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Abstract

Assessments of long-term air pollution exposure in population studies have commonly employed 

land use regression (LUR) or chemical transport modeling (CTM) techniques. Attempts to 

incorporate both approaches in one modeling framework are challenging. We present a novel 

geostatistical modeling framework, incorporating CTM predictions into a spatio-temporal LUR 

model with spatial smoothing to estimate spatio-temporal variability of ozone (O3) and particulate 

matter with diameter less than 2.5 μm (PM2.5) from 2000 to 2008 in the Los Angeles Basin. The 

observations include over nine years’ data from more than 20 routine monitoring sites and specific 

monitoring data at over 100 locations to provide more comprehensive spatial coverage of air 

pollutants. Our composite modeling approach outperforms separate CTM and LUR models in 

terms of root mean square error (RMSE) assessed by 10-fold cross-validation in both temporal and 

spatial dimensions, with larger improvement in the accuracy of predictions for O3 (RMSE [ppb] 

for CTM: 6.6, LUR: 4.6, composite: 3.6) than for PM2.5 (RMSE [μg/m3] CTM: 13.7, LUR: 3.2, 

composite: 3.1). Our study highlights the opportunity for future exposure assessment to make use 

of readily available spatio-temporal modeling methods and auxiliary gridded data that takes 
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chemical reaction processes into account to improve the accuracy of predictions in a single spatio-

temporal modeling framework.

TOC Art

1. INTRODUCTION

Long-term exposure to air pollution has been associated with adverse health outcomes.1 

Currently, there is increased interest in estimating health effects with fine-scale estimates of 

exposure at participant locations in large populations, taking into account intra-urban 

differences in air pollution levels2–4 because of potentially biased health effect estimates 

based on exposure assignment at a community spatial scale.5, 6 Air pollution varies at 

multiple spatio-temporal scales. Due to the complexity of intra-urban sources, concentration 

gradients and atmospheric processes, simple spatial interpolation techniques (e.g. inverse 

distance weighing and ordinary kriging) relying on a limited number of monitoring sites are 

unable to accurately capture fine-scale spatio-temporal patterns of air pollutants. More 

advanced exposure estimation techniques include land use regression (LUR) and chemical 

transport models (CTMs), which are based on distinct methodological principles. LUR 

modeling employs statistical methods to combine data from air pollution measurements with 

data from geographic information systems (GIS) to explain spatial concentration variations.7 

A LUR model is suitable to characterize small scale spatial variability of air pollutants 

reflecting, for example, roadside dispersion profiles, but the model performance is largely 

limited by the number and the spatial distribution of sampling sites.8, 9 A CTM relies on 

deterministic equations and utilizes data on emissions, meteorological conditions and 

topography to dynamically simulate the physico-chemical processes of pollutant transport 

and atmospheric chemistry to estimate outdoor air pollution concentrations.10 CTMs have 

been increasingly used to predict regional distributions of population exposures in large 

spatial domains and also to estimate long-term historical exposure.11–13 However, the 

relatively coarse spatial resolution of a CTM (≥ 4 km) and imperfect emissions information 

restrict their ability to characterize air pollution concentrations at very local scales (i.e., 

meters) for exposure assessment.10
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Several studies attempted to improve model performance by combining monitoring data 

with CTM14 or LUR predictions15 with some successes. However, few studies have 

integrated all data sources in one framework, except for a Bayesian Maximum Entropy 

spatial composite model reported for Barcelona.16 On one hand, LUR models, which often 

do not incorporate chemical and meteorological process, could be compensated by 

introducing CTM models. On the other hand, the relatively low spatial resolution of CTM 

predictions may be enhanced by adopting the contributions of LUR models with finer 

resolution. Therefore, a composite approach combining LUR and CTM in one framework 

could be favorable.

We present a composite geostatistical modeling framework, combining a spatio-temporal 

LUR (ST-LUR) model with CTM predictions to estimate spatio-temporal variability of 

ozone (O3) and particulate matter with diameter less than 2.5 μm (PM2.5) from 2000 to 2008 

in the Los Angeles Basin, California. The performance of the composite model is evaluated 

and compared with the performances of the individual CTM and ST-LUR models.

