exact same model, using the same inputs, but
randomly shuffling the pixels in each successive image frame; this
preserves the distribution of pixel intensities, while removing
spatial correlations present in natural images. When exposed to
this randomized input, the model did not develop competitive
groups (Fig. 6). Rather, the population simply arranged into a
single group of jointly firing cells responding in an all-or-none
fashion. Most cells lost all feedforward input, with only a few
cells maintaining non-zero receptive fields with random, salt-and-
pepper structure. This shows that group formation in the model is
dependent on structured stimuli, rather than merely being an
automatic by-product of the plasticity algorithm.

Network mechanisms. To investigate which network properties
support the model’s dynamics, we ran the trained model under
altered conditions. First, we disabled all inhibition by silencing all
inhibitory neurons, leaving the system otherwise unperturbed.
This resulted in very high, self-sustaining firing, even during
spontaneous activity (in the absence of any stimulus) (Fig. 7,
green curve). This effect disappeared when lateral connections
were disabled, demonstrating that the destabilization is caused by
the lateral connections (Fig. 7, blue curve). Thus, the excitatory
lateral connections make the network unstable in the absence
of inhibition. Furthermore, the lateral connectivity did not
seem to impose much slowing in the dynamics; on stimulus
offset, the cell’s activity fell back to zero similarly in the
full network and in the same network with disabled recurrent
connectivity (Fig. 7, right panels).

Model predictions. While these network manipulations confirm
the attractor nature of the model network, they might be difficult
to translate to physiological experiment. We therefore performed
an additional network manipulation, which might be more
amenable to physiological implementation in vivo, namely,
blocking spiking activity23,25. We first performed the same
‘mixed stimuli’ experiment described in Fig. 5, without spike
blocking, but using the average subthreshold potential rather than
the total number of spikes as the response. We confirmed that the
same competitive, all-or-nothing dynamics are also present in
subthreshold activity when spikes are allowed in the network
(Fig. 8a–d). We then blocked spiking activity in all network cells.
This was done by removing the exponential component of the
Brette–Gerstner Adaptive Exponential equation (the second
summand in equation (1), Methods), which supports the
runaway depolarization giving rise to spikes. This manipulation
essentially eliminated competitive dynamics in subthreshold
potentials, resulting in smooth, gradual transitions from one
response patterns to another (Fig. 8e–h). Notice that the
subthreshold response patterns to ‘pure’, unmixed stimuli S1
and S2 are quite similar with and without spikes (leftmost and
rightmost column of Fig. 8a,e); quantitatively, even under spike
suppression, both pure stimuli are easily discriminated from each
other (Fig. 8h, leftmost versus rightmost regression weights). This
shows that spike blocking did not abolish stimulus selectivity in
subthreshold potentials, which is largely due to preserved
feedforward input. Thus the loss of competitive dynamics is not
due to a catastrophic loss of selectivity, but from the loss of
mutual influence between cells.

This further demonstrates that the competitive dynamics are
due to connectivity between the cells, in a way that might be
amenable to physiological experimentation. The model’s
prediction is that, if competitive group dynamics are indeed the
result of cortical attractor dynamics (rather than, say, a mere
reflection of upstream processes), then blocking spiking activity
should abolish competitive group dynamics in membrane
potentials, without eliminating selectivity of individual cells to
pure stimuli. Testing this prediction might conclusively deter-
mine whether the group dynamics observed in cortical activity5,7

actually arise from internal cortical dynamics.

Robustness of results to parameter variation. The model is not
critically sensitive to precise parameter values. We ran the model
with free parameters increased by 20% (Supplementary Fig. 1;
see Methods). The population still organized into competitive
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clusters, while developing selective receptive fields. Similarly, run-
ning the model with parameters reduced by 20% still produced
clusters and selective receptive fields, although in this case the
receptive fields were much reduced in size. Finally, we also ran an
experiment in which we simply quadrupled the number of neurons
(400 E, 80 I). The only modification to the model was to divide the
common multiplier of all lateral connection weights (Alat—see
Methods) by 4, in order to provide a similar regime of overall
recurrent inputs relatively to the (unchanged) feedforward inputs.

