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Diagnosis trajectories of prior 
multi-morbidity predict sepsis 
mortality
Mette K. Beck1,2, Anders Boeck Jensen2, Annelaura Bach Nielsen2, Anders Perner3, 
Pope L. Moseley2,4 & Søren Brunak2

Sepsis affects millions of people every year, many of whom will die. In contrast to current survival 
prediction models for sepsis patients that primarily are based on data from within-admission clinical 
measurements (e.g. vital parameters and blood values), we aim for using the full disease history 
to predict sepsis mortality. We benefit from data in electronic medical records covering all hospital 
encounters in Denmark from 1996 to 2014. This data set included 6.6 million patients of whom almost 
120,000 were diagnosed with the ICD-10 code: A41 ‘Other sepsis’. Interestingly, patients following 
recurrent trajectories of time-ordered co-morbidities had significantly increased sepsis mortality 
compared to those who did not follow a trajectory. We identified trajectories which significantly altered 
sepsis mortality, and found three major starting points in a combined temporal sepsis network: Alcohol 
abuse, Diabetes and Cardio-vascular diagnoses. Many cancers also increased sepsis mortality. Using 
the trajectory based stratification model we explain contradictory reports in relation to diabetes that 
recently have appeared in the literature. Finally, we compared the predictive power using 18.5 years of 
disease history to scoring based on within-admission clinical measurements emphasizing the value of 
long term data in novel patient scores that combine the two types of data.

Sepsis is a major cause of death, contributing to almost half of deaths in hospitals1. Sepsis causes numerous 
complications, including amputations, neurological and neuromuscular disorders resulting in significant post 
hospital morbidity and reduced quality of life2–4. Moreover, sepsis was the most expensive condition in U.S. hos-
pitals in 2011, costing $20.3 billion or 5.2% of the total cost for all hospitalizations5, emphasizing the importance 
of developing more cost-effective handling and care of sepsis. This includes better stratification of sepsis patients 
in mortality risk groups.

Simplified Acute Physiology Score (SAPS II) is a prediction model developed in 1993 and is currently used in 
many healthcare systems. The SAPS II score is simple and based on physiological data sampling within 24 hours 
of admission and three less frequent comorbidities (AIDS, hematologic malignancy and metastatic cancer). 
However, the medical history of patients is now increasingly becoming available in many registries and in hospital 
EHR systems for possible use in new and more advanced risk scores. This kind of data has for example been used 
to uncover temporal patterns of disease development5 and associations between diseases6. We therefore present 
a proof of concept for utilization of full patient disease history data collected over 18.5 years to predict 30-day 
mortality in patients with sepsis.

In prior work, it was demonstrated how large amounts of data from a population-wide disease registry can 
be condensed and organized into time dependent diagnosis trajectories that uncover recurrent, temporal dis-
ease associations5. The Danish National Patient Registry (NPR) coded in the International Classification of 
Diseases (ICD-10) terminology is one example that offers the opportunity to monitor prior disease correlations 
in the entire population over time. We eliminate selection biases by analyzing the full population, in contrast 
to for example a randomly chosen subset of patients. In our earlier use of NPR, we established time ordered 
disease-interrelationships, producing 1,171 recurrent disease trajectories with strong temporal directionality. 

1Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, 
DK2800 Kgs. Lyngby, Denmark. 2Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 
DK2200 Copenhagen, Denmark. 3Department of Intensive Care, Rigshospitalet, University of Copenhagen, DK2100 
Copenhagen, Denmark. 4Departments of Medicine and Biomedical Informatics, College of Medicine, University of 
Arkansas for Medical Sciences, Little Rock, 72205 Arkansas, USA. Correspondence and requests for materials should 
be addressed to S.B. (email: soren.brunak@cpr.ku.dk)

Received: 19 July 2016

Accepted: 13 October 2016

Published: 04 November 2016

OPEN

mailto:soren.brunak@cpr.ku.dk


www.nature.com/scientificreports/

2Scientific RepoRts | 6:36624 | DOI: 10.1038/srep36624

Based upon these findings, we investigated whether such a time dependent, full disease history strategy could 
provide a useful model to predict sepsis mortality.