2. METHODS

2.1 Monitoring Data

O3 and PM2.5 monitoring data obtained for fitting of our spatio-temporal LUR models 

include a dataset of continuous long-term measurements from the routine monitoring sites of 

the U.S. Environmental Protection Agency (EPA) in the South Coast Air Quality 

Management District (SCAQMD) and spatially dense (but temporally sparse) monitoring 

data acquired by the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air) 

study.17, 18 Details of the monitoring data were reported elsewhere.19, 20 In brief, we 

selected 37 O3 and 22 PM2.5 routine monitoring sites within two 75 km buffers surrounding 

the Los Angeles metropolitan center as well as nearby Riverside County site (Figure S1). 

Daily averages of O3 and PM2.5 data at the routine monitoring sites were aggregated at a 

two-week time scale in order to mitigate the influence of daily meteorology and to match the 

temporal scale of the MESA Air sampling design. To better capture small scale spatial 

variation, we measured O3 and PM2.5 concentrations, respectively, at 117 and 113 

participants’ addresses (home sites, Figure S1) with 1–3 two-week samplers per site, and at 

2 and 7 fixed sites operated continuously for one and four year(s). The home sites were 

distributed densely in urban areas of Los Angeles and Riverside. We use monitoring data 

from 2000 to 2008, the time period for which CTM predictions are available. PM2.5 

observations were log-transformed due to their skewed distribution.

2.2 Chemical Transport Modeling Data

We employed the UC Davis-California Institute of Technology (UCD-CIT) air quality model 

to simulate daily O3 (8-hour maximum) and daily PM2.5 (24-hour average) concentrations 

over the South Coast Air Basin from 2000 to 2008 (Figure 1).21 The UCD-CIT model is a 

3D Eulerian source-oriented chemical transport model that includes a complete description 

of atmospheric transport, deposition, chemical reactions, and gas-particle transfer. The 

model was configured with a nested 4×4 km2 spatial resolution domain and with 16 vertical 

layers up to a height of 5 km above ground level. More complete details of the standard 
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algorithms of the UCD-CIT airshed model and its evolution have been presented 

previously.22–24 The Weather Research and Forecasting model (WRF v3.1.1)25 was used to 

simulate long-term historical meteorology over 9 years. The standard emission inventories 

from anthropogenic sources (i.e. point sources, stationary area sources, and mobile sources) 

were obtained from the California Air Resources Board (CARB).26 Hourly gridded gas and 

particulate emissions were generated using an updated version of the emission model 

described by Kleeman and Cass.27 Additional sources of emissions included biogenic 

emissions from the Biogenic Emissions Inventory System v3.14,28 in-line sea-salt emissions 

described by de Leeuw et al.,29 and wildfires and open burning emissions obtained from the 

Fire Inventory from NCAR (FINN).30

The UCD-CIT predicted concentrations of O3 and PM2.5 were evaluated against ambient 

measurements at all available locations and times. Daily maximum O3 predictions are in 

good agreement with measurements across the entire modeling domain, with an overall 

mean fractional bias less than 0.1 and mean fractional error less than 0.2. PM2.5 total mass 

predictions also meet the model performance criteria, with mean fractional bias within 0.2 

and mean fractional bias of 0.5, although PM2.5 sulfate and nitrate were under-predicted 

with mean fractional bias less than −0.3.21 The quality of the model predictions summarized 

above reflects the accuracy of the emissions inventories that have been refined over three 

decades in California, the development of reactive chemical transport models that include 

important aerosol transformation mechanisms, and the development of prognostic 

meteorological models that allow for long simulations of historical meteorology.

To make the CTM 8-hour maximum O3 predictions more comparable with the 2-week 

average measurement data, we applied a two-stage calibration approach to convert O3 8-

hour maximum concentrations to a daily average for further aggregation. This is described in 

detail in the section below on the spatio-temporal model development. The CTM predictions 

of daily PM2.5 and calibrated 8-hour maximum O3 concentrations were subsequently 

averaged to a two-week time scale to match the format of the MESA Air monitoring data.

