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Abstract

The prevalence of obesity is increasing worldwide and has tripled in men of reproductive

age since the 1970s. Concerningly, obesity is not only comorbid with other chronic dis-

eases, but there is mounting evidence that it increases the non-communicable disease

load in their children (eg mortality, obesity, autism). Animal studies have demonstrated that

paternal obesity increases the risk of metabolic (eg glucose metabolism defects, obesity)

and reproductive disorders in offspring. Epigenetic changes within sperm are clear mecha-

nistic candidates that are associated with both changes to the father’s environment and off-

spring phenotype. Specifically there is emerging evidence that a father’s sperm microRNA

content both responds to paternal environmental cues and alters the gene expression pro-

file and subsequent development of the early embryo. We used a mouse model of high fat

diet (HFD) induced obesity to investigate whether male obesity could modulate sperm

microRNA content. We also investigated whether this alteration to a father’s sperm micro-

RNA content lead to a similar change in the sperm of male offspring. Our investigations

were initially guided by a Taqman PCR array, which indicated the differential abundance of

28 sperm borne microRNAs in HFD mice. qPCR confirmation in a much larger cohort of

founder males demonstrated that 13 of these microRNAs were differentially abundant (11

up-regulated; 2 down-regulated) due to HFD feeding. Despite metabolic and reproductive

phenotypes also being observed in grand-offspring fathered via the male offspring lineage,

there was no evidence that any of the 13 microRNAs were also dysregulated in male off-

spring sperm. This was presumably due to the variation seen within both groups of offspring

and suggests other mechanisms might act between offspring and grand-offspring. Thus 13

sperm borne microRNAs are modulated by a father’s HFD and the presumed transfer of

this altered microRNA payload to the embryo at fertilisation potentially acts to alter the
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embryonic molecular makeup post-fertilisation, altering its growth trajectory, ultimately

affecting adult offspring phenotype and may contribute to paternal programming.

Introduction

Obesity and its consequences for lifelong health and well-being are an increasing burden
for health systems worldwide. Globally more than 2.7 billion adults are classified as over-
weight or obese [1] and obesity has become the most important risk factor contributing to
the overall burden of disease [2]. Adult obesity is often comorbid with many other chronic
diseases, such as cardiovascular disease, type 2 diabetes, and cancer, thereby reducing life
expectancy [3]. Furthermore, in men of reproductive age the prevalence of obesity has tri-
pled since the early 1970’s; occurringwith a concomitant decline in male fertility [4–6]. An
increasedmale BMI can reduce sperm count and motility, while increasing sperm DNA
damage and reactive oxygen species, and disrupting mitochondrial activity [7,8]. Conse-
quently, male obesity is associated with increased time to conception, reduced fertilization,
and impaired embryo development that culminates in reduced pregnancy rates and
increased pregnancy loss [9].

Of significant concern, human epidemiological investigations provide evidence that an
increasedmale BMI, or increased food intake, can lead to male transmission of non-communi-
cable diseases to descendants. For example, a presumed excess of grandpaternal food was asso-
ciated with reduced survivability [10] and an increased risk of diabetes [11] in grandchildren in
a population from Northern Sweden (Överkalix). Furthermore, an increased paternal BMI is
associated with increased BMI in his children [12–15], and paternal obesity has been associated
with increased risk of autism spectrumdisorder in children [16,17]. Human studies are usually
confounded by a shared genetic predisposition and/or exposure to an ‘obesogenic’ environ-
ment by both the father and his children [18].

Animal models have clearly demonstrated that programming can be paternally initiated,
whereby a father’s pre-conception high fat diet increases the risk of metabolic disturbances in
offspring [19–21]. Using a mouse model of diet induced obesity, in the absence of overt signs
of diabetes, we have previously demonstrated impaired reproductive and long-termmetabolic
health outcomes in offspring and grand-offspring [19,22]. Furthermore this programming of
offspring health occurred concomitantly with changes to the microRNA content of the father’s
sperm and germ cell hypomethylation [19].

A prime candidate mechanism, by which paternal environmental cues are passed to the
next generation, are non-genetic alterations in sperm such as DNA methylation, Histone modi-
fications, DNA damage, and in particular small non-coding RNAs (sncRNA) [23–25]. Mature
sperm contain significant amounts of RNA, including microRNAs as a subset of small non-
coding RNAs, which are transferred to the oocyte upon fertilizationwhere they alter gene
expression in the early embryo [26–29]. MicroRNAs are short, endogenous, single-stranded
non-coding RNAs that fine tune protein expression at the post-transcriptional level by homol-
ogous binding to target mRNAs [30,31]. While microRNAs can act by translational repression
[32], most act via mRNA decay [31,33]. Interestingly, microRNAs may also modulate epige-
netic regulators such as DNA methyltransferases and histone deacetylases, and conversely be
targets of epigenetic regulation themselves [34].

Sperm bornemicroRNAs have been demonstrated to be important for embryo develop-
ment, as evidencedby embryonic arrest in embryos deficient of sperm derivedmicroRNA [35]
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and that paternal microRNA-34c is critical for the first cleavage event [36]. Investigations that
microinject supraphysiological amounts of single microRNAs into PN stage embryos provide
direct evidence that alterations to microRNA abundance very early in embryo development are
capable of inducing phenotypes in adult offspring. These phenotypes include cardiac hypertro-
phy (microRNA-1 [37]), coat colour changes (microRNA-221/222 [38]), embryo and offspring
overgrowth (microRNA-124; [39]), and an obesity phenotype (microRNA-19b [40]). Further-
more microinjection of other multiple sncRNA or microRNA species are sufficient to recapitu-
late complex phenotypes, including offspring behavioural and metabolic defects induced by a
father’s chronic stress (9 microRNAs– 29c, 30a, 30c, 32, 193-5p, 204, 375, 5323p, and 698;
[41]), behavioural and metabolic defects induced by a father’s early life trauma (entire sperm
sncRNA content [42]), or an offspring acquiredmetabolic disorder caused by a father’s over-
nutrition (entire sperm tsRNA fraction [43]). The microinjection of 9 microRNAs changed in
sperm by a father’s chronic stress caused targeted degradation of stored maternal mRNAs and
induced a cascade of molecular events in the early embryo that ultimately induce the adult off-
spring phenotype [41].

