Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Oct 18;72(Pt 11):1587–1589. doi: 10.1107/S2056989016016273

Crystal structure of olivetolic acid: a natural product from Cetrelia sanguinea (Schaer.)

Friardi Ismed a, Aulia Farhan a, Amri Bakhtiar a, Erizal Zaini a, Yuda Prasetya Nugraha b, Okky Dwichandra Putra b, Hidehiro Uekusa b,*
PMCID: PMC5095839  PMID: 27840714

The packing in olivetolic acid is similar to that in resorcinolic acid.

Keywords: crystal structure, olivetolic acid, Cetrelia sanguinea

Abstract

The title compound, C12H16O4 (systematic name: 2,4-dihy­droxy-6-pentyl­benzoic acid) is a natural product isolated from C. sanguinea (Schaer.) and is reported to have various pharmacological activities. The mol­ecule is approximately planar (r.m.s. deviation for the non-H atoms = 0.096 Å) and features an intra­molecular O—H⋯O hydrogen bond. In the crystal, each olivetolic acid mol­ecule is connected to three neighbours via O—H⋯O hydrogen bonds, generating (10-1) sheets. This crystal is essentially isostructural with a related resorcinolic acid with a longer alkyl chain.

Chemical context  

Monoaromatic compounds from lichens have attracted a great inter­est in the pharmaceutical field due to their potential pharmacological activities such as anti­bacterial, anti­fungal, cytotoxic, and photoprotective activities (Gianini et al.,2008: Stocker-Wörgötter, 2008; Ismed et al., 2012). The title compound, C12H16O4, is a derivative of alkyl resorcinolic acid which is commonly found in certain species of lichens (Gomes et al., 2006).graphic file with name e-72-01587-scheme1.jpg

Structural commentary  

The title compound (Fig. 1) crystallizes with monoclinic metric symmetry and adopts a roughly planar conformation (r.m.s. deviation = 0.093 Å). All bond distances, angles and dihedral angles appear to be usual except the bond angle of C6—C5—C12 [124.61 (13)°] compared to the mean value and their standard deviation of selected 24 similar structures reported in Cambridge Structural Database (CSD, Version 5.37, Update 2 Feb 2016; Groom et al., 2016). In this case, the deviating bond angle may be a result of the strong intra­molecular O2—H2⋯O3 inter­action.

Figure 1.

Figure 1

The mol­ecular structure of the title compound, showing 50% probability displacement ellipsoids.

Supra­molecular features  

In the crystal, each mol­ecule is connected with three others (Fig. 2): O1 acts as an O—H⋯O hydrogen bond donor while O2 is an O—H⋯O acceptor, forming a Inline graphic(6) infinite chain. In addition, an O4—H4⋯O3 carb­oxy­lic acid homodimer synthon is observed, generating an Inline graphic(8) loop. Together, these hydrogen bonds construct a layered architecture propagating in the (10Inline graphic) plane. Details of the hydrogen bonds are given in Table 1.

Figure 2.

Figure 2

A partial view of the packing in the title compound, showing the hydrogen-bonded chain structure, formed through O—H⋯O hydrogen bonds. Blue dashed lines indicate hydrogen bonds.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O2i 0.93 (2) 1.90 (2) 2.8168 (16) 169.6 (19)
O2—H2⋯O3 1.00 (3) 1.58 (3) 2.5043 (14) 152 (2)
O4—H4⋯O3ii 0.94 (3) 1.70 (3) 2.6368 (15) 177 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Inter­estingly, the title compound showed isostructurality with alkyl resorsinolic acid derivatives with longer alkyl chain of 6-n-penta­decyl-2,4-dihy­droxy-benzoic acid (Gadret et al., 1975; refcode: PDCHBZ10). Both structures exhibited extremely similar hydrogen bond in resorsinolic acid shown in Fig. 3 a and 3b. Both crystal structures consist of a hydro­philic layer of the resorcinol acid moiety with hydrogen-bonding inter­actions, and a hydro­phobic layer of normal alkyl chains.

Figure 3.

Figure 3

Crystal-packing views along b axis of (a) the title compound and (b) 6-n-penta­decyl-2,4-di­hydroxy­benzoic acid. Both structures possess isostructurality. The arrows indicate the one-dimensional hydrogen-bond chains involving resorsinolic acid.

Crystallization  

Crystallization of the title compound was conducted by dissolving 700 mg of the isolate in an ethyl acetate–hexane solvent mixture (1:1). The solution was kept for one week at room temperature yielding colourless needles of the title compound.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All non-hydrogen atoms were refined anistropically. The hydrogen atoms of O hy­droxy and O carb­oxy­lic acid were located from a difference Fourier map and were refined isotropically. All other hydrogen atoms were located geometrically and refined as riding [U iso = 1.5U iso(C) for the terminal alkyl group and U iso = 1.2U iso(C) for other hydrogen atoms].

