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SUMMARY

When multiple drugs are administered simultaneously, investigators are often interested in 

assessing whether the drug combinations are synergistic, additive, or antagonistic. Existing 

response surface models are not adequate to capture the complex patterns of drug interactions. We 

propose a two-component semiparametric response surface model with a parametric function to 

describe the additive effect of a combination dose and a nonparametric function to capture the 

departure from the additive effect. The nonparametric function is estimated using the technique 

developed in thin plate splines, and the pointwise bootstrap confidence interval for this function is 

constructed. The proposed semiparametric model offers an effective way of formulating the 

additive effect while allowing the flexibility of modeling a departure from additivity. Example and 

simulations are given to illustrate that the proposed model provides an excellent estimation for 

different patterns of interactions between two drugs.
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1. Introduction

Studies of interactions among biologically active agents, such as drugs, carcinogens, or 

environmental pollutants, have become increasingly important in many branches of 

biomedical research. For example, in cancer chemotherapy the therapeutic effect of many 

anticancer drugs is limited when they are used as a single drug (Kanzawa, Nishio, Fukuoka, 

Sunami, and Saijo, 1999). Finding the combination therapies with increasing treatment 

efficacy and reduced toxicity is an active and promising research area. In this paper, we 

focus on assessing drug interactions for experiments performed in in vitro and/or in vivo 
studies to help to determine whether a combination therapy should be further investigated in 

a clinical trial.
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The literature supports the notion that the Loewe additivity model (Berenbaum, 1989; 

Greco, Bravo, and Parsons, 1995 and references therein; Lee, Kong, Ayers, and Lotan, 2007) 

can be considered as the “gold standard” to define drug interactions. Based on the Loewe 

additivity model, the following two approaches are often used: (1) the marginal dose-effect 

curve model method (MDECM), or (2) the response surface method (RSM). The MDECM 

(Kelly and Rice, 1990) fits a dose-effect curve for each single drug, uses the fitted dose-

effect curves to calculate the expected additive effect to a particular combination, and then 

compares the expected additive effect to the observed effect. The MDECM methods can 

only assess drug interactions at observed combinations, and do not give a complete picture 

of drug interactions over all possible combination doses. The RSM (Greco et. al., 1995), 

which involves an estimation of the k + 1 dimensional response surface in k drug 

combinations, can take all of the information present in the full dose-effect data set for k 
drugs to assess drug interactions at all levels of combination doses. However, most of the 

RSMs either use a single parameter (e.g., Carter, Gennings, Staniswalis, Cambell, and 

White, 1988) or use a 50% maximal effect isobole (White, Faessel, Slocum, Khinkis, and 

Greco, 2004) to capture synergy, additivity, or antagonism. These approaches are not 

adequate to capture different patterns of drug interactions.

To overcome this limitation, we recently developed a parametric response surface model 

with a complete quadratic function of combination doses to capture synergy, additivity, and 

antagonism (Kong and Lee, 2006). Similar to many other settings, these parametric models 

are efficient when the model assumptions hold but not necessarily robust when the 

assumptions fail. Therefore, our goal in the paper is to develop a semiparametric model to 

capture complex patterns of drug interactions and provide statistical inference. Although 

fully nonparametric models have been explored in the literature, the accomplishment is quite 

limited. Suhnel (1990) used bivariate splines to fit dose effect data. The determination of 

drug interactions was based on the visualization of whether the contours of the response 

surface were concave up or concave down. Prichard and Shipman (1990) proposed using the 

differences of the theoretical additive surface and the experimental data surface to reveal 

regions of synergy and antagonism. However, the theoretical additive surface was not 

constructed accurately, and the assessment of drug interaction was not derived from a 

statistical point of view. Kelly and Rice (1990) and Kong and Eubank (2006) proposed using 

B-spline to estimate a marginal dose-effect curve. However, the fitted smoothing curve can 

not be extrapolated beyond the observed range of effects for each single drug. Thus, the 

additive effects for those combination doses beyond the range of the effects produced by 

each single drug cannot be modeled. To predict the additive effects for all combination 

doses, our idea in this paper is to use parametric model to estimate dose-effect curve for 

single drug. Based on the reasonably chosen parametric dose-effect curve model and the 

Loewe additivity model, we can estimate the theoretical additive surface. Subsequently, we 

use a nonparametric function to describe the effect beyond the additive model. The 

confidence surfaces for the nonparametric function are constructed so that the local synergy 

or local antagonism can be estimated from the statistical point of view. This approach 

combines the idea used in the MDECM but also incorporates the advantages of the RSM. 