We therefore hypothesised that paternal diet-induced obesity during spermatogenesis can
also regulate the abundance of microRNA in spermatozoa. Therefore, our aim was to utilise
our mouse model of obesity to identify sperm bornemicroRNAs that are altered by high-fat
diet induced obesity. Furthermore given that grand-offspring born to male offspring also have
metabolic and reproductive phenotypes [19] we also aimed to establish if these same micro-
RNAs are changed in the sperm frommale offspring.

Materials & Methods

Animals and diet

Male C57Bl6 mice (aka fathers; C57BL/6NHsd, Envigo, IN, USA) were fed either a control diet
(CD n = 13 total; 6% fat, 19% protein, 64.7% carbohydrate; SF04-057, Specialty Feeds, Glen
Forrest, Australia), or a high fat diet (HFD n = 14 total; 22% fat, 0.15% cholesterol, 19% pro-
tein, 49.5% carbohydrate; SF00-219, Specialty Feeds), which were otherwisematched for nutri-
tional content. All male mice were housed individually post weaning prior to mating
(including male offspring and grand-offspring), so a dominance structure was not established
betweenmales within the same litter that might affect sex hormones profiles and thus poten-
tially skew reproductive and spermmicroRNA outcomes. Animals had ad libitum access to
feed and water for 10 weeks (5 to 15 weeks of age) and during experiments where fasting was
not required. After 10 weeks on the diets (15 weeks of age) a subset of males (aka fathers; n = 9
per CD/HFD group) were mated with CD fed female C57Bl6 mice to generate male offspring,
approximately 1 week prior to sperm collection.Male offspring (n = 9 per CD/HFD father; ie
one male offspring per father/litter) were weaned and maintained on the CD until 15 weeks of
age and mated with CD fed female C57Bl6 mice to generate the grand-offspring; then offspring
sperm samples were collected post mortem.

The mice were obtained and housed individually by the University of Adelaide Laboratory
Animal Services,Adelaide, Australia. All mice were maintained at 24°C on a 14 h light (lights
on at 0600), 10 h dark (lights off at 2000) illumination cycle. All procedures were conducted
during the light phase of the light cycle and all mice in each group were subjected to all experi-
ments in the order in which they are described.

In all cohorts of mice each mouse had total body weight measured weekly and body compo-
sition determined by post mortem dissection and weighing each dissected tissue after 10 weeks
of diet regimens (for fathers) or at 15 weeks of age for offspring. Tissues (including adipose tis-
sue) and organs of each animal were dissected and weighed post-mortem.
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Animal ethics

The animal ethics committee of the University of Adelaide approved all experiments, and the
animals were handled in accordance with the Australian Code of Practices for the Care and
Use of Animals for Scientific Purposes.

Metabolic testing

Following 9–10 weeks of diet treatment in fathers (14–15 week of age), intraperitoneal glucose
tolerance test (IPGTT)was performed after 6 h of fasting by intra-peritoneal (ip) injection of 2
g kg-1 of 25% glucose solution (Sigma, St Louis, Missouri) and then one week later intraperito-
neal insulin challenge (IPTT) was performed fed after ip injection of 0.75 IU kg-1 insulin (Acta-
pid1, Novo Nordisk, Bagsvaerd, Denmark). Tail blood glucose concentration was obtained by
a tail vein nick and measured using a glucometer (Hemocue, Angelholm, Sweden) at time-
points 0 (pre-bolus basal), 15, 30, 60 and 120 minutes. Data is expressed as mean blood glucose
concentration per group using area under curve (AUC; glucose challenge) or area above the
curve (AAC) analysis (insulin challenge).

Blood hormone analysis

For blood hormonemeasurements, male mice were fasted overnight (14 h), and a blood sample
was obtained by cardiac puncture immediately prior to sacrifice, serumwas immediately sepa-
rated by centrifugation (4,000 rpm for 10 m at 4°C) and frozen at -80°C until further analysis.
Fasting serum glucose, cholesterol, triglycerides, non-esterified fatty acids (NEFAC test) and
HDL cholesterol (HDLC3) were measured in duplicates on a COBAS INTEGRA 400 (Roche
Diagnostics, Basel, Switzerland). Fasting serum insulin and leptin levels were measured in
duplicates by Sensitive Rat Insulin radioimmunoassay (RIA; Catalogue # SRI 13K) and Mouse
Leptin RIA, respectively (XL 85K; Millipore Corporation, Billerica,MA, USA).

Isolation of spermatozoa

Spermatozoa were isolated from the vas deferens and cauda epididymis which had been dis-
sected out of the mouse and gently squeezed into 1 ml GIVFmedium (Vitrolife AB, Gothen-
burg, Sweden) with all tissue remnants removed, immediately after animal sacrifice and
overnight fasting. Most of the GIVF/sperm solution was carefully aspirated, pelleted and resus-
pended/washed in 1 ml of PBS and counted as previously described [44] and as below, elimi-
nating contamination of non-sperm cells. Light microscopy purity assessment confirmed
samples to be entirely of spermatozoa origin. The spermwas pelleted again, snap frozen, and
stored at -80°C until RNA extraction.