All other parameters were left unchanged. Again, the population
arranges into coherent clusters of jointly firing neurons, while still
developing realistic receptive fields (Supplementary Fig. 2).

Discussion
Our results show that a model of a small patch of cortex, endowed
with synaptic plasticity (both for feedforward and lateral
connections) and all-to-all inhibition and exposed to naturalistic
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visual stimuli, will spontaneously organize into coherent,
mutually competitive groups of jointly firing neurons. Our study
provides three main contributions:

1. We demonstrate that realistic plasticity, mutual inhibition and
exposure to natural stimuli, are jointly necessary and sufficient
to develop fast, non-persistent attractor dynamics in primary
sensory cortex, while preserving realistic selectivity of
individual neurons. This provides a straightforward explana-
tion for the emergence of ‘cortical ensembles’7 or ‘response
modes’5 observed by in vivo imaging of cortical microcircuits.

2. By simulating network manipulations, we make testable
predictions which, if confirmed physiologically, could
definitely establish whether or not group behaviour in neural
responses arises from intra-cortical attractor dynamics.

3. To our knowledge, our model provides the first example of
joint development of attractor network connectivity and
realistic, orientation-selective feedforward receptive fields in
a spiking network simulation.

These neuronal groups33 are internally generated by network
dynamics. They do not simply result from similar receptive fields
caused by mutual influence during development; neither do they
merely reflect competitive processes in upstream stages. For
example, the same groups observed in stimulus-evoked responses
also dominated the spontaneous, stimulus-absent activity, as
observed in rodent local circuits7, ferret multi-cell activity10 and,
at larger scales, in cat visual cortex8. In addition, mixed stimuli
resulted into all-or-none abrupt transitions, even at respective
intensities for which either stimulus alone evoked a (different)
network response, as observed in mouse auditory cortex5.

This last behaviour was lost under spike blocking (Fig. 8). This
and other network manipulations (Figs 6–8) support the
existence of true attractor dynamics within cortical networks.

An important aspect of our model is the paucity of
assumptions. We used state-of-the-art algorithms both for
individual neuron dynamics and for synaptic plasticity. Inhibition
was modelled as nonspecific, with similar and indiscriminate
connections to and from excitatory cells, following current
evidence for rodent cortical organization19,20. Input stimuli were
taken from natural images. Our model does not require short-
term plasticity, inhibitory plasticity or heterosynaptic scaling, in
contrast with related models oriented towards persistent activity
and memory function15,17. The fact that realistic STDP and
mutual inhibition suffice to generate attractor networks with fast,
competitive group dynamics, suggests that these dynamics might
be found in many more cortical sites than those reported so far.

In rodents, primary visual cortex shows significant orientation
selectivity at eye opening21. However, feedforward receptive fields
are highly plastic, as evidenced by binocular matching of
orientation selectivities during the critical period28 and ocular
dominance plasticity in adulthood29,30. Thus lateral connectivity
and feedforward connectivity must adapt to each other in
addition to external stimuli. In our model, we decided to simply
initialize our feedforward receptive fields with random weights, to
avoid additional assumptions about the mechanism of initial
orientation selectivity development. This arguably represents the
more challenging extremum of potential choices, since any initial
selectivity in individual neurons can only facilitate the emergence
of appropriate lateral connectivity through Hebbian learning.
Thus, we believe that the existence of early orientation selectivity
reinforces the conclusions of our study.
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By organizing into discrete groups, cortical microcircuits seem
to sacrifice much representational power. A population of N
independent cells could in principle represent on the order of 2N