Results
The overall aim was to assess the predictive value of the prehistory of sepsis patients using their full spectrum of 
other prior diagnoses. For this type of multi-disease analysis the patient population needs to be large in order to 
obtain a statistically meaningful description of the temporal diagnoses history. We therefore used a population 
wide registry comprising 6.6 million patients.

Defining consistently a sepsis patient cohort. Defining the group of sepsis patients precisely is a key 
step, in order to eventually arrive at a meaningful mortality risk estimate. In the literature several approaches 
have been suggested to define groups of sepsis patients based on data in medical records coded in the ICD-9 and 
ICD-10 terminologies7–9. Angus et al. suggested one method, where patients diagnosed with infection and organ 
dysfunction are categorized as sepsis patients8. This is a widely used method, however a very recent study showed 
that the definition is associated with a non-optimal positive predictive value10. An alternative approach suggested 
by Ibrahim et al. had a significantly higher performance7,10. This approach includes most patients diagnosed 
with A40 (‘streptococcal sepsis’) or A41 (‘other sepsis’). In the Danish ICD-10 terminology sepsis is covered by 
nineteen diagnoses (Supplementary table 1), with A41 (‘other sepsis’) being the most frequently used (see sup-
plementary text for further detail). In our earlier work on disease spectrum wide analysis of the strongest disease 
trajectories with the highest forward going relative risk in the Danish population, A41 appeared frequently, in fact 
it was included in 217 out of 1,171 recurrent trajectories computed across 6.2 million individuals5. We therefore 
initially selected the A41 diagnosis to define our sepsis population. NPR contained a group of around 120,000 
sepsis patients, which had a 30-day mortality rate of 25% (eFig. 1). When counting our patients using the ‘Ibrahim 
implementation’, 119,727 sepsis patients were shared between our method and the ‘Ibrahim implementation’, our 
definition covered an additional 112 patients, whereas the ‘Ibrahim implementation’ covered an additional 6,839, 
and this simple approach is therefore very similar to the ‘Ibrahim implementation’. Consequently, it will have very 
similar properties in sensitivity analyses. In this type of work it is most important to ensure that all patients clas-
sified as sepsis patients actually have sepsis, while it will not affect the results in any major way if we potentially 
miss a small number of patients who also had sepsis (as the control population without sepsis amounts to more 
than 6 million individuals).

Sepsis mortality altered by 231 diagnoses. Prior to analyzing risk associated with multiple diagnoses, 
we investigated to what extent single diagnoses in the sepsis patients’ prior disease history significantly changed 
the 30-day mortality. Of 1,051 level three ICD-10 diagnoses (with a minimum number of patients counts required 
for statistical analysis, see Methods) 231 diagnoses significantly changed the relative risk of dying from sepsis 
(RRsepsis dead). See eFig. 2 and supplementary text for further detail.

Different temporal disease trajectories observed within the sepsis population. Analyzing 
correlations between many earlier diagnoses may obviously give a better indication of a patient’s health status. 
We investigated how sequences of consecutive diagnoses (disease trajectories) changed RRsepsis dead to obtain a 
more comprehensive understanding of the association between prior disease history and sepsis mortality risk. 
Temporal disease trajectories were constructed by finding all significantly associated diagnoses in pairs and by 
selecting those with a temporal direction (where one disease occurred significantly more often before the other). 
These temporal disease pairs were then combined into trajectories of temporal consecutive diseases. In the case 
of four disease steps, when disease A was preceding disease B, B was preceding C, and C was preceding D we 
would have three temporal disease pairs and a disease trajectory containing diseases A, B, C and D in that order 
(see Methods).

In our sepsis population of approximately 120,000 patients, we found 2,279 such disease trajectories consisting 
of four consecutive diseases, where a minimum of 20 patients followed the entire trajectory. In all these trajec-
tories sepsis appeared exclusively as the fourth and last diagnosis, implying that there are many disease paths 
towards sepsis. However, within the cutoff values applied we did not find any trajectories continuing after sepsis, 
indicating a much less systematic pattern of comorbidities occurring after sepsis.