Sperm count and motility

Spermatozoa were extracted into GIVFmedium (Vitrolife AB) and allowed to swim out for 10
min at 37°C in 5% O2, 6% CO2 and 89% N2. Sperm concentration was determined using a Neu-
bauer haemocytometer and spermmotility was determined by count of duplicate measures of
200 sperm [44] and reported as a percent of the total of motile sperm for each sample, as per
theWorld Health Organization laboratorymanual recommendations for the examination of
human sperm [45].

RNA extraction, miRNA expression profiling and bioinformatic analysis

Total RNA was isolated from 4-8x106 spermatozoa for each male mouse investigated (no pool-
ing of samples) with TRI reagent (Ambion, Waltham, MAUSA), using Glycogen as a RNA
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carrier. RT-PCR was performedwith multiplexed TaqMan primers, and the RT product pre-
amplified with Megaplex PreAmp Primers. miRNA expression profiling was performed on
384-well microfluidic TaqMan RodentMicroRNA Array cards v. 3.0 (n = 4 per CD/HFD
group–mice from different litters were randomly allocated to the diets and then samples were
randomly selected for this initial experiment) amplified on a 7900 HT Real Time PCR system.
After quality control in SDS v.2.3 and RQManager v.1.2, the raw Ct data were quantile nor-
malised using the normQpcrQuantile function of the R qPCRNorm package [46]. The degree
of differential expression of the 371 mouse detectors that passed quality control were ranked
using LIMMA in R (S1 Table). To validate the PCR array findings, qRT-PCR was performed
with multiplexed TaqMan primers and the RT product pre-amplified with Megaplex PreAmp
Primers, with reactions run in triplicates on a 7900 HT Real Time PCR system Data, including
NTC (complete reaction without cDNA added) and no RT enzyme (complete reaction without
RT enzyme) controls. miRNA expression fold change was determined by the ΔΔCTmethod,
using the geometricmean of miR-10a and miR-195 to normalize data. BothmiR-10a and miR-
195 were determined to be invariable and ubiquitous endogenous controls by two approaches;
cel-miR normalisation of array data (data not shown), and subsequent qPCR data (S2 Table).
All reagents, machines and software were from Applied Biosystems, unless otherwise specified.

The Ingenuity Pathway Analysis1 (IPA) tool was used to generate a list of mRNA targets
experimentally confirmed to be direct targets of the microRNAs (ie strict filtering) that were
differentially abundant in the sperm of HFD fathers. A core network analysis was then per-
formed using only experimentally validated interactions betweenmolecules (ie strict setting)
and to predict the molecular networks that these mRNAs targets are known to function in.

Statistics

All data are presented as mean ± SEM and checked for normal distribution by D'Agostino and
Pearson test (GraphPad Prism, version 5.01 for Windows, GraphPad Software, San Diego, CA,
USA) as well as equal variance by a Levene’s test (SPSS version 19, SPSS Inc., Chicago, IL,
USA). Experimental outcomes were analysed using a paired Student’s t-test, a Mann Whitney
U test for non-parametric data (Graphpad Prism), or univariate general linear modelling using
cohort of animals as a covariate (SPSS), when appropriate. Levels of significancewere set at
p� 0.05.

Results

A father’s high fat diet models obesity in the absence of overt signs of

diabetes

We used our mousemodel of high fat diet (HFD) induced obesity, where HFD consumption for
10 weeks induces obesity without any overt changes to glucose homeostasis [19,22,44,47].
AlthoughHFD fed fathers (n = 14) were heavier (+24.8%), as a proportion of total bodyweight
they had increased adiposity (+46.6%). Specifically perirenal (+65.3%), gonadal (+57.2%), and
omental (+65.3%) adipose depots were greater as a proportion of total bodyweight (Table 1) com-
pared with CD fed fathers (n = 13). Akin to human obesity, HFD feeding also increased fasted
blood sera metabolite concentrations, including cholesterol (+47.3%), high density lipoprotein
cholesterol low serum3 (HDLC3; +47.5%), and non-esterified free fatty acids (FFA; +32.4%)
(Table 1) compared with CD fed fathers. This HFD regimen did not alter fasted blood sera con-
centrations of insulin, glucose, leptin, nor responses to a glucose or insulin bolus, compared with
CD fed fathers (Table 1). Thus the F0 metabolic phenotype was consistent with our previous use
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of this model of obesity, whereby the potential confounder of overt changes to glucose homeosta-
sis, was avoided.

High-fat diet induced obesity affects the father’s reproductive system

and spermatozoa quality

Conventional sperm analysis showed that sperm count was unaltered by HFD feeding (8.71 ±
1.01 x 106/mL for CD (n = 13) and 8.41 ± 0.44 x 106/mL for HFD (n = 14)) but spermmotility
was significantly reduced (CD (n = 13)– 83.1 ± 2.6%; vs HFD (n = 14)– 65.1 ± 4.4%; p = 0.0023)
compared with CD fed fathers. These data confirmour previous findings that diet induced obe-
sity impairs sperm parameters in bothmousemodels and in humans [9,44].

Table 1. Fathers total body weight, body composition, and blood metabolite profile.

