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SUMMARY

Using exact, analytic results for the average power of the Benjamini-Hochberg (1995) procedure, 

we provide example power analyses useful for scientists planning studies involving multiple 

comparisons. The power results are based on the distribution of the p-value under the alternative 

for the Pearson’s χ2, and for the Hotelling-Lawley trace, the Wilks’ lambda, and the Pillai-Bartlett 

trace, all tests for the general linear multivariate model. Detailed example power analyses are 

given for a planned mammography experiment with categorical data and a study that tests the 

association of a single nucleotide polymorphism with insulin resistance and visceral adiposity.
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1. INTRODUCTION

A Type I error is a rejection of the null hypothesis when the null hypothesis is true. 

Typically, the Type I error rate is denoted by α, which is often fixed at 0.05. When multiple 

tests are performed in the experiment, the family-wise error rate (FWER) is the probability 

that at least one Type I error occurs during hypothesis testing. The FWER increases as a 

function of the number of hypotheses tested in the experiment. The increasing chance of 

making an error is called the multiple comparison problem (Curran-Everett, 2000).

The multiple comparison problem arises in clinical trials, laboratory studies, microarray 

experiments, and observational studies. A variety of statistical procedures have been 

suggested to control the multiple comparison problem. See Westfall et al. (1999) for an 

overview.
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Benjamini and Hochberg (1995) introduced a multiple comparison technique that controls 

the expected value of the false discovery rate (FDR). This is the proportion of all rejections 

that are rejections of null hypotheses, i.e. rejections that are made in error. Pounds and 

Cheng (2005) provide an approximate method for power under the Benjamini and Hochberg 

(1995) procedure. Exact power for the Benjamini and Hochberg (1995) procedure is derived 

in Glueck et al. (2008). In this paper, we give two detailed examples of how to conduct 

power analyses for the Benjamini and Hochberg (1995) procedure using methods from 

Glueck et al. (2008). The two tests we consider in this paper are among the most commonly 

used tests in statistics, namely the Pearson’s χ2 and the F test for the general linear 

multivariate model (GLMM). Since we will use approximate inputs for Glueck et al. (2008), 

we will assess the accuracy of the exact power computation. We will also provide guidance 

as to when it is appropriate to use the methods of this paper.

In Section 2 we discuss power calculations for the Benjamini and Hochberg (1995) 

procedure. In Section 3 we review previous work on the distribution of p-values under the 

null and alternative, and derive the approximate distributions of the p-value under the 

alternative for the Pearson χ2 test and for three tests for the general linear multivariate 

model. In Section 4 we discuss the accuracy of the power approximations for the Benjamini 

and Hochberg (1995) procedure. In Section 5 we provide the results of two example power 

analyses, one using the Pearson χ2 for a mammography experiment and one using the 

general linear multivariate model for genetic association with diabetes related outcomes. In 

Section 6 we discuss the advantages and limitations of the example power analyses and 

further areas of research.

2. BENJAMINI AND HOCHBERG PROCEDURE AND POWER

Given α ∈ [0, 1], null hypotheses H0i, i = 1, 2 …, m, with independent but not necessarily 

identically distributed p-values Pi, and corresponding order statistics P(i) (the p-values Pi 

sorted in non-decreasing order), the Benjamini and Hochberg (1995) procedure produces a 

non-decreasing sequence of rejection bounds bi = iα*/m ∈ [0, 1]. When k is the largest 

number for which P(k) ≤ bk, the k null hypotheses H0(i), i = 1, 2, …, k, k ≤ m, are rejected, 

and the other null hypotheses are not rejected.

Benjamini and Liu (1999) define average power as the expected value of the ratio of correct 

rejections, K − J, and the number of non-true null hypotheses, m − n, so

(2.1)

As summarized in Table 1, given m hypotheses with m − n true alternatives, fixed α and 

known test statistics and distribution of p-values, Glueck et al. (2008) derive the exact joint 

distribution of the total number of rejections and the number of false rejections in terms of 

sums of the joint distribution function of the order statistics of the p-values. Glueck et al. 
(2008) thus calculate the exact average power given in Equation (2.1).
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3. DISTRIBUTION OF p-VALUES UNDER THE ALTERNATIVE

In order to calculate average power using the method of Glueck et al. (2008), it is necessary 

to know the exact distribution of the un-ordered p-values under the alternative. Denote PHA 

to be the p-value when the alternative hypothesis is true. Thus, for a right-tailed test with a 

generic test statistic X, PHA = P(X ≥ XOBS | HA is true). Note then even if the alternative 

hypothesis is true the p-value is still calculated assuming a true null hypothesis. In general, 

the distribution of the PHA has been considered by authors such as Hung et al. (1997), who 

derived the result for the normal case, Sackrowitz and Samuel-Cahn (1999), who considered 

expected p-values, and Bhattacharya and Habtzghi (2002), who focused on median p-values. 