different signals, as opposed to the order of 1–10 reported here
and in experimental studies5. What could be the compensating
advantage of group dynamics? Obvious possibilities include an
increase in reliability in the face of massive cortical noise, as well
as better control of downstream targets by groups as whole rather
than isolated neurons. In addition, we speculate that a major
advantage of group dynamics is to vastly accelerate the readout of
sensory representation. Measuring the firing rate of a single
neuron requires integrating its spikes over a certain period of
time, which may impose a large delay on reliable estimation
(especially for neurons with low firing rates, as is commonly the
case in superficial layers of primary sensory cortex). By contrast,
estimating the overall activity of a large population of neurons
requires much less time, since one can simply count the number
of spiking neurons firing within a short interval (essentially
replacing temporal integration with spatial integration).
This might explain how large populations of neurons can
respond to a change in input current extremely fast, within the
first few milliseconds of stimulation—much faster than individual
membrane voltage dynamics34. Thus, the organization of neural
activity into discrete collective patterns might conceivably
represent a sacrifice of potential representativity in exchange for
much faster decoding by downstream neurons—trading
discriminative power for temporal precision.

In conclusion, our results demonstrate that developing cortex
can self-organize into attractor networks with fast, competitive
dynamics, influencing the selectivity of individual neurons
without compromising it, and support the long-standing
hypothesis that neurons operate as competitive groups
rather than individual analysers. It is interesting to note
that this proposal, initially made on purely theoretical
grounds33, is currently accruing support from multiple streams
of evidence.

Methods
Here we provide a full description of our model. The full software, with source code
and detailed instructions, is publicly available at http://github.com/ThomasMiconi/
V1stdp.

The model is composed of a single layer of 120 fully connected spiking neurons
(100 principal or excitatory neurons, labelled ‘E’; and 20 inhibitory neurons,
labelled ‘I’), each of which receives a time-varying input specified by the stimulus.
All neurons are simulated as adaptive exponential (AdEx) integrate-and-fire
neurons35. Mutual connections between principal neurons, as well as feedforward
connections from stimulus input to principal neurons, undergo spike-timing-
dependent plasticity according to a modified version of the voltage-dependent
STDP algorithm from Clopath et al.36, as described below. By contrast, all
inhibitory connections (E-I, I-I and I-E) are non-plastic, with weights
independently taken from a uniform distribution at the start of the experiment.
Every neuron sends connection to and receives connection from every other
neuron. This implies non-selective connections to and from a local pool of
interneurons, in accordance with current experimental evidence19,20. Feedforward
connections are initialized to random values, while all lateral E-E connections are
initially set to weight zero. In accordance with Dale’s law, all synapses from
excitatory neurons have positive weights, while all synapses from inhibitory
neurons have negative weights.

The stimuli are square image subregions, of size 17� 17 pixels, extracted at
random locations (uniform sampling with replacement) from a set of natural
images, and processed with difference-of-gaussian filters (with s.d. 1 and 2 pixels)
to emulate centre-surround retinal responses. The patches are randomly rotated to
avoid biases in orientation distribution, and individually mean-subtracted and
scaled to the [� 1,1] intensity range to emulate luminance and contrast adaptation.
We then duplicate these patches into two linear vectors of 17� 17 values each;
the first vector has all negative values set to zero, and constitutes the ON-centre
inputs to the network. The second vector, which has all positive values set to zero
and all remaining values changed to a positive sign, constitutes the OFF-centre
inputs to the network.

Thus, each principal neuron receives 17� 17� 2 feedforward connections
(one for each ON-centre and OFF-centre input), as well as 119 lateral connections
(autapses are disallowed).

Our implementation of neural dynamics and plasticity is based on refs 21,35,36,
with important differences as described below. In the following description we use
the nomenclature of refs 35,36. Each neuron has a membrane potential u(t) that
varies according to the following equations:

C
du
dt
¼ � gl u�Elð Þþ glDT e

u�VT
DT �wad þ zþ IFF þ ILat þ IInh ð1Þ

twad

dwad

dt
¼ a u�Elð Þ�wad

tz
dz
dt
¼ � z

tVT

dVT

dt
¼ � VT �VTrestð Þ

C is the membrane capacitance, gl is leak conductance, El is resting potential, DT is
the so-called ‘slope factor’ and VT is an adaptive ‘threshold’ (that is, the value of u
beyond which a spike is irreversibly engaged even in the absence of additional
input), which decays exponentially to a resting value VTrest in the absence of spikes.
Wad is a hyperpolarizing adaptation current which increases on each spike
(see below) and decays exponentially otherwise. Z is a spike afterpotential, set to a
fixed value Isp on each spike (see below) and decaying exponentially. IFF is the
feedforward input determined by the current stimulus, ILat is the later excitatory
input coming from recurrent connections, and Iinh is the inhibitory input
(see below).