We describe our model and its estimation in Sections 2 and 3, and give a case study in 

Section 4 and simulations in Section 5. The last section is devoted to discussion.
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2. The proposed model

Recall the Loewe additivity model (Berenbaum, 1989; Greco et al., 1995 and references 

therein)

(1)

where d1, d2 are doses of drug 1 and drug 2 in the mixture, y is the theoretic additive effect 

at (d1, d2), and Dy,1 and Dy,2 are the respective single-agent doses of drug 1 and drug 2 that 

elicit the effect y. The theoretic additive effect y at (d1, d2) can be predicted as long as the 

dose-effect curves for each of the two drugs are known. Denote the dose-effect curves for 

drug 1 and drug 2 used alone as F1(D1) and F2(D2), respectively. Then, the predicted 

additive effect, say y, can be obtained by solving equation (1) after replacing Dy,1 by 

and Dy,2 by , where  is the inverse function of Fi (i = 1, 2). If the effect measured 

at (d1, d2) is more than or less than the predicted effect, the combination dose (d1, d2) 

corresponds to synergy or antagonism. We denote the predicted effect at the combination 

dose (d1, d2) by Fp(d1, d2).

To capture different patterns of drug interaction, we propose a two-component model to 

describe the effect of combination treatment:

(2)

Please note that in equation (2) and equations (3), (4), and (6) below, a mean zero random 

error term is suppressed from the right hand side of the model. Here f(d1, d2) is a function 

that is estimated nonparametrically to capture local synergy and local antagonism, i.e., drug 

effect beyond the additive effect. To see this point, suppose the marginal dose-effect curves 

are decreasing, then f(d1, d2) < 0 implies that the effect at (d1, d2) is more than the predicted 

effect Fp(d1, d2), thus the combination dose (d1, d2) is synergistic. On the other hand, f(d1, 

d2) > 0 implies that the effect at (d1, d2) is less than the predicted effect, thus the 

combination dose (d1, d2) is antagonistic. Contrarily, in the case of increasing marginal 

dose-effect curves, f(d1, d2) > 0 or f(d1, d2) < 0 implies that the combination dose (d1, d2) is 

synergistic or antagonistic, respectively.

3. Estimation for the proposed model

From this point on we assume that the observed data are (d1i, d2i, Ei) for i = 1, …, n. Here 

(d1i, d2i) (i = 1, …, n) is the observed combination dose, and Ei (i = 1, …, n) is the 

corresponding observed effect. If the data contain enough observations for each drug when 

used alone, then, the marginal dose-effect curves, and subsequently, predicted additive 

effects, may be estimated with small error. The choices of the dose-effect curves may be 

based on the biology-driven mechanistic models, such as the median effect model by Chou 

and Talalay (1984), if the model provides adequate fit. Once we obtain an appropriate dose-
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effect curve for each drug, the predicted effects based on the Loewe additivity model can be 

obtained. In the literature, two commonly used classes of marginal dose-effect curves are 

reported. We illustrate how to obtain the predicted effect F̂
p(d1, d2) under each class in 

Subsection 3.1. Next, we can obtain the difference of the observed effect and the predicted 

effect at each observed combination dose (d1i, d2i) (i = 1, …, n). Based on this information, 

we can then estimate the function f(d1, d2) using the technique described in Subsection 3.2. 

To account for the variability in estimation, the bootstrap confidence interval for f(d1, d2) is 

given in Subsection 3.3.

3.1. Estimation of the marginal dose-effect curves and the predicted effects

One class of commonly used dose-effect curves is based upon a linear relationship between 

the effect or transformed effect and the dose or concentration. The dose-effect curves for 

drug 1 and drug 2 have the following form:

(3)

where g(E) is a monotonic function of E, for example, we may take  (Carter 

et. al., 1988). The intercepts in (3) are assumed to be the same since the baseline effects 

without drugs (i.e., Dy,1 = Dy,2 = 0) should be the same. We refer to Y as the transformed 

effect. Based on the Loewe additivity model, the predicted effect in Y scale can be obtained 

from . The resulting predicted additive response function of 

the combination dose is, then,

(4)

In application, we may first regress g(E) on dose with the observations of each drug when 

used alone to see whether the fit is adequate and the intercepts of the two regression lines for 

the two drugs are close. If so, we may force the intercepts to be the same by regressing g(E) 

on d1 and d2 using only the marginal data (i.e., the data with d1 = 0 or d2 = 0). Thus, we 

obtain the estimates of β0, β1, and β2. Plugging these estimates in equation (4), we obtain 

the theoretic additive effect F̂
p(d1, d2) in the transformed scale for each combination dose 

(d1, d2). The predicted additive effect in the original scale at (d1, d2) is obtained by the 

inverse transformation

(5)

Another class of dose-effect curves is based upon a linear relationship between the effect or 

transformed effect and the log(dose) or log(concentration). This class is very general and 

includes many families (Kong and Lee, 2006). We assume that the effect or transformed 

effect follows a linear function of log(dose) for each of the two drugs when acting alone:
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(6)

Again g(E) is a monotonic function of E, and Y is the transformed effect. Kong and Lee 

(2006) showed that, based on the Loewe additivity model, the predicted effect at 

combination dose (d1, d2) is Y = Fp(d1, d2) = β0 + β1 log(d1 + ρd2), where ρ can be obtained 

by solving .