Although Ruppert et al. (2007) gave the general form of the distribution of PHA, the 

distribution of PHA has not been derived for the Pearson χ2 test of independence nor for 

multivariate F tests for the GLMM. We derive the distribution of PHA for those two cases in 

the next two sections.

3.1 PEARSON’S χ2 TEST

Pearson’s χ2 test (Pearson, 1904) is commonly used in clinical research situations to assess 

whether two binary outcome variables are independent. Kroll (1989) and Agresti (1992) 

provide a thorough summary of the statistical literature on the 2×2 table. The observed data 

for two binary outcome random variables can be summarized as in Table 2. The underlying 

population probabilities under the null hypothesis are defined in Table 3.

The null hypothesis for Pearson’s χ2 test of independence (Agresti, 1990, p. 47) is

(3.1.1)

for all i, j ∈ {0, 1}.

The usual test statistic is the Pearson’s χ2 test (Pearson, 1904). As in Upton (1982) let

(3.1.2)

We will assume fixed marginal totals. Under this assumption, when the null hypothesis is 

true, the exact probability distribution of the test statistic (and of the 2 × 2 table) is the 

hypergeometric distribution (Agresti, 1992, p. 134, Equation 1.2). For ease of calculation, 

under the null, the exact distribution is typically approximated by the central χ2 with one 

degree of freedom. The approximation is usually accurate enough when the expected cell 

counts are all greater than 5 (Rosner, 2006, p. 396). While the exact test allows one-sided 

hypothesis testing, the Pearson’s χ2 is always a two-sided test. The approximate two-sided 

p-value for the Pearson’s χ2 test is given by

(3.1.3)
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Since n11, n00, n01 and n10 are not observed until an experiment has occurred the p-value is a 

random variable.

For power analysis, we are interested in the distribution of PHA. The alternative hypothesis is

(3.1.4)

for all i, j ∈ {0, 1}, where the population probabilities under the alternative hypothesis are 

shown in Table 4. Define

(3.1.5)

Under the alternative hypothesis, the exact distribution of the test statistic is the noncentral 

hypergeometric distribution (Agresti, 1992, p. 134, Equation 1.2). This can be approximated 

by a noncentral χ2 (1,ω) distribution (Cohen, 1988). For 0 < p < 1, an asymptotic form of 

the cumulative distribution function of PHA is given by

(3.1.6)

which is a special case of Ruppert et al.[(2007, Equation 5]. Note that under a true null 

hypothesis Equation (3.1.6) reduces to a continuous uniform(0,1) distribution.

In order to confirm the result given in (3.1.6), we performed an enumeration experiment to 

calculate the empirical cumulative distribution function for the approximate two-sided p-

value for the Pearson’s χ2 test. The overall sample size, N and the marginal totals were fixed 

and all possible tables, i, within the fixed N and marginal totals were enumerated. Table 

probabilities under the null hypothesis were calculated using the central hypergeometric 

distribution (Agresti, 1992, p. 134, Equation 1.2). To calculate the probability of Table i 
under the alternative, the tables were listed in ascending order using the test statistic for each 

table. The table probability under the alternative was then calculated as

(3.1.7)

with Q given in (3.1.2) and ω given in (3.1.5). The table probability under the alternative for 

the table with the largest test statistic was calculated as 1 − Fχ2 [Qmax(i)−1; 1,ω]. Let i index 

the tables, with corresponding p-values pi and probabilities under the alternative given by Xi. 

The empirical cumulative distribution function was calculated as

(3.1.8)
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We compared the empirical cumulative distribution function to the approximate cumulative 

distribution of the p-value (3.1.6) using the following steps. 1) Fix N, N1+, N0+, N+0, and 

N+1; 2) Fix the null hypothesis so that the odds ratio is 1; 3) Fix the alternative hypothesis so 

that the odds ratio is greater than 1. Note that values for N and the alternative hypotheses 

were chosen to provide a range of non-centrality parameters, ω, which is a function of the 

sample size and the effect size; 4) Enumerate all possible tables with the fixed setup; 5) 

Calculate p-values for each table; 6) Calculate probabilities for each table under the null and 

alternative hypothesis; 7) Calculate the empirical distribution function and compare it to the 

theoretical distribution function.