When u(t) reaches a certain high potential VPEAK, a spike is deemed to have
occurred and the following discrete adjustments take place (in addition, u is clipped
to VPEAK for one timestep, equivalent to 1ms of simulated time; see below):

u El

wad  wad þ b

z  Isp

VT  VT þVTMAX

The feedforward input IFF is the weighted sum of the incoming feedforward
stimulus-evoked spikes. The incoming feedforward spikes are contained in a vector
of 17� 17� 2 independent Poisson spike trains, whose rates at any time are set by
the concatenating the ON-centre and OFF-centre stimulus inputs described above.
This vector is multiplied (dot-product) by the cell’s vector of 17� 17� 2
feedforward weights wFF, resulting in the total feedforward input for this cell IFF.

The lateral, recurrent input ILat is computed in a similar way, but uses the vector
of outgoing spikes from other cells, both excitatory and inhibitory, received at the
current timestep (taking into account the random delays associated with each
synapse), multiplied (dot-product) by the vector of lateral weights wLat and
multiplied by a constant factor Alat¼ 5.0. Again, note that there is no self-
connection, so cells do not receive excitation from their own spikes.

Inhibition occurs through recurrent connections between excitatory cells (E) and
inhibitory cells (I). E and I cells are modelled according to the same equations.
While recurrent weights between E cells are plastic, as are feedforward weights
from retinal input to E cells (see below), recurrent weights to and from inhibitory
cells are taken from a uniform distribution with minimum 0 and maximum
WmaxI-I, WmaxI-E or WmaxE-I depending on the identity of pre-synaptic and
post-synaptic neurons. All weights from inhibitory cells are then switched to
negative sign. These inhibitory weights then remain fixed for the duration of the
experiment, as opposed to the plastic feedforward and E-E weights (see below).

All delays between cells are taken at the start of the experiment from an
exponential distribution with median 4 ms, with a hard minimum of 1 ms, and
remain fixed for the whole experiment.

In addition, each cell also receives noise inputs as Poisson trains of excitatory
spikes, with mean rate 1,800 Hz, respectively. This allows for non-zero spontaneous
activity, as shown in Fig. 4.

Neural plasticity is implemented according to an adapted version of the
Clopath–Gerstner voltage-dependent STDP algorithm36. Feedforward and lateral
E-E weights are modified jointly, without any special distinction between the two
(again, all synapses to or from inhibitory cells are non-plastic). Initial feedforward
weights are chosen from a uniform random distribution, while initial lateral E-E
weights are set to zero. Long-term potentiation (LTP) and long-term depression
(LTD) are implemented separately and independently. LTD is governed by the
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arrival of pre-synaptic spikes according to the following equations:

dw
dt
¼ �ALTD

u
2

uref
XðtÞmaxð�u� � El; 0Þ

þ 1
gw

ALTP �x tð Þmax ut � yþ ; 0ð Þmaxð�uþ � yþ ; 0Þ ð2Þ

tu

du
dt
¼ � uþmaxðuðtÞ� yþ ; 0Þ

t�uþ
d�uþ

dt
¼ � �uþ þ uðtÞ

t�u�
d�u�

dt
¼ � �u� þ uðtÞ

t�x
d�x
dt
¼ � �xþXðtÞ

w is the weight of a given synapse. uþ , u� and u are three different exponential
traces of voltage u(t), with respectively a short, slightly longer and much longer
time constant; the former two are used in immediate modifications in response to
spikes, while the third is used for long-term homoeostatic adaptation, as
described below. In addition, note that u actually registers how much u(t) lies above
the reference value yþ (which is set close to firing threshold), rather than raw
voltage u(t).