3.2 Estimation of f(d1, d2)

In the previous subsection, we illustrated how to estimate the additive effect for each 

combination dose. Particularly, we can estimate the additive effect, F̂
p(d1i, d2i), for each 

observed combination dose (d1i, d2i) (i = 1, …, n). Then we can easily compute the 

difference of the observed effect and the predicted additive effect, Yi − F̂
p(d1i, d2i), at each 

observed combination dose (d1i, d2i) (i = 1, …, n), where Yi = g(Ei). Note that f(d1, d2) in 

(2) is used to capture the departure from the additive effect, which only exists for non-

marginal combination dose, i.e., (d1, d2) with d1 ≠ 0 and d2 ≠ 0 because by definition, there 

is no interaction when a drug is used alone. Theoretically, f(d1, d2) should be set as zero 

whenever d1 = 0 or d2 = 0. However, as far as we know, in the framework of bivariate 

splines, there are no basis functions such that their linear combination is zero at (d1, d2) 

whenever d1 = 0 or d2 = 0. In order to estimate f(d1, d2) as close to zero as possible 

whenever d1 = 0 or d2 = 0, we force the differences between the observed and predicted 

effects at the marginal observations to be zero. Thus, we define an indicator function

Then, we can proceed to estimate the function f(d1, d2) based on the observed doses (d1i, 

d2i) and the estimated differences (Yi − F̂
p(d1i, d2i)) 1{d1i≠0 & d2i≠0} for i = 1, …, n.

We use thin plate splines (Green and Silverman, 1994) to represent f(d1, d2). The thin plate 

splines can incorporate observations from any kind of design, such as a factorial design, ray 

design (Chou and Talalay, 1984), and a uniform design (Tan, Fang, Tian, and Houghton, 

2003). We adopted the techniques developed in a mixed effect model (Ruppert, Wand, and 

Carroll, 2003) to select the smoothing parameter and to estimate the function f(d1, d2).

The estimated function f(d1, d2) can be obtained by minimizing the following penalized 

residual sum of squares (Green and Silverman, 1994):

(7)
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where the first term measures the goodness of fit, the second term, J(f), measures the 

smoothness of the function f(d1, d2), and the smoothing parameter, λ, measures the trade-off 

between the goodness of fit and the smoothness of the function f. The minimizer of PRSS is 

necessarily a natural thin plate spline, which can be expressed as a linear combination of the 

radial basis functions:

(8)

where the radial basis function

(9)

The knots, say, (κ1k, κ2k)T (k = 1, …, K), are all the distinct values among (d1i, d2i)T (i = 1, 

…, n), and the distance between two combination doses is defined as the Euclidean distance:

If we define a K × K matrix Ω = [η(‖(κ1k, κ2k)T − (κ1k′, κ2k′)T‖)1≤k,k′≤K], a K × 3 matrix 

TT = [1, κ1k, κ2k]1≤k≤K and a vector υ = (υ1, …, υK)T, then the minimizer of (7) satisfies 

J(f) = υTΩυ and Tυ = 0. Let us denote

Consider a QR decomposition of TT, say, TT = FG, where F is an K × K orthogonal matrix 

and G is K × 3 upper triangular. Let F1 be the first 3 columns and F2 be the remaining K − 3 

columns of F respectively. Following the argument in Green and Silverman (1994, p.166), 

we can show that Tυ = 0 if and only if υ can be expressed as F2ξ, where ξ is a K − 3 vector. 

Thus the minimizer of (7) is essentially equivalent to minimizing

(10)

Set , where  is the matrix square root of  (Ruppert et al. 
2003, p.329). Thus minimizing (10) is equivalent to minimizing
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(11)

where . Expression (11) is proportional to the negative exponential part 

of the joint distribution of YR and u under the following model assumption:

(12)

where λ is replaced by . The solution of minimizing (11) is the same as the best linear 

unbiased predictor (BLUP) for γ and u in the mixed model (12). This solution can be written 

as

(13)

with C = [X Z] and D = diag(0, 0, 0, 1, …, 1), where the number of zeros in the matrix D 
corresponds to the number of γi's (i = 0, 1, 2) and the number of ones corresponds to the 

number of ui's (i = 1, …, K − 3).