Out of 120,000 sepsis patients in our cohort, 28,484 followed at least one of the 2,279 time-dependent disease 
trajectories. As there might be some discrepancy between time of clinical representation and date of diagnosis, 
following the trajectories in a strict chronological order might exclude patients with very similar disease courses. 
Relaxing the criterion such that certain pairs of diagnoses could appear in different orders (as long as sepsis was 
the last diagnosis) 40,247 sepsis patients followed at least one of these trajectories.

A subset of 56 temporal disease trajectories predicted poorer health status. We calculated 
RRsepsis dead for patients following at least one trajectory compared to sepsis patients not following any trajectory 
to investigate the predictive value of the trajectories for mortality in these patients. The RRsepsis dead was calculated 
using the Cochran-Mantel-Haenzel method, which allows us to correct for age and gender. The RRsepsis dead for the 
28,484 patients following at least one trajectory strictly in the right order was 1.32, (p =  1.88·10−77). RRsepsis dead 
was 1.30 (p =  2.46·10−82) for the 40,247 patients following trajectory diagnoses in the relaxed order, indicating the 
ability of the disease trajectories to be predictive of a poorer health status in a sepsis patient. The age of patients 
following a trajectory was significantly higher both for the strict and relaxed orders (odds ratio =  2.3 and 2.4 
respectively, p-value <  2.3·10−308 for both, correction for age in the mortality analyses). We subsequently made 
a network based on all trajectories that significantly changed the risk of dying (Benjamini Hochberg corrected 
p-value <  0.05) reducing the number of trajectories from 2,279 to 56 (Fig. 1). The network is constructed from 
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97 unique disease pairs (and edges connecting them) that appear in any of the steps in the 56 trajectories. All 
individual trajectories increased RRsepsis dead clearly underlining the ability of the trajectories to predict a poorer 
outcome. Of the 56 significant trajectories 25 started with alcohol abuse, nine contained diabetes mellitus, while 
eighteen contained cardiovascular diagnoses.

Alcohol abuse, diabetes and anemia are key diagnoses in the sepsis trajectory network.  
Figure 1 shows all 56 significant trajectories towards sepsis in one network. It has the three major starting points 
mentioned above: ‘alcohol abuse’, ‘non-insulin dependent diabetes mellitus’ (NIDDM) and cardio-vascular diag-
noses (‘angina pectoris’, ‘acute myocardial infarction’ and ‘hypertension’). A number of other diagnoses appear 
frequently, including ‘other anemias’. No cancer diagnosis appeared in the network although the RRsepsis dead for 
patients having any neoplasms (benign or malignant) prior to the sepsis diagnosis was 1.24 (p =  1.2⋅ 10−60) when 
calculated across the 120,000 patients and 1.18 (p =  4.97⋅ 10−30) for patients having any cancer before sepsis (eTa-
ble 1). Patients can be healthy until diagnosed with cancer11, which then may trigger sepsis. Their shared disease 
history might therefore be less similar compared to diabetes patients, which can explain the lack of fine-grained 
cancer trajectories of four diseases. We found, however, seventeen cancer trajectories out of 310 trajectories con-
sisting of only three diseases with sepsis as the last diagnosis. A cancer-network of these trajectories also revealed 
that anemia was the major connection between cancer and sepsis (Fig. 2). This further indicates that the absence 
of length four cancer trajectories was due to a lack of shared disease history rather than insignificant effect on 
sepsis mortality.

We investigated ‘alcohol abuse’, ‘diabetes mellitus’ and anemia in more detail by extracting trajectories contain-
ing these particular diagnoses (Fig. 3). Due to the limited number of trajectories included in the Fig. 3 illustra-
tions, we have shown the exact trajectory for a complete patient group, by having one (curved) edge connecting 
all four diseases. We observed a handful of alternative routes from diabetes to sepsis, via decubitus ulcers, pneu-
monia, anemia, and volume depletion (Fig. 3a). All trajectories in the diabetes network started with NIDDM 
followed by two additional comorbidities before sepsis. The highest risk was associated with ‘other polyneuropa-
thies’ followed by ‘pneumonia’, but also atherosclerosis and subsequently COPD implied high sepsis-mortality 
risk (Fig. 3a).