ALTD and ALTP are two multiplicative constants. X(t) is a binary value indicating
whether or not a pre-synaptic spike arrived at this synapse at time t, and �x is an
exponential trace of this binary variable. yþ is a plasticity threshold, set to a
constant approximation of the (variable) firing threshold VT, namely
(VTMAXþVTrest )/2. ‘max(x, 0)’ denotes half-rectification, equal to x if x40 and 0
otherwise. uref and g are two constant scaling factors discussed below.

Intuitively, the equation above can be summarized as follows: LTD occurs if a
pre-synaptic spike occurs (X(t)40), proportionally to recent depolarization
(trace of membrane potential u� above resting potential), and to the square of
long-term above-threshold activity (u). The latter, long-term component has a
homoeostatic function by making LTD a superlinear function of long-term activity.
LTP occurs if membrane potential exceeds a high threshold close to firing
threshold, while the cell was recently depolarized, and a pre-synaptic spike
occurred in the recent past (as indicated by �x); also, LTP is inversely proportional
to current weight value w, with scaling factor g (see below).

A potential pitfall is that the above equations are sensitive to the random
fluctuations in the exponential runaway stroke of the AdEx voltage evolution,
which may vary greatly in a fixed-timestep forward-Euler simulation. To alleviate
this source of variability, we adapt a method used in original code by Clopath et al.
(obtained from Claudia Clopath). Every cell that is detected as spiking has its
voltage u clipped to a fixed value Vpeak for 1 ms, then reset to El. Thus, the shape of
the voltage trace for each spike is highly stereotyped, especially considering that
only the portion of the voltage trace above the maximum threshold value
(that is, the ‘crest’ of each spike) is taken into account for the calculation of
potentiation and long-term homoeostatic traces ( equation (2)).

Besides numerical adjustments to a few parameters, there are two main
differences with Clopath et al.36. The first difference is that LTP is weight-
dependent: the magnitude of LTP (but not LTD) varies with current weight value,
due to the 1/gw factor: larger weights are more difficult to increase. This
replaces the hard clipping of weights within a fixed range used in the original
Clopath–Gerstner algorithm. The main reason for this change, besides increased
realism, is that we found the unmodified Clopath–Gerstner algorithm to be
strongly ‘saturating’ in the face of natural image stimuli: it tends to set all
feedforward weights to either the minimum value (that is, 0) or maximum value.
This results in unrealistic black-and-white receptive fields with no graded
weights, the size of which depends on the allowed maximum weight (setting a
high maximum weight leads to small RFs, since fewer inputs are needed to generate
the same amount of firing). Note that a similar effect was apparent in Fig. 8
of Clopath et al.36. With weight-dependent LTP, we can dispense with hard
maximal values and obtain more realistic, graded receptive fields, without
adding new parameters (the scaling parameter g replaces the discarded hard
maximum parameter), as shown in Fig. 3c. Notice that weights are still hard-
clipped from below at the zero value.

The other difference is that u is a long-term exponentially decaying, long-term
(20 s) trace of above-threshold activity, rather than a hard average of raw
depolarization over 1 s. We found that this change helped stabilize simulations, by
making the homoeostatic component more closely related to actual firing activity.

Our numerical parameters were largely taken from existing refs 21,35,36 and
are described in Supplementary Table 1. We simulated the network’s dynamics
by simple forward integration of these equations (Euler method) with a timestep
of dt¼ 1 ms.

For the experiment with quadrupled number of neurons (Supplementary Fig. 2),
all parameters were exactly identical, except that the common multiplier of lateral
inputs Alat was also divided by four to ensure a similar regime of recurrent inputs.
For the experiment with varying parameter values (Supplementary Fig. 1),

Alat, WmaxI-I, WmaxI-E, WmaxE-I, g, ALTP and ALTD were all increased or decreased by
20%.

Data availability. The full source code for our model, as well as instructions for
replication, is available at http://github.com/ThomasMiconi/V1stdp.
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36. Clopath, C., Büsing, L., Vasilaki, E. & Gerstner, W. Connectivity reflects coding:
a model of voltage-based STDP with homeostasis. Nat. Neurosci. 13, 344–352
(2010).