2.3 Geographic covariates

More than 180 geographic covariates were used for the ST-LUR and the composite model 

development. Variables covered a wide diversity of geographic features, such as road 

networks (e.g., distances to nearby major roads and, within buffers, lengths of roads and 

truck routes, and counts of intersections), industrial and port emissions, population density, 

land use (e.g., commercial space), and land cover (e.g., green space).19 Moreover, we 

incorporated an annual average of specific emission sources for NOx, SO2, CO, PM2.5 and 

PM10 from the U.S. EPA Emission Inventory Group and a long term average of California 

Line-source (Caline3QHCR) dispersion model predictions derived from primary mobile 

source emissions as covariates, as these are potentially related to O3 and PM2.5 formation 

and destruction.31 The Caline3QHCR model incorporates distance, traffic volume, 

meteorology and diurnal traffic patterns in the study region. Details of the geographic 

variables and their selection criteria are described in Table S1 and in a previous 

publication.19
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2.4 Spatio-temporal model development

We developed a hierarchical modeling strategy to fully accommodate the unique features of 

our data as described above. Technical details of implementation, including the model 

structures and principles,32–35 and recent applications of the models for PM2.5 and O3 

without including CTM predictions, have been published.19, 20 The model is comprised of a 

spatio-temporal trend model and spatio-temporal residuals, written:

(1)

where C(s,t) denotes the two-week average concentration of PM2.5 or O3 at location s and 

time t.  represents the spatio-temporal mean surface. The  represents the zero-

mean spatio-temporal residual variation which has a spatial correlation structure, but is here 

assumed independent across the two-week time points. The mean  is further 

decomposed into a long-term average  at location s, a linear combination of temporal 

trend basis functions  with spatially-varying coefficient fields , and a spatio-

temporal term  representing the CTM model predictions with coefficient  as 

follows:

(2)

We refer to this as the composite model and call the model without CTM predictions 

(equivalently, ) the ST-LUR model.

We derive the time trends  from routine and MESA Air fixed sites, which account for 

enough of the temporal structure across an entire study region. Specifically, the trends are 

computed from a singular value decomposition (SVD) of the space-time data matrix for the 

routine and fixed sites using the SpatioTemporal R package,31–34 dealing with missing or 

incomplete monitoring data using an iterative EM (Expectation-Maximization) procedure 

described in detail by Sampson et al.34. The number of time trends  was selected by leave-

one-site-out cross validation (LOOCV) of the built-in SVD function in R. The number of 

time trends providing the lowest mean square error and Akaike information criterion (AIC) 

was selected.

The spatially-varying long-term average  and time trend coefficients  are modeled 

in a universal kriging framework with a LUR mean and either an exponential or independent 

covariance structure.36 Each LUR mean comprises component scores computed as linear 

combinations of geographic covariates estimated by Partial Least Squares (PLS) at routine 

and fixed sites.37 The numbers of PLS scores were selected based on the LOOCV R2 of the 

built-in PLS function in R, which provides the most efficient description of the spatial 

variation for  and  while minimizing the risk of overfitting. The spatio-temporal 

term  in the composite model represents the 2-week 24-hour average CTM predicted 

concentrations at all the monitoring sites (s). This was calculated at monitor and subject 
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locations using distance-weighted averages of CTM predictions in the four surrounding grid 

cell centers. In order to match the daily 8-hour maximum CTM O3 predictions to the 2-week 

24-hour average MESA Air and routine monitoring O3 concentrations, we conducted a two-

stage calibration as follows. In the first stage, we regressed the 2-week average monitoring 

observations on CTM 8-hour maximum predictions  at each of the routine 

monitoring and fixed sites, allowing the slope  and intercept  to vary spatially from 

site to site:

(3)

In the second stage, the site-specific slope and intercept vectors were regressed on 

geographic covariates using PLS.18,19 This PLS model enabled predictions of calibration 

coefficients at home sites and subject locations. To avoid over-fitting, we selected two PLS 

scores for the slope and intercept, respectively. This decision was based on LOOCV R2 at 

routine monitoring and fixed sites and the correlation between the calibrated CTM daily 

predictions and the observations at the home sites.