Figure (1) shows the empirical and theoretical p-value distributions when the odds ratio 

under the alternative was 1.2. The approximate distribution of PHA increases in accuracy as 

the sample size increases. As shown in Figure (1), the empirical cumulative distribution 

function is a step function, while the approximate cumulative distribution function is 

continuous. As the sample size increases, the step size decreases, and the empirical function 

is better approximated by approximate cumulative distribution function.

Although Figure (1) shows convergence between the approximate and empirical cumulative 

distribution function, the functions are significantly different by the Kolmogorov-Smirnov 

test (Daniel 1990). To further explore the effect of odds ratio on the strength of the 

approximation, we also considered odds ratios under the alternative hypothesis of 2.3 and 

5.4. The accuracy of the approximation depended on both the sample size and the size of the 

odds ratio under the alternative. For example, the Kolmogorov-Smirnov test showed no 

difference between the empirical and approximate p-value distribution for N = 500, and odds 

ratio = 5.4; N = 500, odds ratio = 2.3, and N = 250, and odds ratio = 2.3. However, for N = 

500, and odds ratio = 1.2, and for N = 100, and odds ratio = 2.3, the empirical and 

approximate distribution results were significantly different. The results of our enumeration 

experiment were similar to those observed by Bayarri and Berger (2000), who compared the 

approximate and exact cumulative distribution functions under the null. Unfortunately, as is 

shown later, the divergence between the empirical and approximate p-value distributions can 

have adverse effects on power estimates.

3.2 MULTIVARIATE F TESTS

The general linear multivariate model (GLMM) is used when multiple outcome 

measurements are taken for each subject. Because there is no uniformly most powerful test 

for the GLMM, a variety of test statistics are in use. Three of the most common tests are 

Wilks’ lambda (W), the Pillai-Bartlett trace (B), and the Hotelling-Lawley trace (L) (see 

Equations 7.20, 7.21 and 7.22 for definitions). Although there are no exact results, the 

distributions of the test statistics under the null (given in Equation 7.19) are well 

approximated by a central F distribution (Muller et al. 1992). Under the alternative, Muller 

and Peterson (1984) give non-central F approximations (shown in Equation 7.24).

For power analysis, we are interested in the distribution of PHA. Let (z) be the scalar 

transformation of test statistic z (details in Appendix A), and (z) be the denominator 

degrees of freedom for the F approximation for that test. The approximate p-value, which is 

a random variable, is given by
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(3.2.1)

The approximate cumulative distribution function of PHA is

(3.2.2)

for 0 < p < 1. This is a special case of Equation (5), Ruppert et al. (2007).

A simulation experiment showed that the approximation for the cumulative distribution 

function of the p-value given in Equation 3.2.2 is very accurate. For the simulation, we fixed 

N, β, and Σ, and repeated these steps 10,000 times: 1) generating ℰ so that [rowi (ℰ)]′ ~ N 
(0, Σ), independently; 2) calculating Y = Xβ + ℰ; 3) performing the Pillai-Bartlett trace, 

Wilks’ lambda and the Hotelling-Lawley trace, and 4) finding the empirical cumulative 

distribution function of the p-values. As shown in Figure 2, the approximate and empirical 

cumulative distribution functions essentially coincide. Similar results were obtained for the 

Pillai-Bartlett trace and the Hotelling-Lawley Trace. The one-sample Kolmogorov-Smirnov 

test (Daniel 1990) showed that there was no difference between the empirical and exact 

cumulative distribution functions for all but the smallest values of ω(z) and the smallest 

sample sizes.

4. ASSESSING ACCURACY OF THE POWER APPROXIMATION

The results of Glueck et al. (2008) give exact average power. Using the previously described 

power formulas with approximate PHA distributions produces approximate average power 

estimates.