Parameter CD HFD p value

Total body weights n = 13 n = 14

Weight (g) 28.41 ± 0.75 35.46± 0.95 < 0.0001

Adiposity–absolute mass (g)

Perirenal fat (g) 0.21 ± 0.04 0.42 ± 0.04 0.0010

Retro peritoneal fat (g) 0.08 ± 0.02 0.08 ± 0.03 NS

Dorsal fat (g) 0.36 ± 0.03 0.51 ± 0.04 0.0100

Gonadal fat (g) 0.88 ± 0.09 1.71 ± 0.11 < 0.0001

Omental fat (g) 0.27 ± 0.03 0.56 ± 0.04 0.0001

Sum of adipose deposits (g) 1.80 ± 0.18 3.27 ± 0.21 0.0001

Adiposity–relative (% TBW)

Perirenal fat (%) 0.72 ± 0.12 1.19 ± 0.11 0.0071

Retro peritoneal fat (%) 0.28 ± 0.08 0.21 ± 0.06 NS

Dorsal fat (%) 1.27 ± 0.11 1.42 ± 0.10 NS

Gonadal fat (%) 3.06 ± 0.26 4.81 ± 0.2178 0.0001

Omental fat (%) 0.72 ± 1.19 1.19 ± 0.11 0.0003

Sum of adipose deposits (%) 6.27 ± 0.48 9.19 ± 0.41 0.0002

Testes weights

Left Testis (g) 0.08± 0.00 0.08 ± 0.00 NS

Right Testis (g) 0.08 ± 0.00 0.08 ± 0.00 NS

Both Testes (g) 0.16 ± 0.00 0.16 ± 0.00 NS

Blood metabolites

Glucose (mmol/L) 14.11 ± 1.80 13.69 ± 1.16 NS

Cholesterol (mmol/L) 4.40 ± 0.62 6.48 ± 0.48 0.0010

Triglyceride (mmol/L) 1.10 ± 0.14 0.98 ± 0.11 NS

FFA (mmol/L) 1.11 ± 0.16 1.47 ± 0.12 0.0045

HDLC3 (mmol/L) 3.79 ± 0.56 5.59 ± 0.43 0.0116

Insulin (ng ml-1) 1.71 ± 0.48 1.38 ± 0.24 NS

Leptin (ng ml-1) 24.87 ± 3.69 27.17 ± 2.98 NS

Glucose/Insulin testing

GTT (AUC; mmol.min) 259 ± 18.6 238 ± 30.0 NS

ITT (AAC; mmol.min) 294 ± 23.7 276 ± 33.1 NS

All data is presented as Mean ± SEM.

CD Control Diet, HFD High Fat Diet, p value determined by 2-tailed t-test, % Weight is expressed as a percent of total body weight, NS Difference between

CD/HFD is not significant (P>0.05), TBW total body weight, GTT glucose tolerance test, AUC area under the curve, ITT insulin tolerance test, AAC area

above the curve.

doi:10.1371/journal.pone.0166076.t001
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High-fat diet induced obesity alters a father’s sperm microRNA content

To gain a somewhat global overviewof what effect diet-induced obesity has on mouse sperm
microRNA content, low density TaqMan PCR arrays were used as a screening tool for 641
murine microRNAs (n = 4 males per CD/HFD). The expression of 371 mouse miRNAs could
be detected (raw Ct<35) in all 8 CD/HFD samples. LIMMA analysis of quantile normalisedCt
values of these 371 miRNAs (S1 Table) identified 28 microRNAs that were potentially differen-
tially abundant in the sperm fromHFD F0 compared with CD as determined from unadjusted
p values (12 up-regulated and 16 down-regulated; Table 2 and full list of detectedmicroRNAs
in S1 Table). It must be noted that the microRNAs identified as potentially differentially abun-
dant did not survive FDR testing, most likely due to the limited number of individual arrays
used to interrogate them (ie n = 4 per CD/HFD F0 males) (S1 Table).

Table 2. 28 sperm microRNAs from fathers predicted to be differentially abundant in HFD F0 sperm (n = 4) compared with CD sperm (n = 4).