Once the time trends , the PLS scores for , and the slope  and intercept 

from calibrations were computed, the regression and parameters were estimated via 

maximum likelihood, using the SpatioTemporal package in R version 3.1.1.33

2.5 Model validation and comparison

We compare the composite ST-LUR model to the ST-LUR model without CTM and to using 

calibrated CTM predictions alone. We used cross validation (CV) to evaluate model 

performance holding fixed the pre-computed time trends and PLS scores. For each 

assessment of the model performance, we computed root mean square error (RMSE) and 

CV R2 (defined as squared correlations between predictions and observations) to quantify 

both the accuracy and precision of each model.

We used ten-fold CV by successively leaving out one-tenth of the monitoring sites for 

validation at the routine monitoring and fixed site locations, as well as the home site 

locations, which were intended to reflect spatial contrasts of O3 and PM2.5 at the places of 

most interest. For routine monitoring and fixed sites, we evaluated our performance in 

representing temporal variability using the across-sites median of the site-specific squared 

correlation coefficients (R2s) computed at the two-week scale over the entire study period. 

We similarly scored our performance in representing spatial variability using the across-

years median of the R2s computed on annual averages for the routine monitoring and fixed 

sites. The spatial patterns of the RMSE distribution were assessed visually on maps. We 

identified geographical features related to the improvement of estimate errors between 

models. In addition, we separately examined the prediction ability of the models in the cold 

and warm seasons at the routine monitoring and fixed sites.
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3. RESULTS

Figure 1 shows the spatial pattern of the study period average O3 concentrations (maximum 

8-hour average) and PM2.5 concentrations from the CTM models before temporal 

calibration. The estimated values varied substantially over this spatial domain. The O3 

model predicted lower concentrations in the urban areas such as the downtown of Los 

Angeles compared to rural and mountain areas, which is generally opposite to the spatial 

pattern of the PM2.5 predictions.

Table 1 presents an overview of the O3 and PM2.5 ST-LUR and the composite model 

specifications. Both models included two time trends with the first time trend explaining 

most of the temporal variability. Three and two PLS scores were selected for the long-term 

mean β0(s) in the O3 and PM2.5 models, respectively. In both models, the coefficients were 

spatially smoothed using an exponential covariance model. For the time trend coefficients, 

one and two PLS scores were selected for the O3 and PM2.5 models, respectively, without 

further spatial smoothing. In general, the long-term mean O3 was positively associated with 

elevation and green space (e.g. Grass and Shrub), and was negatively associated with the 

features indicating primary emissions (e.g., traffic and anthropogenic factors, including 

population and impervious surfaces) (see Figure S2 characterizing the PLS scores in terms 

of the GIS covariates). This is is in agreement with the known atmospheric processes of 

ozone formation. For instance, ozone is usually scavenged by primary NO emissions in 

locations where NOx/VOC ratios are high such as in urban core areas with dense traffic and 

is produced by biogenic VOCs from plants and NOx in rural areas or in locations downwind 

of major urban areas.15 Moreover, predictor variables such as population density and 

impervious surface do not merely represent pollution from anthropogenic activities such as 

traffic, wood burning and house heating, but also reflect differences in urban-rural 

concentration distributions. In contrast, the long-term mean PM2.5 concentrations was 

negatively associated with green space, and was positively associated with the primary 

emissions indicators.

Table 2 presents the performances of the three modeling approaches for O3 and PM2.5 at the 

routine monitoring and MESA Air fixed sites and the home locations. The O3 CTM model 

for 8-hour maximum concentrations, calibrated to the daily average level, performed 

moderately well at both the home (RMSE: 6.55 ppb; R2: 0.60) and the routine monitoring 

and Fixed sites (RMSE: 8.83 ppb; R2: 0.56), with better prediction ability in time than in 

space. The performance of the PM2.5 CTM model, however, was poor in representing 

temporal variability of simple PM2.5 mass at this 2-week time scale (RMSE: 9.58μg/m3; R2: 

0.28), but showed good spatial predictive performance (RMSE: 7.11 μg/m3; R2: 0.59). 