For any combination dose (d1, d2), if we denote f(d1, d2) = γ0 + γ1d1 + γ2d2 + Z0u with 

, then f̃(d1, d2) = γ̃
0 + γ̃

1d1 + γ̃
2d2 

+ Z0ũ is the best linear unbiased prediction (BLUP) for f(d1, d2). Usually  and  are 

unknown, and consequently,  is unknown, therefore, γ̃ and ũ are unknown. Let  and 

 be the restricted maximum likelihood estimators (REML) of  and  in the mixed 

model (12). Replacing λ by  in (13), we can obtain the estimated BLUP for γ and u, 

say γ̂ and û. Thus the estimated BLUP for f(d1, d2) is f̂(d1, d2) = γ̂
0 + γ1̂d1 + γ̂

2d2 + Z0û. 

Especially, the fitted value f̂(d1i, d2i) (i = 1, …, n) is the ith component of C(CTC + 

λ̂D)−1CTYR.

To assess drug interactions from the statistical point of view, we need to examine the 

variability of f̂(d1, d2). To our knowledge, it is rather difficult to derive a theoretic formula 

for the variance of the estimated function f(d1, d2) in the framework of two-stage estimation. 

Therefore, we use the bootstrap method (Davison and Hinkley, 1997; Liang, Hardle, and 

Sommerfeld, 2000) to estimate the variance of f(d1, d2), and then construct the 

corresponding confidence interval for f(d1, d2) accordingly.
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3.3 Estimate the variance of f(d1, d2) using bootstrap method

Under the semiparametric framework, Liang et al. (2000) presented a bootstrap 

approximation for a partially linear regression model. However, in our setting, the standard 

errors of the residuals from estimating dose-effect curves and from estimating the function 

f(d1, d2) may be quite different. Hence, a wild bootstrap method (Davison and Hinkley, 

1997), which can account for the different error structures, would be more appropriate. 

Instead of simply resampling the residuals, the wild bootstrap uses the product of each 

residual and a random number which has mean zero and standard deviation 1, thus the 

different error structures can be maintained (Hardle and Marron, 1991, and references 

therein). In addition, we adopted the recommendation by Davison and Hinkley (1997, 

Section 7.6) to reduce the biases in estimating the standard error for f̂(d1, d2). We summarize 

the procedure as following:

Step 1. Fit the model based on the original observations, obtain f̂(d1i, d2i) and 

λ̂, where f̂(d1i, d2i) is the ith components of C(CTC + λ̂D)−1CTYR.

Step 2. Obtain the residuals from the undersmoothed estimation of f(d1, d2), 

i.e., ε̂i = Yi − F̂
p(d1i, d2i) − f̂0.5λ̂ (d1i, d2i). Here f̂0.5λ̂ (d1i, d2i) is the ith 

component of C(CTC + 0.5λ̂D)−1CTYR.

Step 3. Generate n i.i.d. random variables  with mean 0 and variance 

1, for example,  with probability  and  with 

probability  (Hardle and Marron, 1991).

Step 4. Obtain the fitted value from the oversmoothed estimation of f(d1, d2), 

say,  for i = 1, …, n. Here f̂2λ̂(d1i, d2i) is 

the ith component of C(CTC + 2λ̂D)−1CTYR

Step 5. Fit the model using the generated data (d1i, d2i, ) (i = 1, …, n), and 

then obtain the estimated function f*(d1, d2).

Step 6. Repeat Step 2 to Step 5 B (say, 50) times.

If we denote the estimated f(d1, d2) in the bth (b = 1, …, B) iteration as f*b(d1, d2), the 

standard deviation for f(d1, d2) will be estimated by

thus a 100(1 − α)% pointwise confidence interval for f(d1, d2) can be constructed as

(14)
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where  is the upper  percentile of the standard normal distribution, and f̂(d1, d2) 

is the estimated BLUP for f(d1, d2) in Section 3.2. Our case study in Section 4 showed that 

the estimated variance for f(d1, d2) can account for the carry-over errors from estimating the 

marginal dose-effect curves. Our simulations given in Section 5 showed that the proposed 

bootstrap confidence intervals have good coverage properties.

4. Case Study

Table 1 shows the fractions of surviving cells after cancer cells from cell line UMSCC22B 

were treated with SCH66336, a farnesyl transferase inhibitor, and 4-HPR, a retinoid, alone 

and in combinations (data were provided by Dr. Reuben Lotan at M.D. Anderson Cancer 

Center). Both agents have a role in producing apoptosis. The objective was to study the 

efficacy and quantify the drug interaction when the two agents were used in combination. 

The experiment was conducted in six trays as shown in Table 1. The cells were untreated 

(control group), or were treated with single drug doses or combination doses. The fraction of 

surviving cells was recorded. We fitted the marginal data to model (6) by taking 

 with Emax as the mean of the control group (solid curves in Figure 1, 

Panels A and B), and the model (3) with  (dashed curves in Figure 1, Panels 

A and B). In these two panels, the observed data are shown as “+” for SCH66336 and “×” 

for 4-HPR, respectively. From the two panels, it is clear that model (6) fits the data better. 