A simulation experiment showed that the average power for the Benjamini and Hochberg 

(1995) procedure was accurate to the second decimal place using the F test and to the first 

decimal place using Pearson’s χ2. We verified the accuracy of the power approximation 

using the following steps: 1) We fixed whether the null or the alternative hypothesis was true 

within and across experiments, the sample size, and parameters under the null and 

alternative hypotheses for three independent experiments. These parameters were fixed to 

provide a variety of non-centrality parameters, ω, which is a function of the sample size and 

the effect size; 2) We used a stochastic approach to generate data, a test statistic (either χ2 or 

one of the multivariate F tests), and a p-value for each experiment; 3) We conducted the 

Benjamini and Hochberg (1995) procedure to determine the number of hypothesis 

rejections; 4) We counted the number of rejections of the null when the null was actually 

true; 5) We repeated this process 10,000 times for the F. For the χ2 we formed all possible 

three table combinations given fixed N and fixed table margins. 6) We calculated empirical 

average power as
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(4.1)

where

(4.2)

for the F and

(4.3)

for the χ2, i.e., the empirical joint probability mass is a function of k, the number of 

rejections, and j, the number of false rejections. 7) We calculated the distribution of PHA 

given in Equation (3.1.6), for the χ2, or Equation (3.2.2), for the appropriate general linear 

multivariate model test; 8) We used the p-value distribution to calculate the theoretical 

average power result by the methods of Glueck et al. (2008). The theoretical result is exact 

when the p-value distribution is exact. Because the distributions of PHA given in Equation 

(3.1.6) and Equation (3.2.2) is approximate, our calculations of the theoretical average 

power will also be approximate.

The results of an example simulation for the Pearson’s χ2 test are shown in Table (5). The 

largest difference between the empirical average power and theoretical average power for 

any χ2 test was 0.131. The inaccuracy in the power result is due to errors in the 

approximation for the distribution of PHA. The power approximation is accurate for small 

and large values of power, but inaccurate for values around 0.5.

The results of an example simulation for the three multivariate F tests, and its comparison to 

the theoretical results are given in Tables (6), (7) and (8). The empirical average power and 

theoretical average power did not differ widely for any case examined. The largest difference 

between the empirical average power and theoretical average power for any F test was 0.069 

and occurred in the smallest sample size. The majority of cases had absolute differences of 

less than 0.01. Given the uncertainty of parameter selection for power analysis, errors in the 

estimation of average power on the order of 0.01 should make no difference in clinical or 

experimental design.

5. EXAMPLE POWER ANALYSES FOR THE BENJAMINI AND HOCHBERG 

PROCEDURE

We conducted two example power analyses using the Benjamini and Hochberg (1995) 

procedure. The first one is for a set of independent χ2 tests, and the second is for a set of 
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independent multivariate tests for the general linear multivariate model. We give detailed 

power analyses for each experiment.

5.1 PEARSON’S χ2 TEST

The first example is for a proposed meta-analysis, designed to answer the question whether 

hormone replacement therapy (HRT) affects the detection of cancer by digital 

mammography. Meta-analysis is useful because it combines several, smaller studies into a 

study that has a larger number of subjects and as a result has increased power to detect the 

difference of interest. Hormone replacement therapy (HRT) has been implicated both in 

increasing the number of breast cancers (Collaborative Group, 1997), and in making breasts 

more mammographically dense (Greendale et al. 1999), which can hide developing cancers. 

Lewin et al. (2002), Skaane et al. (2003) and Pisano et al. (2005) compared the diagnostic 

accuracy of digital and film mammography. Although none of these clinical trials were 

designed to look at the effect of hormone replacement therapy on breast cancer detection, 

the data from these trials could be used to answer the question.

Data for women with breast cancer in each study was used to form three 2 × 2 tables. The 

tables show women with cancer cross-classified by two binary variables: use or non-use of 

HRT, and detection or non-detection by digital mammography. Each 2 × 2 table will yield a 

Pearson’s χ2 test. The null hypothesis is no association between hormone replacement 

therapy and whether the cancer is detected by digital mammography.

With three studies, the risk of making at least one Type 1 error is more than 0.14. All the 

studies are independent, as they were conducted in different locations, with different 

subjects and investigators. Thus, we can use the Benjamini and Hochberg (1995) procedure 

to control the multiple comparisons problem. We then use the methods of Glueck et al. 
(2008) to calculate the exact average power for Benjamini and Hochberg (1995) procedure. 

To conduct an average power analysis, there are four main steps.

First, we need to choose α*, which is the level at which we wish to control the false 

discovery rate. Recall that the false discovery rate is the expected number of rejections when 

the null is true, divided by the total number of rejections. By analogy to the Type 1 error 

rate, this is conventionally set at α* = 0.05.