Array Card Assay miR ID CD (Ct) HFD (Ct) HFD FC p value

Up-regulated in HFD

*mmu-miR-126-3p-4395339 21.87 ± 0.26 20.05 ± 0.32 3.53 0.004

*mmu-miR-135b-4395372 27.45 ± 0.31 25.77 ± 0.33 3.18 0.010

*mmu-miR-143-4395360 22.43 ± 0.26 20.29 ± 0.73 4.40 0.018

*mmu-miR-133b-4395358 27.72 ± 0.75 25.74 ± 0.29 3.97 0.029

*mmu-miR-136-4395641 28.38 ± 0.26 27.16 ± 0.31 2.33 0.030

*mmu-miR-126-5p-4373269 24.76 ± 0.49 23.32 ± 0.29 2.72 0.036

mmu-miR-376b-4395582 35.90 ± 1.65 32.42 ± 0.44 11.12 0.047

*mmu-miR-141#-002513 29.34 ± 0.29 28.35 ± 0.18 1.99 0.047

*mmu-miR-145-4395389 19.47 ± 0.49 17.82 ± 0.58 3.14 0.050

*mmu-miR-337-000193 31.98 ± 0.69 30.32 ± 0.36 3.18 0.050

*mmu-miR-30a-4373061 20.99 ± 0.46 19.81 ± 0.60 2.25 0.059

*mmu-miR-376a-4373347 31.12 ± 0.56 29.13 ± 0.60 4.14 0.059

Down-regulated in HFD

mmu-miR-669n-197143_mat 27.34 ± 0.43 29.54 ± 0.37 -4.60 0.005

mmu-miR-669C-002646 28.87 ± 0.47 30.79 ± 0.28 -3.79 0.008

mmu-miR-669l-121149_mat 29.96 ± 0.51 32.14 ± 0.44 -4.53 0.010

mmu-miR-150-4373127 16.81 ± 0.33 18.27 ± 0.21 -2.77 0.011

mmu-miR-467H-002809 31.25 ± 0.65 34.65 ± 1.07 -10.56 0.015

*mmu-miR-1961-197391_mat 32.17 ± 0.51 34.97 ± 0.93 -7.00 0.018

*mmu-miR-184-4373113 19.78 ± 0.26 21.00 ± 0.32 -2.32 0.031

mmu-miR-466a-3p-002586 27.05 ± 0.44 28.37 ± 0.21 -2.49 0.033

mmu-miR-672-4395438 22.93 ± 0.22 23.87 ± 0.13 -1.93 0.036

mmu-miR-412-002575 32.94 ± 0.31 34.30 ± 1.14 -2.57 0.039

mmu-miR-669D-002808 28.82 ± 0.61 30.60 ± 0.49 -3.42 0.040

mmu-miR-139-3p-4395676 31.59 ± 0.99 35.01 ± 1.34 -10.77 0.045

mmu-miR-1969-121131_mat 29.40 ± 0.21 30.66 ± 0.20 -2.38 0.051

mmu-miR-879#-002473 32.43 ± 0.58 35.61 ± 0.54 -9.04 0.053

mmu-miR-92a-4373013 18.77 ± 0.37 19.53 ± 0.47 -1.69 0.054

mmu-miR-466b-3-3p-002500 26.72 ± 0.34 27.90 ± 0.21 -2.26 0.059

p value (not FDR adjusted) ranked normalised Ct values are given for the 12 up-regulated and 16 down-regulated murine microRNAs as indicated by

Taqman miRNA PCR array cards. All data is presented as Mean ± SEM. Mean dCt were derived from the geometric mean of mmu-miR-10a-5p and mmu-

miR-195-5p (the least variable microRNAs across all samples). A full list of microRNA detectors can be found in S1 Table.

CD Control Diet, HFD High Fat Diet, FC fold change (of HFD vs CD by ΔΔCt method), p value from LIMMA analysis of normalised Ct values.

* Confirmed as differentially abundant by subsequent qPCR interrogation in an extended cohort of F0 mice.

doi:10.1371/journal.pone.0166076.t002
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To build on the preliminary array findings, individual Taqman microRNA qPCR assays for
all 28 candidate microRNAs were performed on the sperm from a larger sample that included
both the samples used for the array (n = 4 per CD/HFD F0 males) and additional males from a
total of three separate cohorts of mice (n = 13 CD fed; n = 14 HFD fed). This included a subset
of a cohort we had previously published that demonstrated transgenerational transmission of
reproductive and metabolic phenotypes into offspring and grand-offspring due a paternal
HFD [19,22]. This confirmed differential abundance of 13/28 of these miRNAs; 11 were up-
regulated (mmu-miR-126-3p, 135b-3p, 143-3p, 133b-3p, 136-5p, 126-5p, 141-5p, 145a-5p,
337-3p, 30a-5p, and 376a-3p) and 2 were down-regulated (mmu-miR-184-3p, and 1961) (Fig
1, S2 Table). It must be noted that only 13/28 microRNAs were confirmed as altered in the
larger cohort (Fig 1, Table 2, S2 Table), presumably due to the limited sample size of the initial
cohort or variation between individual males/cohorts. Interestingly, we note a distinct differ-
ence in the proportion of microRNAs identified by the array and confirmed as differentially
abundant in the up-regulated list (11/12 confirmed) compared with the down-regulated (2/16)
list.

All data were normalised to the expression of two reference microRNAs (mmu-miR-10a-5p
and mmu-miR-195a-5p) that we found to be invariable and ubiquitous endogenous in the Taq-
man PCR array data set and then validated by the individual Taqman qPCR assays in the
extended cohort (S2 Table). The small non-coding RNA (U6) frequently used for normalising
microRNA variedmore than 10a-5p and 195a-5p across our treatment groups in our hands
(S2 Table), albeit not significantly different betweenCD/HFD fathers. This suggests that mmu-
miR-10a-5p and mmu-miR-195a-5p are potentially better endogenous controls than U6 for
investigating microRNA content in mouse sperm in the present experimental setup.

In Addition 53 mouse spermmicroRNAs were only detected in the sperm from either CD
or HFD fed fathers (S3 Table) using a Ct of 35 as detection limit cut-off. Interestingly 13/53
were detected only in the sperm from CD fed fathers; whilst the remaining 40/53 were only
detected in the sperm formHFD fed fathers.

A father’s high-fat diet does not alter the same subset of sperm

microRNAs in offspring due to variable abundance

Many paternal environmental challenges have been demonstrated to initiate transgenerational
effects and epigenetic disturbances in offspring, such as endocrine disruptors [48], stress [49],
pain [50], and nutrition [19,21,22,51].We aimed to investigate whether a polygenic disease (ie
diet induced obesity) would have the same impact on spermmicroRNA content in the F1
males, who themselves have metabolic disturbances without increased adiposity. We have pre-
viously reported that the grand-offspring born through the male offspring lineage also have
metabolic and reproductive disturbances (41.4 ± 10.13% decrease in serum leptin,
53.2 ± 29.99% gain in adipose tissue, insulin resistance, 33.0 ± 11.06% decrease in spermmotil-
ity, 7.2 ± 1.84% increase in sperm reactive oxygen species (ROS), and 16.2 ± 7.13% increase in
oocyte ROS) that have some phenotypic overlap with those of the male offspring investigated
here (6.4 ± 1.94% increase to total body weight, 22.7 ± 11.0% in serum leptin, reduced glucose
clearance, insulin resistance, 17.2 ± 9.86% decrease to spermmotility, 18.0 ± 1.23% increase in
sperm ROS, 38.9 ± 6.95% decrease in sperm-oocytebinding, 150.0 ± 75.12% increase in sperm
DNA damage, and 80.9 ± 13.81% decrease in oocyte fertilisation) [19,22]. Thus the 13 sperm
bornemicroRNAs dysregulated by a father’s HFD were interrogated in the sperm from the
male offspring, despite their lack of exposure to a HFD and overt obesity. Consistent with
another report of transmission of behavioural disturbances to offspring due to paternal stress,
where the same microRNAs altered in the fathers sperm due to stress were not altered in the
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Fig 1. The abundance of the 13 sperm borne microRNAs by qPCR in the sperm of the (A) CD or HFD fed

fathers and the (B) male offspring born to by either CD or HFD fed fathers. Fold change (FC); vs (A) CD

fathers or (B) offspring born to CD fathers by ΔΔCt method) of each microRNA is given for the (A) F0 males fed the