Figure 1. Network of trajectories that significantly altered RRsepsis dead. The network was constructed from 
56 significant sepsis trajectories and illustrates simultaneously the number of patients receiving a particular 
diagnosis (node size) and the increased risk of dying from sepsis within 30 days from different trajectory 
steps connecting two diagnoses (width of arrow). The 42 nodes are colored based on their ICD-10 chapter 
relationships. Note that A41 has been scaled to 33% of its actual size representing 120,000 patients. The width of 
the arrows indicates the weighted average RRsepsis dead for a particular step (based on all trajectories containing 
that step).
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The temporal disease trajectories in the network starting with ‘alcohol abuse’ were much more diverse than 
those in the diabetes network. Many of these pathways included common complications of alcoholism like ‘dis-
eases of the digestive system’, ‘epilepsy’, ‘cerebral infarction’ and polyneuropathies (Fig. 3b).

Anemia is seen frequently in pre-menopausal women, however the age and gender distribution rule this out 
as the main cause in our population (eFig. 3). For all trajectories in the anemia network, anemia was the last diag-
nosis before sepsis. The anemia-sepsis network revealed the same pattern of starting points as the complete sepsis 
network, including vascular diseases, diabetes and alcohol abuse. Trajectories including vascular diseases also had 
the two anemia diagnoses before sepsis. The diabetes trajectories had diabetic comorbidities before anemia and 
subsequently sepsis. Lastly, one of the trajectories starting with ‘alcohol abuse’ had anemia before ‘hepatic failure’.

Comorbidities explained the differences in sepsis mortality reported in diabetes. RRsepsis 

dead for patients with diabetes has been debated recently in the literature with studies indicating both higher 
and lower mortality risk12–15. In our study ‘insulin dependent diabetes mellitus’ (IDDM) increased the risk  
(RRsepsis dead =  1.13, p =  1.77·10−30), whereas NIDDM had no effect (RRsepsis dead =  1.11, p =  0.15). When combining 
IDDM and NIDDM, the RRsepsis dead was 1.11 (p =  5.71·10−9) underlining the important difference in strength of 
association of IDDM and NIDDM in regard to survival of sepsis.

Our trajectories included nine diabetes trajectories that significantly altered RRsepsis dead, eight NIDDM trajec-
tories, one IDDM diabetes trajectory and one containing both IDDM and NIDDM. All nine trajectories increased 
the risk of death with an RRsepsis dead between 1.45 and 3.01. Besides diabetes, ‘alcohol abuse’ and ‘other anemias’ 
were two other main diagnoses in our network (Fig. 1). We calculated the RRsepsis dead associated with any disease 
trajectories containing certain specific diagnoses (Fig. 4a). Following a diabetes mellitus trajectory was associated 
with an RRsepsis dead of 1.59 (p-value =  6.27·10−23), but combined with an alcohol abuse trajectory or an anemia 
trajectory RRsepsis dead increase to 2.44 (p =  5.83·10−4) and 1.48 (p =  1.98·10−4), respectively. If the patient followed 
all three types of trajectories RRsepsis dead was 3.11 (p =  4.44·10−6). Separating diabetes in IDDM and NIDDM 
showed a higher degree of synergy between anemia and NIDDM (RRsepsis dead =  2.80) than anemia and IDDM 
(RRsepsis dead =  1.84) (Fig. 4b).

Independent replication using a Swedish comorbidity browser. We compared the sepsis comor-
bidities found in our data, to a time-independent comorbidity browser made by Dalianis et al.16. The browser is 
based on 600,000 Swedish patients and use also the ICD-10 terminology16. Although the browser did only provide 
access to summary level data (and no individual level data) we replicated all three major starting points in the 

Figure 2. Cancer-sepsis network from length three trajectories that significantly altered RRsepsis dead. The 
network was created from sixteen length three sepsis-trajectories, which all contain a minimum of one disease 
from the ICD-10 block “Cancers (C00-C96)” from ICD-10 chapter 2: Neoplasms. The nodes are colored based 
on their ICD-10 chapter. Their size corresponds to the number of sepsis patients having the particular diagnosis. 
The width of the arrows indicates the RRsepsis dead for a particular step in a trajectory.