Second, to calculate power using the methods of Glueck et al. (2008), we need to specify the 

number of hypothesis tests for which the null is actually true. In this case, since we have 

three studies that all test the same hypothesis, either all the null hypotheses are true, or none 

of them are. It makes no sense to conduct the study if we truly believe that all the null 

hypotheses are true, so we will assume that the number of hypothesis tests for which the null 

is true is zero. When no null hypotheses are true, average power can be interpreted as the 

fraction of hypotheses that should be rejected that are rejected. Note that the assumption of 

none of the three null hypotheses being true is not essential to use the methods of Glueck et 

al. (2008) but is made for logical reasons.
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Third, we need to specify the sample size for each hypothesis test. There were N = 42, 31 

and 335 total breast cancer cases in Lewin et al. (2002), Skaane et al. (2003) and Pisano et 
al. (2005) respectively. Digital mammography detected 27, 23 and 185, respectively.

Finally, we need to specify the population proportions under both the null and the alternative 

hypotheses. It is important to note here that we never know these answers well until the 

experiment is run. The best we can do is to estimate the population parameters from 

previous studies, or from clinical knowledge. In any power analysis, it is important to note 

where we are uncertain, and to conduct sensitivity analyses, to see if the sample size is fairly 

stable to different input parameters. We show here how we estimated the proportions under 

the null and alternative for this example.

In the Collaborative Group (1997) paper, 33% of the 53,865 women in the main analysis had 

used hormone replacement therapy at some point. In the Pisano et al. (2005) study, 55% of 

the cancers were detected digitally. We fixed the margins at these values. Assuming no 

association between the rows and columns, πij = πi+π+j. Thus, under the null, we obtain π11 

= 0.18, π10 = 0.15, π01 = 0.37, π00 = 0.30 as reasonable values for the population 

parameters.

With the fixed margins, we calculated the power for clinically interesting odds ratios. If we 

choose the alternative hypotheses of δ11 = 0.10, δ10 = 0.23, δ01 = 0.45, δ00 = 0.22 for all 

three experiments, women who take hormone replacement therapy are 0.21 times as likely to 

get their cancer detected by a digital mammogram, and the average power is 0.67. Similarly, 

if we choose an the alternative hypotheses of δ11 = 0.07, δ10 = 0.26, δ01 = 0.48, δ00 = 0.19, 

women who take hormone replacement therapy are 0.08 times as likely to get their cancer 

detected by a digital mammogram, and the average power is 0.86. This means that with the 

sample sizes observed in Lewin et al. (2002),Skaane et al. (2003) and Pisano et al. (2005), 

we would expect to reject 86% of the three hypotheses.

As in single hypothesis power analysis, one wants average power to be as high as possible. 

The interpretation of a 86% average power is that there is a large chance of getting all three 

rejections in the meta-analysis, while controlling the false discovery rate at 0.05.

5.2 MULTIVARIATE F TESTS

As a second example, we now give an example of using an average power analysis to choose 

sample size for an experiment with three independent general linear models. Links between 

visceral fat accumulation, increased insulin sensitivity and Type 2 diabetes have been 

explored. (Lewis et al. 2002). Visceral fat accumulation and insulin sensitivity may be linked 

to Type 2 diabetes by a single nucleotide polymorphism (SNP).

A typical genome wide association study can result at least 300,000 hypothesis tests, and a 

large multiple comparison problem. Because the exact power methods of Glueck et al. 
(2008) work only for a small number of hypotheses, assessing average power for a genome 

wide association study is beyond the scope of this paper. Instead, we examine another 

common problem, a confirmatory study.
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Suppose a genome wide association study has identified three independently inherited SNPs 

which are strongly associated with the outcomes of interest. We assume that each SNP is 

expressed in a dominant genetic manner. We will also assume that each study subject will 

only have no more than one of the three SNPs. This is a reasonable assumption if the SNPs 

are rare in the population. With control of the false discovery rate, we wish to assess the 

association between each SNP and the bivariate outcomes of visceral fat accumulation and 

insulin sensitivity, controlling for age. Since visceral fat and insulin sensitivity are measured 

in different scales we will also assume they have been scaled so that are of the same order of 

magnitude.

Suppose we collect information on visceral fat volume and insulin sensitivity in four groups 

of different people: group 1 with SNP 1; group 2 with SNP 2; group 3 with SNP 3; and the 

last group with none of the implicated SNPs. We wish to compare the difference in average 

visceral adiposity and insulin sensitivity between each group.

We now use the methods of Glueck et al. (2008) to calculate the exact average power for 

Benjamini and Hochberg (1995) procedure. To conduct an average power analysis, there are 

four main steps.

First, we choose α* = 0.05 to control the false discovery rate. Second, we specify the 

number of hypothesis tests for which the null is actually true. Here, we suppose that each 

SNP is in fact related to the outcomes, and thus no null is true. Third, we set up the models, 

and null and alternative hypotheses. We calculate average power as a function of the 

parameters and sample sizes, and use the average power values to choose a sample size for 

the study.