Therefore, we choose model (6) as the marginal dose-effect curve. Taking Emax as the mean 

of the control group, fitting model (6) with  is equivalent to fitting this 

model with  and effect as the surviving cell fraction divided by the mean of 

the control. In the following data analysis, the effects will be taken as the observed fractions 

of surviving cells divided by the mean of the corresponding control group in each tray (c.f., 

Kanzawa et al. (1999) for a similar procedure). Based on the processed data, we obtained the 

two marginal dose-effect curves:  for SCH66336 

with a residual error of 0.2684 (i.e., σ̂ = 0.2684), and 

 for 4-HPR with a residual error of 0.5618. Then, 

we can obtain the predicted effect in the E scale using the inverse transformation (5) (Panel 

E). The differences between the observed effects and predicted effects in logit scale versus 

SCH66336 doses, 4-HPR doses, and the observed effects (in logit scale) are plotted in 

Panels C, D, and F, respectively. Here the circles correspond to the non-marginal data. 

Panels C and D show that the differences for the lower combination doses are roughly 

centered around zero, indicating additivity of the associated combination doses, and the 

differences for the median to large combination doses are less than zero, indicating synergy 

of the associated combination doses. The results indicate that the additive model is not 

adequate to explain the observed data.
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Now, we proceed to estimate f(d1, d2). The estimated residual error σ̂ε = 0.217 and the 

estimated smoothing parameter λ̂ = 0.1326. The final residuals (i.e., Yi − F̂
p(d1i, d2i) − f̂(d1i, 

d2i) for i = 1, …, n) versus the observed effects (i.e., Yi for i = 1, …, n) are plotted in Panel 

G, which indicates that the fit has improved compared to Panel F under the additive model. 

The contour plot of the estimated f(d1, d2) is shown in Panel H. The 95% pointwise 

confidence surfaces for f(d1, d2) are constructed based on the bootstrap method (14). The 

95% confidence bound for f(d1, d2) = 0 can be formed by taking the intersection lines of the 

upper and lower confidence surfaces with the dose plane. The dashed line in Panel H is the 

intersection line of the upper confidence surface based on the bootstrap confidence interval 

(14) with the dose plane. From Panel H, we conclude that the combination doses above the 

dashed line are synergistic (i.e., f(d1, d2) < 0), and the combination doses below the dashed 

line are additive (i.e., f(d1, d2) is not significantly different from zero). To show the contour 

plot of the fitted response surface in the original effect scale, we add f(d1, d2) to the 

predicted effect surface, and then use the inverse transformation (5) to obtain the fitted 

response surface on the original scale (Panel I). The contour plot in Panel I based on the 

model is similar to the contour plot of the raw data in Panel M, which indicates that the fit is 

reasonable.

Further, in order to examine whether the proposed bootstrap procedure can account for the 

errors from estimating the marginal dose-effect curves, we performed additional analysis for 

our case study by keeping the fitted marginal dose-effect curves the same as above, while 

perturbing the residuals of the marginal observations. In the first case, we changed the 

marginal observations (fractions of cell survival using one agent alone) to yield the same 

estimated marginal dose-effect curves but with smaller residuals (0.4 times of the original 

residuals). The data for the combination doses remained unchanged. Under this new setting, 

we estimated the predicted effects, plotted the differences of observed effects and predicted 

effects versus observed effect, in logit scale (Panel J). Then we estimated the function f(d1, 

d2), Panel K shows the final residual plot, and Panel L shows the contour plot of the 

estimated f(d1, d2) along with its 95% confidence bound for f(d1, d2) = 0 based on the 

bootstrap method (14) in dashed line. To compare, in the second case, we increased the 

residuals by 2.5-fold from estimating marginal dose-effect curves. Panels N, O, and P are the 

parallel results as Panels J, K, and L, respectively. Comparing the dashed lines in Panels H, 

L, and P, it is clear that, even when the estimated marginal dose-effect curves are all the 

same, the larger the estimated errors from estimating the marginal dose-effect curves, the 

wider the confidence bound is. Notice that because the marginal dose-effect curves and the 

effects of combination doses in the two new settings are the same as the original case study, 

the predicted additive effect surfaces as well as the estimated f(d1, d2) would remain the 

same. However, the bootstrap confidence bounds would account for the errors from 

estimating the marginal dose-effect curves. In the next section, we illustrate that the 

confidence interval based on the bootstrap method has a coverage rate which is close to the 

nominal coverage rate 95%.
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5. Simulation studies

We use simulations to examine whether the estimation of the function f in our 

semiparametric model is accurate, and whether the semiparametric model can detect 

different patterns of drug interactions successfully.