Previous evaluation of the CTM performance identified an over-estimation of dust emissions 

leading to an over-estimation of PM2.5 mass concentrations and a damping of the relative 

temporal variability. Predicted PM2.5 mass concentrations at other major California cities 

exhibit good agreement with measurements, as do PM2.5 component(elemental carbon, 

organic carbon, nitrate, etc) at all California cities, including Los Angeles.21

The ST-LUR model performed equally well for O3 and PM2.5, with better predictive 

performance in terms of R2 and RMSE (Table 2) and less overall bias than the CTM models 
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(Figure 2). The ST-LUR model tended to overestimate O3 concentrations at home sites in the 

urban areas where O3 is scavenged by NO emitted by motor vehicles, while it under 

estimated O3 concentrations in background area where routine monitoring sites are located 

(Figure S1). For PM2.5, the bias of the ST-LUR model predictions was small (close to zero) 

at all sites.

The composite spatio-temporal models incorporating CTM predictions outperformed the 

CTM and the ST-LUR models alone, with no indication of bias (Figure 2). Including CTM 

predictions into the framework significantly improved prediction accuracy of O3 in terms of 

RMSE (reduction in RMSE by 21% at home sites), but provided only modest improvement 

in precision expressed in terms of R2 (increased R2 by 1 to 6 percentage points) (Table 2). A 

map of the spatial pattern of the temporal RMSEs generated by the CTM, ST-LUR, and 

composite models for O3 at the routine monitoring and the fixed sites showed that the RMSE 

value of the composite model was lower than those of the individual CTM and LUR models 

(Figure S3). By comparing the RMSEs of various modeling approaches by routine 

monitoring site types (i.e. traffic, urban background and rural background sites), we see that 

the composite model tended to be more accurate in predicting O3 concentrations especially 

at the rural background sites than the other models (Table S3).

The contribution of the CTM predictions to the spatiotemporal model improved the PM2.5 

model only slightly, with 1 to 3 percent reduction in RMSE and 1 to 2 percent increment in 

R2 (Table 2). Differences in RMSE between the two models for PM2.5 did not correlate with 

geographical features, as one might expect in light of the relatively small benefit of the CTM 

predictions of PM2.5. Again, this result stems largely from the problem of unrealistic dust 

emissions contributing to PM2.5 mass concentrations in Los Angeles.

In a sensitivity analysis, directly incorporating the original O3 CTM model predictions 

(uncalibrated 8 hour averages) resulted in lower accuracy of predictions compared to the 

performance of the model with temporal calibration by site (daily average) (Table S2).

For both models, the improvement appeared to be greater for representation of spatial 

variability than for temporal variability (Table 2) and greater in the warm season than in the 

cold seasons (Table S4). For all the modeling approaches, the O3 models predicted 

consistently better in the cold season than in the warm season (Table S4). The PM2.5 

composite model had only slightly better performance than the LUR model in the warm 

season (Table S4).

Figure 3 shows the difference of the estimated long-term average O3 and PM2.5 

concentrations between models (Ccomposite-CST-LUR) in Los Angeles basin. Prediction maps 

of the composite models for O3 and PM2.5 are shown in Figure S1. O3 concentration 

estimates from the composite model were substantially higher in the rural areas and lower in 

urban areas than those from the ST-LUR model, and PM2.5 concentration estimates were 

slightly higher across the Los Angeles area, except in the mountain area.
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4. DISCUSSION

We developed a composite approach to incorporate CTM predictions into estimation of 

small-scale spatio-temporal variability of O3 and PM2.5 in the Los Angeles basin. Our 

findings suggest that incorporating UCD-CIT chemical transport model (CTM) predictions 

into our previously described spatio-temporal land-use regression based geostatistical 

framework (ST-LUR) improves estimation in O3 concentrations, but adds relatively less 

value to prediction of PM2.5 mass concentrations.