With xi indicating the ith subject’s age, the X and β matrices for each of the SNP models are:

(5.2.1)

with associated β matrix given by

(5.2.2)

The null hypothesis that there is no difference between the normal population, and those 

carrying SNP i is
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(5.2.3)

The C, U and Σ matrices for this hypothesis are

(5.2.4)

(5.2.5)

(5.2.6)

As with one hypothesis power, multiple hypothesis average power depends on the 

hypothesis being tested and the sample size. In this case it also depends on what assumption 

is made regarding the prevalence of individuals with a SNP of interest in each study. Define 

κ to be the proportion of the study population that has one of the SNP being studied. Let ϕ 
represent the difference between the normal population, and those with any SNP in both 

visceral adiposity and insulin sensitivity. Also, define N to be the sample size for each 

hypothesis test.

Figure 3 shows the average power curve for three single SNP models. Here, κ = 0.10. The 

difference,ϕ, in both visceral adiposity and insulin sensitivity between the normal population 

and those with a SNP was allowed to vary between 0 and 0.8. With sample size of 500 per 

hypothesis, κ of 0.10 and ϕ of 0.25, the average power is nearly 50%. With sample size of 

500 per hypothesis, κ of 0.10 and ϕ of 0.4, the average power is over 90%. Thus the 

proposed genetics studies should provide adequate average power to answer the question as 

to which of the SNPs are associated with visceral adiposity and insulin resistance, while 

controlling the false discovery rate at 0.05. The interpretation of average power for the 

Benjamini and Hochberg (1995) procedure is the fraction of hypotheses that should be 

rejected that are rejected. Power of 90% shows that on average, all three hypotheses will be 

rejected 90% of the time.

For this example power analysis, the values of κ and ϕ were set somewhat arbitrarily. In a 

grant application, one would use previously published literature, or clinical knowledge to 

choose reasonable values of κ and ϕ. A graph similar to Figure 3 is useful for clinicians and 

granting agencies so that they can see the effects of changes in population value and sample 

sizes on the power of the study.

Feser et al. Page 11

J Stat Theory Appl. Author manuscript; available in PMC 2016 November 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



6. DISCUSSION

This paper develops the necessary components for performing average power calculations 

for small numbers of hypotheses when using the Benjamini and Hochberg (1995) procedure 

to adjust for multiple comparisons. The Benjamini and Hochberg (1995) procedure can be 

used in clinical trials, experimental studies and grant proposals whenever the hypotheses are 

independent. The examples presented here show how to conduct power and sample size 

analysis based on the Benjamini and Hochberg (1995) procedure for two commonly used 

tests. These methods also would be useful to investigators submitting grants and as another 

way to perform a meta analysis. We hope that our examples will aid study designers and 

statisticians in both computing and interpreting average power results.

All power analysis depends on knowledge of population parameters that are in fact 

impossible to know before the study is completed. The best power analysis uses information 

from previously published studies, or from clinical knowledge. Because there is uncertainty 

in these estimates, even the best power analysis is subject to error. The error in the power 

estimates is compounded by using approximations to the distributions of PHA.

This paper discusses average power for the Pearson’s χ2 test of independence and three tests 

for the general linear multivariate model. The methods of this paper can be extended to 

calculate Benjamini and Hochberg (1995) power for other statistical tests. This paper 

assumes independent hypotheses that are necessary for the Benjamini and Hochberg (1995) 

procedure. Often however, hypotheses are correlated. While not explored in this paper, 

Benjamini and Yekutieli (2001) explores using the Benjamini and Hochberg (1995) 

procedure under conditions of non independent hypotheses. The methods of this paper could 

thus be extended using Benjamini and Yekutieli (2001) to allow for situations where the 

assumption of hypothesis independence can be relaxed.

APPENDIX

In this appendix, we give definitions, and approximate distributions under the null and the 

alternative for three multivariate tests. The discussion is condensed from Muller et al., 
(1992) and is reproduced here for the readers’ convenience.

The general linear multivariate model is

(7.1)

where Y and ℰ are N × p, X is N × q, and β is q × p with rank(X)= r. We assume that each 

row of ℰ is independent and identically distributed as N(0, Σ) (Muller et al 1992).