www.nature.com/scientificreports/

5Scientific RepoRts | 6:36624 | DOI: 10.1038/srep36624

Figure 3. Sepsis sub-networks from trajectories that significantly altered RRsepsis dead. The three networks 
were constructed from the 56 significant sepsis trajectories described in Fig. 1. A continuous line illustrates a 
group of patients following a specific multi-step trajectory. This includes all trajectories that contains either (a) 
Insulin-dependent or insulin-independent diabetes mellitus, or (b) Other Anaemias or Anaemia in chronic 
diseases classified elsewhere, or (c) Mental and behavioural disorders due to use of alcohol. The nodes are 
colored according to their ICD-10 chapter. The width of the arrows indicates the RRsepsis dead for a particular 
trajectory.



www.nature.com/scientificreports/

6Scientific RepoRts | 6:36624 | DOI: 10.1038/srep36624

main network of significant trajectories, both types of diabetes mellitus, all four cardiac diseases (I20, I21, I25 
and I50) as well as ‘alcohol abuse’ were sepsis comorbidities in the Swedish study (Fig. 5). We further confirmed 
the two anemia codes (D63 and D64) observed in the network. Additionally, we confirmed that several cancers 
were significantly associated comorbidities, although the number of patients for each individual cancer within 
the sepsis population also was relatively small in the Swedish data set, which again can explain the lack of length 
four cancer-disease trajectories in our data. Overall, our main observations of comorbidities were confirmed in 
this independent cohort.

Discussion
Contrary to conventional epidemiological techniques focusing on a few diagnoses, we used a multi-morbidity 
starting point, allowing us to identify more than 2,200 temporal disease trajectories of four consecutive diseases 
found in sepsis patients. We reduced the 2,220 trajectories to 56 that significantly change the risk of dying from 
sepsis within 30 days after diagnosis. We used data covering 120,000 sepsis patients followed over 18.5 years of 
disease history making it significantly larger both in terms of the number of patients and time than other earlier, 
classical mortality studies in sepsis or ICU patients (e.g. MPM-II, SAPS II and APACHE-II with 19,124; 13,000; 
and 805 patients, respectively)17–19. To our knowledge this is the first study of this size that uses all diseases from a 
long time period to determine the specific mortality risk for sepsis patients. Our data demonstrates the important 
predictive value of this disease trajectory approach accounting for time-ordered combinations of prior diseases 
to determine mortality risk.

It is important to notice that the temporal disease trajectories consist of disease associations with significant 
temporal directionality only. However, this cannot be used to conclude that one disease causes the second disease, 
as many confounding factors can influence the associations.

Although this type of analysis is based on disease spectrum-wide principles, the results are easily incorporated 
into mortality risk scores used in the clinic, as the patient data is already stored electronically and accessible in 
well-organized registries.

We demonstrated that single diseases or minor groups of diseases (as used in SAPS II) comparatively only 
hold limited predictive value about the patient’s health status. Here we investigated the effect of essentially all 
diseases coded in the ICD-10 system in a data driven manner. Several secondary cancers scoring an RRsepsis dead 
between 1.5 and 2 corresponded well with the fact that metastatic cancer is one of the three chronic diseases 
among the seventeen factors included in the SAPS II, which predicts hospital mortality17. The SAPS II converted 
value of metastatic cancer corresponds to an RR of 1.08 (see Methods), a substantially lower RR than observed in 
our population-wide data.

The second chronic disease in SAPS II, ‘HIV positive with an AIDS defining illness’, has an RR of 1.15. In our 
data set this was covered by the four diseases within the block ‘Human immunodeficiency virus [HIV] disease’ 
none of which significantly change the RRsepsis dead. This may be due to a relatively small group of patients as well 
as the considerable improvement in HIV treatment in recent years. The third and last chronic disease in the SAPS 
II score is hematologic malignancies with a calculated RR of 1.09 (ICD-10 codes C81-C96), corresponding to the 
block ‘Malignant neoplasms, stated or presumed to be primary, of lymphoid, haematopoietic and related tissue’. 
Of these fourteen diagnoses four significantly changed the RRsepsis dead in our dataset. However, RRsepsis dead varied 
from 1.5 to 2.3 (Supplementary Table 2). It should also be noted that SAPS II calculates the mortality of all ICU 
patients, whereas we investigated sepsis patients only.