Our study has three strengths over previous studies which incorporated multiple modeling 

approaches in one framework.14, 15, 38–40 First, we included intensive monitoring data from 

multiple resources (N=156 for O3; N=142 for PM2.5) to characterize spatial variability of air 

pollutants rather than relying solely on administrative monitoring sites. Second, our UCD-

CIT CTM predictions were unique in terms of the long time span (2000–2008) and the fine 

spatial resolution (4×4 km2). Thirdly, our hierarchical modeling framework took full 

advantage of the monitoring and prediction data. This enables us to provide more accurate 

and highly-resolved concentrations for O3 and PM2.5 at intra-urban sites compared with 

most of the composite models focused on large-scale air pollution prediction.

4.1 O3 model

Integration of a CTM (4×4 km) with LUR to improve the spatial predictability of estimates 

at the intra-urban scale, primarily focused on nitrogen dioxide (NO2), was demonstrated 

(using the Bayesian Maximum Entropy (BME) approach) in Barcelona, Spain.16 Jointly 

accounting for the global scale variability in the concentration from the output of CTM and 

the citywide scale variability though LUR model output effectively increased the estimation 

accuracy for NO2 predictions (>30%) compared with other conventional approaches such as 

LUR and CTM alone. This is consistent with the general findings of our study that 

integration of the two modeling approaches was more accurate than the individual models, 

especially for O3. Since O3 is a reactive gas and rapidly reacts with nitrogen oxides in urban 

air, it is not surprising that the O3 model is improved with CTM predictions as was the NO2 

model in the Barcelona study.16 Even though the degree of improvement from integration of 

the CTM in our O3 model is less than that of the NO2 model from Barcelona (>20% vs 

>30%), it is worth noting that our ST-LUR and CTM models have taken spatial residuals 

into account through smoothing (universal kriging) while the reported NO2 models from 

Barcelona16 did not. Previous studies on O3 exposure have shown considerable improvement 

from spatial smoothing in LUR and CTM models.14, 15 A recent report of a Canadian 

national O3 LUR model, which treated dispersion modeled O3 concentrations as a GIS-

derived variable, explained 56% of spatio-temporal variability in O3 concentrations.39 

However, the large spatial domain and very coarse resolution of the dispersion modeled 

outputs (21×21 km) make those results less comparable with our results.

There are at least two ways in which the CTM output contributed to reducing the estimation 

error in our models. Firstly, our CTM models capture well the temporal and spatial 

variability in concentrations across monitoring sites, especially for O3. The CTM predictions 

may have compensated for the relatively limited temporal variability in our home 

measurements and therefore increased the statistical power for predictions. Secondly, the 
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CTM model incorporates meteorology and emissions information to simulate interactions 

between components in air over a large spatial domain. For instance, temperature, an 

important weather variable affecting oxidant photochemistry and surface O3 

concentrations,41 is not included in the LUR model, but is well represented in the CTM 

model. This is reflected in the larger decrease in RMSE of the composite O3 model in warm 

seasons (23%) than in cold seasons (18%). Improved prediction ability of the O3 model was 

achieved by incorporating CTM output in suburban areas with a larger amount of green 

space, in areas of higher elevation and in urban areas with more traffic and population, 

features that are typical of locations with sparse monitoring data, suggesting that exposure 

estimates at cohort addresses far away from monitoring sites may be improved by 

incorporating CTM model predictions. This may be explained by the fact that the CTM 

model explicitly accounts for atmospheric chemical processes, long range tranport, the role 

of biogenic volatile organic compounds as O3 precursors, and effects of complex terrain and 

meteorology. Moreover, in urban areas the urban background concentrations estimated by 

the CTM, reflecting the effect of local emissions on O3 destruction over a relatively large 

spatial domain, also improved the accuracy of estimates at the home monitoring locations.42

A map of predicted O3 concentrations from the composite model shows a larger range of 

concentrations than those from the ST-LUR model, with higher concentrations in the rural 

areas and lower concentrations in the urban areas (Figure 3). This indicates that our 

composite model has a better ability to capture real world spatial O3 concentration contrasts 

and thus reduce exposure misclassification for epidemiological studies.