To examine whether or not the function f(d1, d2) can be estimated accurately, we generated 

data based on the marginal dose-effect curves estimated in the previous studied case, but 

take

(15)

shown in Figure 2, Panel A. The construction of f(d1, d2) mimics the scenario that there are 

different patterns of drug interactions within the same data. Note that the shape of f(d1, d2) 

chosen in the simulation studies here is quite different from the case study presented in 

Section 4. We generated the marginal data by adding the white noise from  to the 

“true” effect on the logit scale. Similarly, we generated the non-marginal data by adding the 

white noise from  to the sum of the additive effect and f(d1, d2), where the additive 

response surface is constructed based on the underlying marginal dose-effect curves. We 

took the same settings as those in the studied case in Section 4 except that we added one 

more dose level for drug 1 at d1 = 3. Including dose 0, there were 7 levels for drug 1 and 5 

levels for drug 2. The sample size for each sample is 7 × 5 = 35 which includes 6 × 4 = 24 

combination doses. For each dose or combination dose, we generated 6 replicates as were 

done in the experiment except for d1 = d2 = 0, the fraction of cell survival is set to 1. We 

took σ1 = 0.3, which lies between the estimated residual errors for SCH66336 and 4-HPR, 

and σ2 = 0.217, which is the estimated residual error for f. We generated 20 samples, 

estimated f(d1, d2), and plotted the f̂(d1, d2) at each unique d2 level (Figure 2, Panel B1 

through Panel B5). In each panel, the solid line is the underlying f(d1, d2) by varying d1, and 

the dotted lines are the estimated curves for each of the 20 samples. In addition, for a 

particular sample, we estimated f(d1, d2) and constructed its bootstrap confidence interval 

based on (14). Figure 2, Panel C3 through Panel C5 show the underlying f(d1, d2) (solid 

line), the estimated f(d1, d2) (dotted line), and their 95% pointwise bootstrap confidence 

bound based on (14) with B = 50 (dashed lines) for this particular sample. It is evident that 

the fitted curves are close to the underlying curves, and the bootstrap confidence interval 

(14) performs well.

To further examine the performance of the bootstrap confidence interval (14), and also to 

examine whether the semiparametric method can detect different patterns of drug 

interactions, we generated data from the same scenario as above with f(d1, d2) shown in (15) 

and ran 150 simulated samples. For each sample, we estimated the marginal dose-effect 

curves, estimated the predicted additive effects and the function f(d1, d2) at (d1i, d2i) for i = 

1, …, n, and constructed the 95% bootstrap confidence interval based on (14) with B = 50. 

For each sample, we recorded (a) the estimated function f̂(d1i, d2i) and the squared 

difference f̂(d1i, d2i) − f(d1i, d2i) (i = 1, …, n), (b) whether f(d1i, d2i) lies inside its associated 
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confidence interval (14), (c) whether the associated bootstrap confidence interval (CI) 

contained zero (additivity), the lower limit of the associated bootstrap CI was greater than 

zero (antagonism), or the upper limit of the bootstrap CI was less than zero (synergy). Table 

2 shows the combination dose (d1, d2), the underlying function f(d1, d2), and the averages of 

the above quantities over the simulated samples, which include: (a) the average of the 150 

estimated f(d1, d2) (denoted as f.ave), the mean squared error (denoted as f.mse), and the 

estimated variance based on the simulated samples (denoted as f.var), (b) the percentage of 

counts of the underlying value lying inside the bootstrap confidence interval (14) (denoted as 

cr.bci), (c) the percentage of counts of the lower limit being greater than zero (denoted as 

p.ant), the confidence interval containing zero (denoted as p.add), and the upper limit being 

less than zero (denoted as p.syn), indicating predicted antagonism, additivity, and synergy, 

respectively. From Table 2, we conclude that: (i) overall, the averages of the estimated 

function f(d1, d2) are close to the underlying function values, and the mean square errors are 

similar to the variance estimates except that at the combination dose (4.0, 0.1) the mean 

square error is much bigger, indicating bias of the estimation; (ii) the coverage rates based 

on the bootstrap method (cr.bci) are close to the nominal coverage rate of 95%; (iii) when 

f(d1, d2) > 0, the larger the f(d1, d2) is, the higher the percentage (p.ant) of the lower limit of 

the bootstrap confidence interval (14) being greater than 0, indicating the correct assessment 

of drug interaction as antagonism at (d1, d2); (iv) when f(d1, d2) < 0, the larger the absolute 

value of f(d1, d2) is, the higher percentage (p.syn) of the upper limit being less than 0, 

indicating the correct assessment of drug interaction as synergy at (d1, d2); (v) when f(d1, 

d2) is close to zero, the percentage of the confidence intervals containing zero (p.add) is 

close to 95%, indicating the correct assessment of drug interaction as additivity at (d1, d2). 