Acknowledgements
This work was supported by a grant from The G. Harold and Leila Y. Mathers Charitable
Foundation to Neurosciences Research Foundation. We thank Joseph A. Gally,
Jason G. Fleischer and W. Einar Gall for numerous helpful comments and suggestions on
the manuscript. We also thank Claudia Clopath for providing both source code and
explanations of the original Clopath–Gerstner plasticity algorithm.

Author contributions
T.M., J.L.M. and G.M.E. designed the model. T.M. designed and ran the experiments.
T.M. wrote the manuscript.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Miconi, T. et al. Spontaneous emergence of fast attractor
dynamics in a model of developing primary visual cortex. Nat. Commun. 7, 13208
doi: 10.1038/ncomms13208 (2016).

This work is licensed under a Creative Commons Attribution 4.0
International License. The images or other third party material in this

article are included in the article’s Creative Commons license, unless indicated otherwise
in the credit line; if the material is not included under the Creative Commons license,
users will need to obtain permission from the license holder to reproduce the material.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

r The Author(s) 2016

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13208

10 NATURE COMMUNICATIONS | 7:13208 | DOI: 10.1038/ncomms13208 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturecommunications

	title_link
	Figure™1Organization of the model.We model a small local field of rodent V1 cortex, in which all cells have similar retinotopy. Input images (17times17 pixels in size) are first processed through an ON-centre and an OFF-centre surround filter, generating 
	Results
	Emergence of cell clusters
	Individual neurons develop selective receptive fields

	Figure™2Network responses form discrete clusters as observed in™vivo.(a) Total number of spikes in response to 1,000 stimulus exposures (350thinspms duration each), for each cell and each stimulus. (b) Same data as in a, with columns (network responses) s
	Evidence of attractor dynamics

	Figure™3Learned receptive fields and connectivity.(a, left) Feedforward receptive fields after development (obtained by subtracting the OFF-centre weight from the ON-centre weight for every input pixel). Following exposure to natural stimuli, the 100 prin
	Figure™4Spontaneous activity patterns recapitulate evoked network responses.(a) All spontaneous spikes over 500thinspms, showing the sparseness of spontaneous activity. (b) Spontaneous spiking activity over 100thinsps is collected into 50thinspms time bin
	Network mechanisms
	Model predictions
	Robustness of results to parameter variation

	Figure™5Group responses are discrete and competitive.Model responses to 30 mixtures of two different stimuli (a), as well as to identical intensities of either stimulus in isolation (b,c). Each dot in matrices A-C denotes the total number of spikes of a g
	Discussion
	Figure™6The model does not develop competitive groups or realistic receptive fields when exposed to randomized stimuli.Conventions are as in Fig.™2. Notice the lack of clusters in c, the very high firing in a, b and e, and the few non-zero receptive field
	Figure™7Mechanisms of self-organized network connectivity.(left) Lateral excitatory connections make the network intrinsically unstable in the absence of inhibition. The full network, with lateral connections and mutual inhibition (red curve), produces lo
	Figure™8Competitive group dynamics in subthreshold potentials are eliminated by spike blocking.Top panel (a-d): same information as in Fig.™5, but using the average subthreshold potential of each cell, rather than the total number of spikes, for each pres
	Methods
	Data availability

	BarlowH. B.Single units and sensation: a neuron doctrine for perceptual psychology?Perception13713941972HubelD. H.WieselT. N.Ferrier lecture: functional architecture of macaque monkey visual cortexProc. R. Soc. Lond. B Biol. Sci.1591977FieldD. J.Relations
	This work was supported by a grant from The G. Harold and Leila Y. Mathers Charitable Foundation to Neurosciences Research Foundation. We thank Joseph A. Gally, Jason G. Fleischer and W. Einar Gall for numerous helpful comments and suggestions on the manu
	ACKNOWLEDGEMENTS
	Author contributions
	Additional information