4.2 PM2.5 model

Our composite model incorporating CTM output only marginally improved the prediction 

ability for PM2.5. This may be attributed to the relatively short averaging time scales (two-

week) of the inputs from the PM2.5 CTM. Previous examination of PM2.5 in California 

suggested better predictability of the PM2.5 CTM over longer periods due to the reduced 

influence of extreme events and reduction in short-term variability as the averaging period 

gets longer.21, 43 Consistent with this observation, we found better spatial agreement 

between annual averaged PM2.5 observations and predictions across the routine monitoring 

sites (R2=0.59, RMSE=7.11 μg/m3) than when using two-week average data, resulting in the 

largest improvement in spatial accuracy of the composite model. Moreover, PM2.5 

predictions contained some compensating errors due to imperfect emission inventories and 

incomplete formation pathways in nitrate, sulfate, and secondary organic aerosols. Primary 

particles associated with dust emissions were over predicted while secondary particles were 

under predicted, resulting in a slightly over predicted PM2.5 concentrations by the CTM and 

a damping of the time trends in Los Angeles.21 Figure S3 indicates that the CTM PM2.5 

mass predictions generally had larger RMSE in urban areas (where most monitoring sites 

were located) than in suburban and rural areas (where fewer monitoring sites were located) 

while the CTM O3 predictions had a generally opposite trend. It is likely that more accurate 

CTM predictions for individual chemical species such as PM2.5 EC, PM2.5 OC, etc. would 

make greater contributions to improved performance of the composition modeling approach 

than the current model in Los Angeles.
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The use of composite modeling approaches for air pollutants has also recently been 

investigated regarding incorporation of satellite-based remote sensing data into ground-level 

exposure predictions.38, 40, 44, 45 Although this approach may better capture the complex 

spatio-temporal variability in ambient PM2.5 at the regional or national scale, we suspect that 

satellite data may have limited ability to improve our model at small scales due to the 

relatively coarse resolution (10×10 km2) of the data and the already excellent performance 

of our PM2.5 ST-LUR model based on comprehensive monitoring sites and a highly 

explanatory set of geographic covariates. We found higher PM2.5 predictions from the 

composite model than those from the ST-LUR model over a large region of our study area 

which may be driven by the over-predictions from the CTM (Figure 3).

4.3 Limitation

Our study has a few limitations. The two-week time frame of our monitoring data limited the 

ability of our O3 model to predict 8-hour maximum values that are regulated by the U.S. 

EPA. However, correlations between two-week average data from daily average and daily 8-

hour maximum ozone observations were generally high across the routine monitoring sites 

(R2=0.81 on average), so this may not be a serious limitation. Furthermore, the spatial 

resolution of 4×4 km2 of the CTM data is still relatively coarse. As exposure methods 

evolve, higher spatial resolution data from CTMs and satellites, for instance, 1×1 km2, 

should become available to further reduce exposure measurement error.46, 47

In summary, we demonstrate that integration of output from a chemical transport model in a 

well-developed land use regression based geo-statistical framework can increase prediction 

accuracy at an intra-urban scale. The improvement in predictions is greater for O3 than for 

PM2.5 mass in Los Angeles, but these conclusions will likely change for other study regions. 

Our study highlights opportunities for future improvement in exposure assessment by 

making use of multiple sources of data to improve the accuracy of predictions in a fused 

modeling framework.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Long-term average of (a) O3 (daily 8-hour maximum) and (b) PM2.5 (daily 24-hour average) 

concentrations estimated by CTM with 4×4 km resolution and distribution of monitoring 

sites.
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Figure 2. 
Distribution of prediction errors (predicted value minus observed value) at the home and 

routine monitoring sites for O3 and PM2.5 using the three modeling approaches.
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Figure 3. 
Difference of long-term predictions between the composite spatiotemporal model and ST-

LUR model for (a) O3 and (b) PM2.5 in Los Angeles basin.
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