A logical follow on to the work presented here is to combine RRsepsis dead with physiological parameters and 
make an updated mortality score. The original idea behind SAPS II was to avoid non-physiological values such 

a b 

Figure 4. Venn diagrams of selected sepsis-trajectories that significantly altered RRsepsis dead. The Venn 
diagrams show the significant RRsepsis dead values for groups of patients following trajectories containing 
diabetes mellitus (E10, E11), alcohol abuse (F10) and/or anemia (D64), respectively. The colored digits (inside 
and outside the three ellipsoids) indicate RRsepsis dead for following a trajectory that contains that particular 
diagnosis, independently of which of the other trajectories the patient follows. Ellipsoids without values are 
insignificant.
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as previous diseases, largely because the diagnostic history was not available electronically. However, using com-
putationally ready datasets such as the Danish health registry, many of these prognostic scoring systems may be 
improved by taking into account temporal aspects of disease history. We show that this undeniably has an effect 
on a patient’s outcome. For all countries with an electronic disease registration scheme and personal identifica-
tion numbers that can track patients over time, this could in a feasible manner be transferred for use in a revised 
clinical score.

In addition to the potential direct impact of prior disease history on individual patient outcomes in sepsis, our 
findings imply that studies of sepsis, and specifically interventional studies, may fail to show differences in treat-
ments because of a lack of appropriate stratification schemes. Recently, two large, multicenter, randomized trials 
of protocol driven care (ProCESS20 and ARISE21) failed to demonstrate the superiority of protocol based care over 
usual care. Both studies controlled for comorbidity effects largely using a well-established epidemiology based 
comorbidity index built on outcomes of 226 individuals22,23. Many arguments have been proposed for the lack of 
difference in outcomes between the two groups. Our data offer a potentially important opportunity to consider 
the role of complex full disease history based upon large population analysis in patient group assignment.

Specifically, it has been discussed whether diabetes increases or decreases the risk of dying from sepsis12–15. 
In most papers, the authors do not distinguish between IDDM and NIDDM, which was possible for us due to 
the size of the data set. Our analysis shows clearly that there is a distinct difference in sepsis mortality for IDDM 
compared to NIDDM if patients also follow a disease trajectory containing anemia (RRsepsis dead of 1.84 and 2.80, 
respectively). This implies a higher degree of synergy between NIDDM and anemia than between anemia and 

Figure 5. Sepsis comorbidities in the Swedish study. This figure shows significant co-morbidities in the 
Swedish study, Dalianis et al.16. Node size corresponds to the number of patients in the Swedish cohort with that 
code. The width of the arrow indicates the percentage of the sepsis subpopulation with a particular comorbidity. 
The lengths of the radiating arrows are arbitrary.
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IDDM. Our findings suggest therefore that both types of diabetes and temporal combinations of comorbidities 
must be corrected for when determining sepsis mortality in diabetes patients. This may explain the reported dis-
crepancy of sepsis mortality in diabetes patients.

Even though we investigated these relationships in a temporal manner, it is again important to notice that 
temporal association does not necessarily imply causation. There can be many confounding factors explaining 
these associations such as occupation, socioeconomic status or life style choices, which the diagnoses data does 
not cover.

Collectively, we show the importance of the previous disease history for predicting the outcome of sepsis 
patients. We suggest that the temporal disease history should be an additional aspect of personalized medicine, 
as we showed its significant value here. We further suggest that temporal disease history should be implemented 
as a stratification parameter in clinical trials, as we in this study demonstrated its application for prediction the 
sepsis mortality in diabetes patients.

Materials and Methods
Study design. In this retrospective cohort study we use a data-driven approach to identify mortality risk 
groups within a sepsis population based on a population-wide disease registry, which contains administrative 
information and primary and secondary diagnoses coded using ICD-10 terminology and used for reimbursement 
purposes. We used a dataset from the Danish National Patient Registry, which covers all hospital encounters 
(inpatient admissions, outpatient visits and emergency room visits) in Denmark from 1st of January 1996 until 
19th of August 2014, collectively counting 6.6 million patients of which almost 120,000 were diagnosed with A41 
‘Other sepsis’, of which almost 30,000 acquired sepsis after admission. The ICD-10 system is structured hierarchi-
cally, where codes can be rounded to a less specific parent diagnosis code, block or chapter. We used this structure 
to round all codes to level three codes. Our aim was to identify temporal disease trajectories derived using pairs 
of significant time-dependent diagnosis correlations, which significant change the 30-day mortality risk, based 
on the last sepsis diagnosis for each patient.

Mortality risk assessment. We tested if a single disease or trajectory from a patient’s prior disease his-
tory altered the mortality risk in sepsis patients. The relative ratio of dying from sepsis was calculated using the 
Cochran–Mantel–Haenszel method (an advanced version of Fischer’s exact test, where data can be binned to 
correct for co-variants), where each bin correspond to patients of a particular gender and born in a particular dec-
ade. We included patients born from 1900 until 2014, giving rise to up to 24 bins per test. We used the Cochran–
Mantel–Haenszel test to identify the p-value and accepted results with a Benjamini-Hochberg corrected p-value 
of 0.05 or below.

Temporal diagnosis pairs, sepsis-trajectories and network. The method for identifying the trajecto-
ries was described previously in detail5. The method consists of three steps: First 826,427 temporal directed pairs 
of co-morbid diseases were tested to identify pairs where one disease increases the risk of later occurrences the 
other. In the second step, a set of 4,005 diagnoses that had a significant order (one disease primarily occurring 
before the other) was identified. It should be noted that the comorbidities were recalculated on a refined version 
of the original dataset where some minor issues with discharge dates were fixed. Third, this set of pairs was com-
bined into longer trajectories of temporal consecutive diseases. In the case of four disease steps, when disease A 
was preceding disease B, B was preceding C, and C was preceding D we would have three temporal disease pairs 
and a disease trajectory containing diseases A, B, C and D in that order. We required a minimum of 20 patients 
to follow the entire trajectory. We combined temporal trajectories into disease networks graphs, by importing 
all disease pairs included in the trajectories into a network visualized by Cytoscape. The x-axis in the networks 
represent “time-order” and implicitly time although the x-axis is not time-true as progression from one disease to 
another vary across individuals and across disease pairs. It is therefore not possible to draw a compact time-true 
plot in two dimensions.

Calculating age differences. We calculated the difference in age using a general linear model, including 
gender and year of birth as covariates.

Validation of co-morbidities. We compared the sepsis co-morbidities (any disease defined as level three 
diagnoses in the ICD-10 terminology occurring in patients with sepsis) found in the Danish NPR with the 
co-morbidities of A41 in a Swedish co-morbidity browser, based on almost 600,000 individuals from the greater 
Stockholm area: http://www2.dsv.su.se/comorbidityview-demo/.

Calculating RR in SAPS II. To calculate the probability of in-hospital mortality according to SAPS II, we 
used an equation developed and published earlier (Equation 1)17 and converted it into a probability (Equation 2):

= − . + . + . ⋅ +logit SAPS I I ln SAPS I I7 731 0 0737( ) 0 9971 ( 1) (1)score score




 =





= +Pr y

logit
e1

(2)

logit

e1 logit

The SAPS IIscore ranges from 0pt to 163pt. Thus, by employing the equations above, the logit of every inte-
ger between 0 and 163 was converted to probabilities and summed to obtain the area under the curve (AUC) 
for the “baseline” SAPS IIscore. In a similar manner probabilities for the three comorbidities metastatic cancer, 

http://www2.dsv.su.se/comorbidityview-demo/
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hematologic malignancy and AIDS were computed with the only difference being the addition of each their 
weights to the baseline SAPS IIscore; 9 points, 10 points and 17 points, respectively. The relative risks were then 
found by dividing the comorbidity AUC’s to the baseline SAPS II AUC.

Data and materials approval. This study was approved by Danish Data Protection Agency, Copenhagen 
(ref: 2010–54–1059) and Statens Serum Institut (ref: FSEID-00001136).
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