CD (n = 13) or HFD (n = 14; from 3 separate cohorts) and the (B) F1 males born to either CD (n = 9; black bars) or

HFD (n = 9; white bars) fathers. The (A) geometric mean of mmu-miR-10a-5p and mmu-miR-195-5p or (B) mmu-

miR-10a-5p alone was used as a reference microRNA (the least variable microRNA(s) across all samples in the

present experimental setup). p values denoted [* p < 0.05; **p < 0.01] are derived from (A) univariate general

linear modelling or (B) no significant differences were detected by a Student’s T test. Data is presented a

means ± SEM.

doi:10.1371/journal.pone.0166076.g001
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offspring’s sperm despite behavioural phenotypes [42], in our obesemodel none of microRNAs
altered in the fathers showed signs of dysregulation in male offspring’s sperm (Fig 1). The lack
of difference between offspring born to CD/HFD fathers was presumably due to the large vari-
ance observed in the abundance of the microRNAs in the sperm from both groups of offspring.

Molecular pathways targeted by differentially abundant sperm

microRNAs in fathers due to a HFD

An Ingenuity Pathway Analysis1 with strict filtering and analysis settings was used to both (i)
generate a list of 311 experimentally confirmedmRNA targets (S4 Table) of the 13 microRNAs
that were differentially abundant in the sperm of HFD fathers and (ii) to predict (using a strict
analysis) the molecular networks that these mRNAs operate in. The top 5 rankedmolecular
networks identified by this analysis, and presumably targeted post fertilisation by these sperm
bornemicroRNAs within the embryo, included diseases and functions such as cell death and
survival, cancer, cellular development, organismal development, infectious diseases/immune
response, cellular growth and proliferation, and embryonic development (Table 3). P53 was
identified as the highest ranked upstream regulator of these networks.

Discussion

The 13 sperm bornemiRNAs differentially regulated in a mouse model of paternal obesity may
act as epigenetic signals transmitted to offspring, by targeting maternally stored mRNA tran-
scripts in the fertilised egg, initiating a cascade of molecular events that reprogram embryonic
development that ultimately impairs the long termmetabolic and reproductive health of adult
offspring. Furthermore, despite grand-offspringmice born to the male offspring displaying
some similarities in metabolic and reproductive phenotypes to their offspring fathers, there

Table 3. The top 5 ranked molecular networks identified by Ingenuity pathway analysis.

# Molecules in Network IPA

Score

Focus

Molecules

Top Diseases and Functions

1 Akt, AURKB, BCL2, BCL6, BECN1, CARHSP1, COL1A2, CSNK1D, ERK1/

2, F11R, HMOX1, HRAS, IDH1, IGF1R, IGF2BP1, IGFBP5, IRS1, JAK2,

KRAS, NRAS, PAFAH1B2, PRIM1, Ras, RB1CC1, RHOB, RTKN, STAT5a/

b, TOM1, TOP2A, TP53, TYMS, UHRF1, UNG, VASN, VIM

50 32 Cancer, Organismal Injury and

Abnormalities, Reproductive System

Disease

2 Ap1, BCL2L1, CASP3, CASP9, CCNA2, CCND1, CDC25A, CDK4, CDK6,

DFFA, EIF4E, FLI1, HMGA1, Hsp90, JUN, KLF4, KLF5, LIN28A, MAPK12,

MDM2, MET, MYC, NFATC2, PKM, PLK1, PRDM1, PTGS2, Rb, RHOA,

RUNX2, SRF, TAGLN, THBS1, TLR4, WNT5A

50 32 Cellular Development, Cellular Growth and

Proliferation, Cell Death and Survival

3 14-3-3, ADCY, AKT2, AMPK, Ap1, ATRX, Cg, CTGF, ERK, ESR1/2, GNAI2,

HMGA1, IDH1, KCNQ1, KLF15, KRT19, MET, MUC1, NEDD4, PARP, Pka,

PP2A, PRKAA, PTPRK, APH1A/B, SFRP4, SPRED1, STRN, TGFBR1,

UBE2I, UGT8, Vegf, VEGFA, VIM, WNT5A

30 22 Cellular Movement, Cancer, Endocrine

System Disorders

4 CASP3, CCNA2, CDK4, Ces, DFFA, DNMT3A, E2F1, EIF4E, FLI1, Hnrnpa1,

KIF20A, KLF5, MAPK7, MAPK12, MCM6, MDM2, ME2, MPG, MYC, NR2E1,

PLK1, PPARA, PRC1, SRM, TOP2A, TOP2B, YY1

26 16 Infectious Diseases, Organismal

Development, Cellular Development

5 ALOX5AP, APC, ATG10, ATG2B, ATG4A, ATG4C, BMP1, CAPNS1,

CTNNB1, CYP2A6 (includes others), DIAPH3, F11R, FBLN2, FEN1, FSTL3,

HIPK2, IGFBP5, KRT7, MDFI, MMP23B, PSAP, RTKN, SMAD5, SPTB,

TOM1, TP53, TP63, UNG, USO1, USP9X, UVRAG, VAMP4, VASN, VEGFA,

VMP1

22 14 Embryonic Development, Tissue

Morphology, Cancer

IPA ingenuity pathway analysis was limited to experimentally validated mRNA targets of the sperm mircoRNAs with altered abundance due to a father’s