These facts illustrated that both the estimation for the model and the constructed bootstrap 

confidence intervals perform well.

6. Discussion

The case study in Section 4 and the simulations in Section 5 indicate that our proposed 

method can be used to successfully assess drug interaction even when different patterns of 

drug interactions exist within the same data. In addition, the fitted dose response surface 

F̂
p(d1, d2) + f̂(d1, d2) gives an overall picture of the dose-effect relationship, which can help 

us to identify the optimal combination therapy.

In our two stage procedure, since both the errors from estimating the dose-effect curves and 

the errors for measuring the effects at combination doses impact the precision of the 

estimated f(d1, d2), in the case that the errors are large, further efforts such as better control 

of experimental conditions and increasing the number of replicates will be required to 

improve the assessment of drug interaction. As in any data analysis, model fitting needs to 

be examined carefully, for example, by plotting residuals and predicted values versus 

observed values, etc. Sensitivity analysis can be done by removing or down weighing 

suspected outliers. Statistical inference should be made in conjunction with meaningful 

biological evidence and knowledge.

In the semiparametric model, we use a function f to capture the patterns of drug interactions. 

The estimated function f and its 95% confidence surfaces can guide us to explore whether 
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some parametric models are sufficient to describe the data. If the fitted function f and its 

confidence surfaces indicate that the modes of drug interactions for all combination doses 

are similar, a parametric model with a single parameter capturing drug interaction may 

suffice. If the fitted function f and its confidence surfaces indicate that the modes of drug 

interactions for the combination doses at each fixed ratio are unique, the parametric models 

based on a 50% maximal effect isobole may be appropriate. We advocate the use of our 

proposed semiparametric method for model building since we typically do not know the true 

patterns of drug interactions. Blindly using any parametric model can be dangerous and may 

lead to the wrong conclusions of drug interactions. In our proposed model, we do not 

assume any parametric patterns for f(d1, d2). The conclusions of drug interactions are based 

on the estimated f and its confidence surfaces, which are determined by the underlying data.

Our current model can be extended in several ways. One extension is that we may use 

nonparametric dose-effect curves to describe the marginal dose-effect relationship. Then, we 

can use the same procedure to estimate the function f(d1, d2) and construct its confidence 

surfaces, and assess drug interactions accordingly. However, since the curves estimated 

nonparametrically can not be extrapolated, larger range of dose levels for each single drug is 

needed so that the range of effects from each single drug covers the range of the effect for 

the combination doses so that the additive effect can be estimated for each combination dose 

(Kelly and Rice, 1990).

Another extension of our current model is that our two-stage model can be extended to 

assess multiple drug interactions (say, k > 2 drugs). The predicted additive effect can be 

obtained from , and f(d1, …, dk) can be estimated by using 

high-dimensional thin plate spline (Green and Silverman, 1994).

In the current setting, we first estimate the parameters β's, and then estimate f(d1, d2). Here 

f(d1, d2) is used to characterize drug interaction, which should be zero whenever d1 = 0 or d2 

= 0. Currently, we forced the difference between observed effect and predicted additive 

effect as zero for each marginal dose so that the estimated f(d1, d2) could be as close to zero 

as possible. However, it will be beneficial to research on how this constraint could be 

transferred to the constraint on γ's and υ's. In addition, whether and how to estimate β's and 

f(d1, d2) simultaneously may be further investigated. We may also consider to formulate the 

response surface model in different manner, such as 

 (Kong and Lee, 2006). In that setting, β's and 

f(d1, d2) may be estimated simultaneously. But how to estimate them remains a very 

challenging and interesting problem. Last but not the least, further research is needed to 

develop the theoretical properties of the bootstrap method for constructing the confidence 

interval for f(d1, d2) in the current setting.

Acknowledgments

This research was supported in part by grants from the National Cancer Institute CA106451, CA97007, CA91844, 
and the Department of Defense W81XWH-04-1-0142 and W81XWH-05-2-0027. The authors are thankful to Dr. 
Reuben Lotan for providing data, to Dr. Raymond Carroll and Dr. Somnath Datta for their discussion, to Lee Ann 

Kong and Lee Page 13

Biometrics. Author manuscript; available in PMC 2016 November 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Chastain for editorial assistance, and to the two reviewers, the Associate Editor, and the Editor for their constructive 
comments.

References

1. Berenbaum MC. What is synergy? Pharmacological Reviews. 1989; 41:93–141. [PubMed: 
2692037] 

2. Carter WH Jr, Gennings C, Staniswalis JG, Cambell ED, White KL Jr. A statistical approach to the 
construction and analysis of isobolograms. Journal of American College Toxicology. 1988; 7:963–
973.