Define two contrast matrices, C and U, and a hypothesis matrix θ so that

(7.2)
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The multivariate general linear null hypothesis is

(7.3)

All test statistics are functions of the observed data. Let s = min(a, b). As in Muller et al 
(1992), define

(7.4)

(7.5)

(7.6)

(7.7)

(7.8)

(7.9)

The alternative hypothesis is of the form

(7.10)

Under the alternative hypothesis, we calculate

(7.11)

(7.12)
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(7.13)

Define the test statistic for Wilks’ lambda as

(7.14)

Define the test statistic for the Pillai-Bartlett trace as

(7.15)

Define the test statistic for the Hotelling-Lawley trace as

(7.16)

A scalar measurement of multivariate association,  (ẑ) for each observed test statistic z ∈ 
{Ŵ, B̂, L̂} appears in Table 9. Muller et al., (1992) gave single F approximations under the 

null and the alternative for the multivariate tests. Let

(7.17)

The denominator degrees of freedom for three multivariate tests are given in Table 11. 

Define for each test statistic z

(7.18)

Then for each multivariate test under the null,

(7.19)

where FF [ab, (z)] is the central F distribution with numerator degrees of freedom ab and 

denominator degrees of freedom (z). Under the alternative hypothesis, the distribution of 

test statistic becomes noncentral. For the purposes of defining the non-centrality parameter, 

define the test statistic under the alternative for Wilks’ lambda as

(7.20)
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the test statistic under the alternative for the Pillai-Bartlett trace as

(7.21)

and the test statistic under the alternative for the Hotelling-Lawley trace as

(7.22)

A scalar measurement of multivariate association under the alternative,  (z) for each test 

statistic z ∈ {W, B, L} appears in Table 11. Define the non-centrality parameter ω as

(7.23)

This is the value that the scalar test statistic would have taken on if we observed θ̂=θA and 

Σ̂=ΣA For each multivariate test under the alternative we have

(7.24)

where FF [ab, (z), ω (z)] is the noncentral F distribution with ab numerator degrees of 

freedom, (z) denominator degrees of freedom, and noncentrality w (z).
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Figure 1. 
Comparison of the empirical and theoretical χ2 p-value distributions under the alternative 

hypothesis when the odds ratio under the alternative hypothesis is 1.2. Population 

parameters under the null were π11 = 0.25, π10 = 0.25, π01 = 0.25, π00 = 0.25 and under the 

alternative were δ11 = 0.26, δ10 = 0.24, δ01 = 0.24, δ00 = 0.26.
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Figure 2. 
Comparison of empirical and theoretical p-value distributions for Wilks’ Lambda for sample 

sizes of N = 30, 90 and 150 with δ = 0.2, where δ measures the difference between treatment 

group means.
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Figure 3. 
Average power curve for the Benjamini and Hochberg (1995) procedure for three 

independent studies using the general linear multivariate model. Here the Hotelling-Lawley 

trace, the Pillai-Bartlett trace and Wilks’ lambda test coincide. The hypothesis for each study 

is that there is no association between a single nucleotide polymorphism and visceral 

adiposity and insulin sensitivity. The false discovery rate was set at 0.05. The population 

proportion of individuals in each study of individuals with the SNP of interest was set at 

0.10. The difference between the normal population and those with any SNP in both visceral 

adiposity and insulin sensitivity was varied to examine the effect on power.
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Table 1

Summary of possible hypothesis rejection and non-rejection scenarios. m is the total number of hypotheses 

tested. K is the total number of rejections of which J are false rejections.

Decision

Do Not Reject Reject

Null Hypothesis True n − J J n

Alternative Hypothesis True (m − n) − (K − J) K − J m − n

m − K K m
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Table 2

Observed data for two binary outcome random variables. Here n11 is the number of subjects for whom both 

variable 1 and variable 2 take on the values 1. n10 is the number where variable 2 is 1 and variable 1 is 0, and 

n01 and n00 are defined similarly. The total number of observations is N = n11 + n10 + n01 + n00. The row and 

column marginals are N1+ = n11 + n10, N0+ = n01 + n00, N+1 = n11 + n01 and N+0 = n10 + n00.

Variable 1

1 0

Variable 2 1 n11 n10 N1+

0 n01 n00 N0+

N+1 N+0 N
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Table 3

Population probabilities under the null hypothesis for two binary random variables. π11 is the probability that 

a subject will have both Variable 1 and Variable 2 take on the value 1. π10, π01, and π00 are defined similarly.

Variable 1

1 0

Variable 2 1 π11 π10 π1+

0 π01 π00 π0+

π+1 π+0
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Table 4

Population probabilities under the alternative hypothesis for two binary random variables. δ11 is the 

probability that a subject will have both Variable 1 and Variable 2 take on the value 1. δ10, δ01, and δ00 are 

defined similarly.