HFD. Molecules that are in bold/underlined font are experimentally validated targets of the sperm microRNAs with altered abundance due to a HFD.

doi:10.1371/journal.pone.0166076.t003
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was limited evidence that any of these microRNAs were also dysregulated in the offspring’s
sperm. It must be noted that no dysregulation was observed in the sperm of the offspring pre-
sumably due to the variation of microRNA abundance detectedwithin both groups of off-
spring. This suggests that either a different set of sperm bornemicroRNAs or other epigenetic/
genetic marks are transmitted to grand-offspring that induce these phenotypes and that father
to offspring signals may also comprise of more than spermmicroRNAs. Taken together this
implies that the set of sperm bornemicroRNAs identified as altered in these fathers’ sperm that
were associated with programming in offspring, might be unique to the obese state, as male off-
spring born to obese fathers using this model of obesity were not themselves obese [19].

Of the four spermmicroRNAs (mmu-miR-133b-3p, -196a-5p, 205-5p, 340-5p) that we pre-
viously reported as altered in fathers sperm due to this HFD regimen [19], miR-133b-3p was
confirmed as up-regulated to a similar 3x fold increase. A further two (miR-205-5p, miR-340-
5p) agreed with the direction of regulation due to a father’s HFD, but did not reach statistical
significance due to the large variance detected across the limited sample size used in the Taq-
man array (ie n = 4), mainly between the HFD father samples. The last microRNA (miR-196a-
5p) did not pass the quality test applied to all raw data prior to the LIMMA analysis, but inter-
estingly it was detected in HFD fed fathers sperm but not in CD fed fathers (using a 35 Ct cut-
off limit of detection), consistent with a large up-regulation as previously reported. This may
be due to the multiplex nature of the method used for cDNA generation that might result in
inconsistent representation of specificmicroRNAs in the cDNA versus a single assay in the
subsequent qPCRs, or the variance of some microRNAs between the multiple cohorts. Thus
highlighting the importance of qPCR confirmation of array data with a larger sample size from
multiple cohorts.

It is possible that the spermmicroRNAs that are differentially abundant in obese fathers
enact their presumed perturbation to cellular functions by targetingmaternally stored mRNAs
post-fertilisation, as has recently been demonstrated for transmission of paternal stress cues
[41]. Although, it must be noted that the microinjection of these microRNAs into early
embryos would be required to provide direct causality of mRNA dysregulation, altered embryo
development, and recapitulation of offspring phenotype. The top networks that the differen-
tially abundant sperm bornemicroRNAs have been experimentally confirmed to modulate
include functions such as cell death and survival, cellular development, cellular growth and
proliferation, and embryonic development. Impairment to these functionsmight result in the
delayed development, increased apoptosis, reduced cell numbers, and altered cell allocation
that has been previously reported to occur in embryos fathered by males subjected to the same
dietary regimen[52–54]. Part of the embryonic phenotype (of offspring) may well result from
microRNA-145’s regulation of pluripotency, that has been demonstrated in human embryonic
stem cells acting via repression of OCT4, SOX2 and KLF4 [55,56]. Moreover microRNA-143/
145 have been demonstrated to be delivered by sperm, insofar as they were not detectable in
oocytes but were present in both sperm and in early embryos soon after fertilisation [36]. Since
sperm presumably deliver these microRNAs to the oocyte at fertilisation, their increased abun-
dance in the sperm from obese fathers potentially leads to an increased inhibition of OCT4,
SOX2 and KLF4, reducing pluripotency within these embryos, which has important ramifica-
tions for the development of the pluripotent epiblast, which will ultimately develop into the
fetal pole. A high fat diet has been shown to reduce the formation of the epiblast and also
increases the amount of pregnancy loss in this mouse model of obesity [54]. Furthermore
microRNA-135b (increased in obesemales’ sperm) is a member of a family of microRNAs that
target SIAH1, a protein essential to the first embryonic cell cleavage [57], and if its abundance
is altered it has potential ramifications for the delayed cleavage observed for embryos fathered
by males on the same HFD regimen [52–54]. Importantly, as these spermmicroRNAs might
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potentially disrupt molecular pathways such as endocrine system disorders, tissue morphology,
organismal injury & abnormalities, immune responses, and reproductive system disease this
might initiate a post fertilisationmolecular cascade that ultimately has a bearing on the subse-
quent health of offspring. This could possibly then partially explain the glucose homeostasis,
adiposity, and reproductive defects evident in offspring fathered by males exposed to the same
HFD regimen [19,20,22,58].

The differentially abundant spermmicroRNAs may potentially also be acting upon DNA
methylation post fertilisation. Indeed there are multiple lines of evidence that microRNAs can
alter methylation patterns. SpecificallymicroRNA-126-3p (increased in sperm fromHFD
fathers) binds the 30-untranslated region of DNMT1 mRNA, reducing its expression and lead-
ing to hypomethylation [59]. Interestingly, hypomethylation occurs in the germ cells of male
mice exposed to the same HFD regimen [19]. MicroRNA-143 has been experimentally con-
firmed to represses DNMT3A expression in colon and breast cancer cell lines [60,61], and
inhibit growth by causing apopotosis in leukaemia cells [62]. But whethermicro-RNA-143-3p
(increased in sperm from HFD fathers) is also capable of these functions remains to be deter-
mined. FurthermoremicroRNA-30a/microRNA-135b and microRNA-133b are also predicted
to target DNMT3A and DNMT3B, respectively, for mRNA degradation. Overall the predicted
targeting of components of the DNA methylation machinery provides the means for longer
term changes to gene expression within the embryo and potentially even subsequent offspring.
Furthermore given that offspring sperm does not overtly demonstrate the same compliment of
differentially abundant microRNAs, DNA methylation might also be important for the pheno-
typic transmission from offspring to grand-offspring.