3. Chou TC, Talalay P. Quantitative analysis of dose-effect relationships: the combined effects of 
multiple drugs or enzyme inhibitors. Advances in Enzyme Regulation. 1984; 22:27–55. [PubMed: 
6382953] 

4. Davison, AC.; Hinkley, DV. Bootstrap Methods and their Application. Cambridge University Press; 
1997. 

5. Greco WR, Bravo G, Parsons JC. The search of synergy: A critical review from a response surface 
perspective. Pharmacological Reviews. 1995; 47(2):331–385. [PubMed: 7568331] 

6. Green, PJ.; Silverman, BW. Nonparametric Regression and Generalized Linear Models. London: 
Chapman & Hall; 1994. 

7. Hardle W, Marron JS. Bootstrap simultaneous error bars for nonparametric regression. Annuls of 
Statistics. 1991; 19:778–796.

8. Kanzawa F, Nishio K, Fukuoka K, Sunami T, Saijo N. In vitro inter- actions of a new derivative of 
spicamycin, KRN5500, and other anticancer drugs using a three-dimensional model. Cancer 
Chemother. Pharmacol. 1999; 43:353–363. [PubMed: 10100589] 

9. Kelly C, Rice J. Monotone smoothing with application to dose-response curves and the assessment 
of synergism. Biometrics. 1990; 46:1071–1085. [PubMed: 2085626] 

10. Kong M, Eubank RL. Monotone smoothing with application to dose-response curve. 
Communications in Statistics - Simulation and Computation. 2006; 35:991–1004.

11. Kong M, Lee JJ. A generalized response surface model with varying relative potency for assessing 
drug interactions. Biometrics. 2006; 62(4):986–995. [PubMed: 17156272] 

12. Lee JJ, Kong M, Ayers GD, Lotan R. Interaction index and different methods for determining drug 
interaction in combination therapy. To appear in Journal of Biopharmaceutical Statistics. 2007

13. Liang H, Hardle W, Sommerfeld V. Bootstrap approximation in partially linear regression model. 
Journal of Statistical Planning and Inference. 2000; 91:413–426.

14. Prichard MN, Shipman C Jr. A three-dimensional model to analyze drug-drug interactions. 
Antiviral Research. 1990; 14:181–206. [PubMed: 2088205] 

15. Ruppert, D.; Wand, MP.; Carroll, RJ. Semiparametric Regression. Cambridge University Press; 
2003. 

16. Suhnel J. Evaluation of synergism or antagonism for the combined action of antiviral agents. 
Antiviral Research. 1990; 13:23–40. [PubMed: 2334168] 

17. Tan M, Fang H, Tian G, Houghton PJ. Experimental design and sample size determination for 
testing synergism in drug combination studies based on uniform measures. Statistics in Medicine. 
2003; 22:2091–2100. [PubMed: 12820275] 

18. White DB, Faessel HM, Slocum HK, Khinkis L, Greco WR. Nonlinear response surface and 
mixture experiment methodologies applied to the study of synergy. Biometrical Journal. 2004; 
46:56–71.

Kong and Lee Page 14

Biometrics. Author manuscript; available in PMC 2016 November 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
The results from analyzing the data set derived from cell line UMSCC22B treated with 

SCH66336 and 4-HPR. Panels A and B show the fitted dose-effect curves for SCH66336 

and 4-HPR, respectively. The solid lines are based on model (6) while the dashed lines are 

based on model (3). Panels C, D, and F are the plots of the differences between the observed 

and the predicted effects in logit scale versus the SCH66336 doses, the 4-HPR doses, and 

the observed effects, respectively. Panel E is the contour plot of the predicted additive 

surface. Panel G is the plot of the final residuals versus the observed effects. Panel H is the 
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contour plot of the estimated f(d1, d2) along with the intersection line of its upper 95% 

bootstrap confidence surface based on (14) with the dose plane shown in the dashed line. 

Panel I is the contour plot of the estimated response surface based on the semiparametric 

model. Panel M is the contour plot of the raw data. Panels J, K, and L are results parallel to 

Panels F, G, and H but in the case of the decreased marginal residuals (0.4 times of the 

original residuals), while panels N, O, and P are the parallel results in the case of the 

increased marginal residuals (2.5 times of the original residuals).
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Figure 2. 
The results from simulation studies presented in Section 5. Panel A shows the contour plot 

of the underlying true function f(d1, d2). Each panel of Panels B1–B5 shows the underlying 

curve (solid lines) and the fitted curves (dotted lines) based on a sample of 35 doses with 6 

replicates for each dose level and 20 simulation runs under the setting σ1 = 0.3 and σ2 = 

0.217. Each panel of Panels C3–C5 shows the underlying curve (solid lines), the fitted curve 
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(dotted line), and the 95% point-wise bootstrap confidence bound (dashed lines) for a 

particular sample.
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