Table 2. Experimental details.

Crystal data
Chemical formula C12H16O4
M r 224.25
Crystal system, space group Monoclinic, P21/n
Temperature (K) 173
a, b, c (Å) 14.2527 (8), 4.7524 (3), 17.6489 (11)
β (°) 103.538 (4)
V3) 1162.22 (12)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.79
Crystal size (mm) 0.12 × 0.10 × 0.10
 
Data collection
Diffractometer RIGAKU R-AXIS RAPID II
Absorption correction Multi-scan (ABSCOR; Higashi, 1995)
T min, T max 0.789, 0.924
No. of measured, independent and observed [I > 2σ(I)] reflections 12627, 2087, 1762
R int 0.036
(sin θ/λ)max−1) 0.602
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.045, 0.136, 1.14
No. of reflections 2087
No. of parameters 158
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.29, −0.18

Computer programs: PROCESS-AUTO (Rigaku, 1998), SHELXS2014 (Sheldrick, 2008) and SHELXL2014 (Sheldrick, 2015).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016016273/hb7614sup1.cif

e-72-01587-sup1.cif (409.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016016273/hb7614Isup2.hkl

e-72-01587-Isup2.hkl (167.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016016273/hb7614Isup3.cml

CCDC reference: 1509626

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We gratefully acknowledge Andalas University for financial support (contract No. 12/UN.16/HKRGB/LPPM/2016). Thanks also to Dr Harrie J. M. Sipman, Botanischer Garten und Botanisches Museum Berlin-Dahlem, Freie Universität Berlin, for the identification of the lichen. YPN and ODP wish to thank MEXT for research fellowships.

supplementary crystallographic information

Crystal data

C12H16O4 F(000) = 480
Mr = 224.25 Dx = 1.282 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.54186 Å
a = 14.2527 (8) Å Cell parameters from 12628 reflections
b = 4.7524 (3) Å θ = 3.6–68.2°
c = 17.6489 (11) Å µ = 0.79 mm1
β = 103.538 (4)° T = 173 K
V = 1162.22 (12) Å3 Block, colorless
Z = 4 0.12 × 0.10 × 0.10 mm

Data collection

RIGAKU R-AXIS RAPID II diffractometer 2087 independent reflections
Radiation source: rotating anode X-ray 1762 reflections with I > 2σ(I)
Detector resolution: 10.0 pixels mm-1 Rint = 0.036
ω–scan θmax = 68.2°, θmin = 3.6°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) h = −17→17
Tmin = 0.789, Tmax = 0.924 k = −5→5
12627 measured reflections l = −20→21