Variable 1

1 0

Variable 2 1 δ11 δ10 δ1+

0 δ01 δ00 δ0+

δ+1 δ+0
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Table 5

Comparison of empirical and theoretical average power for the Benjamini-Hochberg (1995) procedure. Results 

are for three independent χ2 hypothesis tests. The sample size for each experiment is N ∈ {100, 250, 500}. 

The odds ratio under the alternative is δ ∈ {1.2, 2.3 and 5.4}.

δ N Empirical
Average
Power

Theoretical
Average
Power

Absolute
Difference

1.2 100 0.064 0.028 0.036

250 0.076 0.045 0.031

500 0.096 0.077 0.019

2.3 100 0.567 0.436 0.131

250 0.896 0.876 0.020

500 0.996 0.994 0.002

5.4 100 0.992 0.978 0.014

250 1.000 1.000 0.000

500 1.000 1.000 0.000
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Table 6

Comparison of empirical and theoretical average power for the Benjamini and Hochberg (1995) procedure. 

Results are for three independent general linear multivariate models. Each hypothesis is tested with the Wilks’ 

lambda. The sample size for each experiment is N ∈ {30, 90, 150}.The difference between treatment group 

means under the alternative is δ ∈ {0.2, 0.5 and 0.8}.

δ N Empirical
Average
Power

Theoretical
Average
Power

Absolute
Difference

0.2 30 0.043 0.046 0.003

90 0.153 0.157 0.004

150 0.318 0.315 0.003

0.5 30 0.350 0.342 0.008

90 0.953 0.944 0.009

150 0.999 0.998 0.001

0.8 30 0.861 0.825 0.036

90 1.000 1.000 0.000

150 1.000 1.000 0.000
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Table 7

Comparison of empirical and theoretical average power for the Benjamini and Hochberg (1995) procedure. 

Results are for three independent general linear multivariate models. Each hypothesis is tested with the Pillai-

Bartlett trace. The sample size for each experiment is N ∈ {30, 90, 150}. The difference between treatment 

group means under the alternative is δ ∈ {0.2, 0.5 and 0.8}.

δ N Empirical
Average
Power

Theoretical
Average
Power

Absolute
Difference

0.2 30 0.036 0.047 0.011

90 0.148 0.157 0.009

150 0.312 0.314 0.002

0.5 30 0.311 0.333 0.022

90 0.951 0.933 0.018

150 0.998 0.997 0.001

0.8 30 0.838 0.769 0.069

90 1.000 1.000 0.000

150 1.000 1.000 0.000
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Table 8

Comparison of empirical and theoretical average power for the Benjamini and Hochberg (1995) procedure. 

Results are for three independent general linear multivariate models. Each hypothesis is tested with the 

Hotelling-Lawley trace. The sample size for each experiment is N ∈ {30, 90, 150}. The difference between 

treatment group means under the alternative is δ ∈ {0.2, 0.5 and 0.8}.

δ N Empirical
Average
Power

Theoretical
Average
Power

Absolute
Difference

0.2 30 0.054 0.045 0.009

90 0.158 0.156 0.002

150 0.323 0.316 0.007

0.5 30 0.376 0.348 0.028

90 0.954 0.953 0.001

150 0.999 0.999 0.000

0.8 30 0.875 0.864 0.011

90 1.000 1.000 0.000

150 1.000 1.000 0.000
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Table 9

Scalar measurements of multivariate association for three multivariate tests.

Name, (z) Transformation,  (ẑ)

Wilks’ Lambda (Ŵ)

1 − 

Pillai-Bartlett Trace (B̂) B̂/s

Hotelling-Lawley Trace (L̂) (L̂/s) (1 + L̂/s)−1
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Table 10

Denominator degrees of freedom for three multivariate test statistics.

Name, (z) Denominator degrees of Freedom,  (z)

Wilks’ Lambda (W) g [(N − r) − (b − a + 1)/2] − (ab − 2) /2

Pillai-Bartlett Trace (PB) s [(N − r) − b + s]

Hotelling-Lawley Trace (HL) s [(N − r) − b − 1] + 2
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Table 11

One-to-one transformations for three multivariate test statistics.

Name, (z) Transformation,  (z)

Wilks’ Lambda (W)

1 − 

Pillai-Bartlett Trace (B) B/s

Hotelling-Lawley Trace (L) (L/s) (1 + L/s)−1
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