The tumour suppressor p53 is known to enhance post-transcriptionalmaturation of multi-
ple miRNAs, including microRNA-143/microRNA-145 (increased in the sperm from HFD
fathers), as a response to DNA damage [63]. Interestingly increasedDNA damage has been
previously reported to result from the model of male obesity used in this study [22,44,64] and
this potentially triggers the increased abundance of p53 and thus microRNA-143/microRNA-
145. This would likely occur in concert with the increase in the abundance of p53 due to diet
induced obesity [65,66], possibly resulting from p53’s role in adipogenesis [67]. Moreover
microRNA-143 is known to accelerate adipogenesis and is also increased in adipose tissue of
mice fed a high fat diet [68]. Overall it remains possible that p53 acts upstream as a result of
DNA damage and HFD consumption that ultimately leads to increasedmicroRNA-143/micro-
RNA-145 in sperm in HFD fathers.

MicroRNAs-145a-5p, 30a-5p, 126-3p, 184-3p, and 143-3p are the most differentially abun-
dant as a result of diet induced obesity, perhaps indicating their potential to enact aberrant
maternal mRNA decay in the embryo. Furthermore 8/13 microRNAs altered by a father’s obe-
sity are amongst the microRNAs whose abundance are most altered in sperm during epididy-
mal transit (mmu-miR- 126-3p, 126-5p, 135b-5p, 143-3p, 145a-5p, 30a-5p, 141-5p, and 184-
3p [69]). Thus it remains a distinct possibility that the abundance of these microRNAs might
be differentially acquired in obesity during epididymal transit, as the epididymis is not as pro-
tected from environmental insults as the testis. This altered microRNA transfer may well be
enacted by epididymosomes [70] that may result from the effect of a father’s obesity, that then
might also have altered microRNA content in epididymal epithelial cells, whose physiology is
likely altered by systemic impacts of obesity [71].

Similar to our findings, the abundance of sperm bornemicroRNA-30a-5p was increased by
a model of paternal stress [72]. This model of paternal stress resulted in behavioural and meta-
bolic disturbances in offspring [41,72], similar to the metabolic disturbances reported for off-
spring sired by HFD fathers [19,20]. Interestingly HFD feeding in murine fathers tends to
increase corticosterone [73], implying a degree of systemic stress is endured by males as a result
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of exposure to a HFD, which may be a common system to increasemicroRNA-30a-5p in
sperm. Furthermore individual housing may also induce a degree of stress in mice, which
might also contribute to this alteration. Thus it is possible that behavioural defects might also
exist in offspring sired by HFD fathers, as observed in humans as an increased risk of autism
spectrumdisorders in children born to obese fathers [16,17]. Alternatively the model of pater-
nal stress usedmight also cause metabolic derangements in the fathers themselves, which is
then transmitted to offspring as previously reported, as stress is a known trigger for metabolic
disturbances [74]. Although it has been previously demonstrated that the microinjection of a
single microRNA can both alter the molecularmakeup of the embryo and induce phenotypic
outcomes in adult offspring (eg microRNA-221/222 [38]; microRNA-1 [37]; microRNA-124
[39]; microRNA-193-5p (partial phenotype) [41]). It has also been demonstrated that the co-
ordinate regulation of molecular pathways by multiple microRNAs [41], entire sperm sncRNA
extract [42], or specific sub-classes of sncRNA fractions (ie the tsRNA fraction [43]) are capa-
ble of recapitulating a complex phenotype.Whether microinjection of the amounts of micro-
RNA, or other sncRNA fractions, actually present in a single sperm can also induce these
molecular and phenotypic changes, remains to be determined.

The array used to interrogate spermmicroRNAs was limited to 641 murine microRNAs of
an estimated 1,400 that are present [75] and did not include investigation of the broader gamut
of other small non-coding RNA. Regardless it must be noted that the same array was used to
detect the 9 microRNAs altered by paternal stress that whenmicroinjected into an early
embryo were sufficient to recapitulate the offspring phenotype [41,72].

Diet and/or exercise interventions have been used in a similarmodel of diet induced obesity in
fathers to demonstrate that this type of intervention strategy can be effective for ameliorating detri-
mental effects of paternal diet-inducedobesity onmetabolic parameters and sperm function [73],
embryonic development [53], reproductive function of offspring [58], and metabolic health of off-
spring [20]. Moreover these interventions that mitigate the obesity in fathers occur concomitantly
with a partial restoration of sperm bornemicroRNA content similar to that of control animals
[20]. If the entirety of these findings are translatable to human cohorts sperm bornemicroRNAs
could be potential readily assayable biomarkers of successful obesity interventions, to be used by
obesemen prior to conception to minimise detrimental health outcomes in his children.

We have demonstrated that the abundance of 13 sperm bornemicroRNAs are modulated
by a father’s consumption of a high fat diet and speculate that the transmission of this altered
microRNA content to the embryo at fertilisation acts to alter the mRNA content of the embryo,
as has been previously demonstrated. This altered embryonicmRNA content then acts to alter
growth trajectory previously observed for embryos fertilised by obese fathers and ultimately
confers sub-optimal adult metabolic and reproductive outcomes described for offspring sired
by obese fathers. Although the same microRNAs are most likely not altered in the sperm of
male offspring, despite the presence of metabolic/reproductivephenotypes in grand-offspring
sired by the male offspring. Thus we have identified a potential mechanism that may, in part,
form the basis of obesity initiated paternal programming of the first generation of offspring.
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