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: none
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: mixed
wR(F2) = 0.136 H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.0808P)2 + 0.1676P] where P = (Fo2 + 2Fc2)/3
2087 reflections (Δ/σ)max < 0.001
158 parameters Δρmax = 0.29 e Å3
0 restraints Δρmin = −0.18 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.38939 (8) 0.5564 (2) 0.16723 (7) 0.0419 (3)
C1 0.32068 (11) 0.2528 (3) 0.06446 (9) 0.0333 (4)
H1 0.3726 0.2983 0.0413 0.040*
H1A 0.3901 (15) 0.588 (4) 0.2194 (14) 0.060 (6)*
O2 0.09864 (8) 0.0870 (2) 0.17140 (6) 0.0348 (3)
H2 0.0574 (18) −0.059 (5) 0.1389 (14) 0.079 (7)*
C2 0.31656 (11) 0.3787 (3) 0.13488 (9) 0.0321 (4)
C3 0.24081 (11) 0.3235 (3) 0.16913 (9) 0.0317 (4)
H3 0.2370 0.4140 0.2163 0.038*
O3 0.03156 (7) −0.2603 (2) 0.06590 (6) 0.0345 (3)
C4 0.17037 (10) 0.1334 (3) 0.13338 (8) 0.0286 (4)
O4 0.10317 (8) −0.3497 (2) −0.03022 (6) 0.0378 (3)
H4 0.0556 (18) −0.491 (6) −0.0410 (14) 0.080 (7)*
C5 0.17377 (10) −0.0040 (3) 0.06311 (8) 0.0275 (3)
C6 0.25149 (10) 0.0639 (3) 0.02743 (8) 0.0287 (4)
C7 0.25914 (11) −0.0625 (3) −0.04994 (9) 0.0336 (4)
H7A 0.1981 −0.0241 −0.0887 0.040*
H7B 0.2648 −0.2692 −0.0435 0.040*
C8 0.34233 (11) 0.0400 (3) −0.08352 (9) 0.0368 (4)
H8A 0.3396 0.2476 −0.0879 0.044*
H8B 0.4042 −0.0109 −0.0474 0.044*
C9 0.33918 (12) −0.0863 (3) −0.16340 (9) 0.0374 (4)
H9A 0.3426 −0.2939 −0.1587 0.045*
H9B 0.2768 −0.0377 −0.1992 0.045*
C10 0.42080 (13) 0.0161 (4) −0.19841 (10) 0.0454 (5)
H10A 0.4185 0.2240 −0.2015 0.054*
H10B 0.4831 −0.0373 −0.1632 0.054*
C11 0.41710 (14) −0.1014 (4) −0.27894 (11) 0.0516 (5)
H11A 0.4215 −0.3071 −0.2762 0.077*
H11B 0.4713 −0.0265 −0.2982 0.077*
H11C 0.3562 −0.0466 −0.3145 0.077*
C12 0.09866 (10) −0.2112 (3) 0.03296 (8) 0.0283 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0439 (6) 0.0464 (7) 0.0368 (7) −0.0190 (5) 0.0123 (5) −0.0070 (5)
C1 0.0333 (8) 0.0361 (8) 0.0328 (8) −0.0048 (6) 0.0128 (6) 0.0029 (6)
O2 0.0348 (6) 0.0417 (6) 0.0319 (6) −0.0064 (5) 0.0160 (5) −0.0050 (5)
C2 0.0332 (7) 0.0317 (7) 0.0307 (8) −0.0051 (6) 0.0061 (6) 0.0033 (6)
C3 0.0372 (8) 0.0312 (8) 0.0270 (8) −0.0014 (6) 0.0081 (7) −0.0017 (6)
O3 0.0350 (6) 0.0378 (6) 0.0342 (6) −0.0084 (4) 0.0151 (5) −0.0036 (5)
C4 0.0300 (7) 0.0292 (7) 0.0278 (8) 0.0010 (6) 0.0094 (6) 0.0048 (6)
O4 0.0409 (6) 0.0421 (6) 0.0350 (6) −0.0140 (5) 0.0182 (5) −0.0108 (5)
C5 0.0297 (7) 0.0273 (7) 0.0267 (8) −0.0001 (6) 0.0089 (6) 0.0041 (6)
C6 0.0309 (7) 0.0285 (7) 0.0271 (8) −0.0006 (6) 0.0076 (6) 0.0054 (6)
C7 0.0363 (8) 0.0352 (8) 0.0327 (9) −0.0053 (6) 0.0148 (7) 0.0004 (6)
C8 0.0381 (8) 0.0414 (9) 0.0348 (9) −0.0073 (7) 0.0161 (7) −0.0018 (7)
C9 0.0399 (8) 0.0406 (9) 0.0362 (9) −0.0048 (7) 0.0179 (7) −0.0009 (7)
C10 0.0467 (9) 0.0509 (10) 0.0457 (10) −0.0076 (8) 0.0253 (8) −0.0038 (8)
C11 0.0581 (11) 0.0594 (11) 0.0462 (11) −0.0007 (9) 0.0299 (9) 0.0023 (9)
C12 0.0310 (7) 0.0279 (7) 0.0271 (7) −0.0004 (6) 0.0090 (6) 0.0034 (6)

Geometric parameters (Å, º)

O1—C2 1.3563 (18) C6—C7 1.519 (2)
O1—H1A 0.93 (2) C7—C8 1.5243 (19)
C1—C6 1.380 (2) C7—H7A 0.9900
C1—C2 1.393 (2) C7—H7B 0.9900
C1—H1 0.9500 C8—C9 1.523 (2)
O2—C4 1.3657 (16) C8—H8A 0.9900
O2—H2 1.00 (3) C8—H8B 0.9900
C2—C3 1.380 (2) C9—C10 1.519 (2)
C3—C4 1.388 (2) C9—H9A 0.9900
C3—H3 0.9500 C9—H9B 0.9900
O3—C12 1.2520 (16) C10—C11 1.516 (2)
C4—C5 1.412 (2) C10—H10A 0.9900
O4—C12 1.3094 (17) C10—H10B 0.9900
O4—H4 0.94 (3) C11—H11A 0.9800
C5—C6 1.4333 (19) C11—H11B 0.9800
C5—C12 1.460 (2) C11—H11C 0.9800
C2—O1—H1A 110.4 (13) C9—C8—C7 112.14 (13)
C6—C1—C2 121.82 (13) C9—C8—H8A 109.2
C6—C1—H1 119.1 C7—C8—H8A 109.2
C2—C1—H1 119.1 C9—C8—H8B 109.2
C4—O2—H2 103.8 (14) C7—C8—H8B 109.2
O1—C2—C3 122.28 (14) H8A—C8—H8B 107.9
O1—C2—C1 117.06 (13) C10—C9—C8 113.00 (13)
C3—C2—C1 120.66 (14) C10—C9—H9A 109.0
C2—C3—C4 118.78 (14) C8—C9—H9A 109.0
C2—C3—H3 120.6 C10—C9—H9B 109.0
C4—C3—H3 120.6 C8—C9—H9B 109.0
O2—C4—C3 115.27 (13) H9A—C9—H9B 107.8
O2—C4—C5 122.70 (13) C11—C10—C9 113.66 (15)
C3—C4—C5 122.02 (13) C11—C10—H10A 108.8
C12—O4—H4 110.8 (15) C9—C10—H10A 108.8
C4—C5—C6 118.06 (13) C11—C10—H10B 108.8
C4—C5—C12 117.30 (12) C9—C10—H10B 108.8
C6—C5—C12 124.61 (13) H10A—C10—H10B 107.7
C1—C6—C5 118.60 (13) C10—C11—H11A 109.5
C1—C6—C7 119.31 (13) C10—C11—H11B 109.5
C5—C6—C7 122.09 (13) H11A—C11—H11B 109.5
C6—C7—C8 116.69 (13) C10—C11—H11C 109.5
C6—C7—H7A 108.1 H11A—C11—H11C 109.5
C8—C7—H7A 108.1 H11B—C11—H11C 109.5
C6—C7—H7B 108.1 O3—C12—O4 119.78 (13)
C8—C7—H7B 108.1 O3—C12—C5 122.09 (13)
H7A—C7—H7B 107.3 O4—C12—C5 118.12 (12)
C6—C1—C2—O1 178.54 (13) C12—C5—C6—C1 −176.44 (13)
C6—C1—C2—C3 −1.8 (2) C4—C5—C6—C7 −177.26 (12)
O1—C2—C3—C4 −178.34 (14) C12—C5—C6—C7 4.3 (2)
C1—C2—C3—C4 2.0 (2) C1—C6—C7—C8 −2.5 (2)
C2—C3—C4—O2 179.08 (12) C5—C6—C7—C8 176.74 (13)
C2—C3—C4—C5 −0.2 (2) C6—C7—C8—C9 −176.33 (13)
O2—C4—C5—C6 178.97 (12) C7—C8—C9—C10 179.26 (14)
C3—C4—C5—C6 −1.8 (2) C8—C9—C10—C11 −178.38 (15)
O2—C4—C5—C12 −2.5 (2) C4—C5—C12—O3 2.4 (2)
C3—C4—C5—C12 176.76 (13) C6—C5—C12—O3 −179.11 (13)
C2—C1—C6—C5 −0.3 (2) C4—C5—C12—O4 −176.99 (12)
C2—C1—C6—C7 179.01 (13) C6—C5—C12—O4 1.5 (2)
C4—C5—C6—C1 2.0 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1A···O2i 0.93 (2) 1.90 (2) 2.8168 (16) 169.6 (19)
O2—H2···O3 1.00 (3) 1.58 (3) 2.5043 (14) 152 (2)
O4—H4···O3ii 0.94 (3) 1.70 (3) 2.6368 (15) 177 (2)

Symmetry codes: (i) −x+1/2, y+1/2, −z+1/2; (ii) −x, −y−1, −z.

References

  1. Gadret, M., Goursolle, M., Leger, J. M. & Colleter, J. C. (1975). Acta Cryst. B31, 2784–2788.
  2. Gianini, A. S., Marques, M. R., Carvalho, N. C. P. & Honda, N. K. (2008). Z. Naturforsch. Teil C, 63, 29–34. [DOI] [PubMed]
  3. Gomes, A. T., Honda, N. K., Roese, F. M., Muzzi, R. M. & Sauer, L. (2006). Z. Naturforsch. Teil C, 61, 653–657. [DOI] [PubMed]
  4. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  5. Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
  6. Ismed, F., Lohézic-Le Dévéhat, F., Delalande, O., Sinbandhit, S., Bakhtiar, A. & Boustie, J. (2012). Fitoterapia, 83, 1693–1698. [DOI] [PubMed]
  7. Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8.
  10. Stocker-Wörgötter, E. (2008). Nat. Prod. Rep. 25, 188–200. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016016273/hb7614sup1.cif

e-72-01587-sup1.cif (409.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016016273/hb7614Isup2.hkl

e-72-01587-Isup2.hkl (167.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016016273/hb7614Isup3.cml

CCDC reference: 1509626

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES