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Abstract

The bayesTFR package for R provides a set of functions to produce probabilistic projections of 

the total fertility rate (TFR) for all countries. In the model, a random walk with drift is used to 

project the TFR during the fertility transition, using a Bayesian hierarchical model to estimate the 

parameters of the drift term. The TFR is modeled with a first order autoregressive process during 

the post-transition phase. The computationally intensive part of the projection model is a Markov 

chain Monte Carlo algorithm for estimating the parameters of the drift term. This article 

summarizes the projection model and describes the basic steps to generate probabilistic 

projections, as well as other functionalities such as projecting aggregate outcomes and dealing 

with missing values.
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1. Introduction

The total fertility rate (TFR) is one of the key components in population projections. It is the 

average number of children a woman would bear if she survived through the end of the 

reproductive age span, experiencing at each age the age-specific fertility rates of that period. 

The United Nations (UN) Population Division produces projections of the total fertility rate 

for 196 countries, at various stages of the fertility transition. The TFR projections are revised 

every two years and published in the World Population Prospects (United Nations, 

Department of Economic and Social Affairs, Population Division, 2009). Alkema et al. 
(2010) and Alkema et al. (2011) proposed a new methodology for probabilistic projections 
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of the total fertility rate for all countries. To support the use of the method by the UN, an R 

package (R Development Core Team 2010) called bayesTFR was developed that has been 

tested and used by several UN analysts.

This paper reviews the fertility projection model and describes the basic steps to generate 

probabilistic projections based on it, as well as other functionalities included in the package, 

such as projecting aggregate outcomes and dealing with missing values.

The paper is organized as follows. Section 2 summarizes the projection model on which the 

package is based. Section 3 describes the basic usage of the package using a step-by-step 

approach. It shows how to obtain samples from the posterior distributions of the model 

parameters using a Markov chain Monte Carlo (MCMC) algorithm, how to generate future 

TFR trajectories based on the posterior samples, and how to use the functions in the package 

to analyze the results. It also demonstrates the additional functions to project aggregated 

TFR outcomes and to deal with missing values. Section 4 presents a graphical user interface 

to the package called bayesDem.

2. Fertility projection model

This section summarizes the new methodology for probabilistic projections of the total 

fertility rate for all the countries of the world, as proposed by Alkema et al. (2010) and 

Alkema et al. (2011).

The model uses five-year estimates of the TFR from 1950–1955 until 2005–2010 (methods 

for dealing with missing values at the end of the observation period are discussed in Section 

3.6). The model is based on the observation that the evolution of the TFR includes three 

broad phases, referred to as Phase I, II and III: (I) a high-fertility pre-transition phase, (II) 

the fertility transition in which the TFR decreases from high fertility levels towards or below 

replacement level fertility, and (III) a low-fertility post-transition phase, which includes 

recovery from below-replacement fertility toward replacement fertility and oscillations 

around replacement-level fertility. The observation period for each country is divided into 

these different phases based on deterministic definitions of their start and end periods, and 

then modeled separately. The definition of τc, the start period of Phase II for country c, is 

given by:

where Mc is the maximum observed TFR outcome in country c, and Lc,t denote local 

maxima. The start period of Phase III, denoted by λc for country c, is observed within the 

observation period if two subsequent increases below a TFR of 2 have been observed. For 

these countries,
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where fc,t is the TFR in country c and period t. For the remaining countries, λc >2005–2010. 

The models for Phase II and III are discussed in the next sections. Phase I is not modeled; if 

a country is still in Phase I in the last observation period, we assume that it will enter Phase 

II in the next period or after a chosen number of periods with constant TFR. Thus Phase I is 

not relevant for projections.

2.1. Model for Phase II: The fertility transition

The fertility transition phase is modeled by a random walk model with drift. This is specified 

by

(1)

where fc,t is the TFR in five-year period t in country c, dc,t is the decrement term that models 

the systematic decline during the fertility transition, εc,t is a random distortion that models 

the deviation from the systematic decline, τc is the start period of the fertility decline, and λc 

is the start period of the post-transition phase III as defined above.

The distributions of the random distortions in each period are given by:

where mτ is the mean and sτ is the standard deviation of the distortion in the start period (to 

allow for more positive distortions during the start period). The quantity σ(fc,t) is the 

standard deviation of the distortions during the later periods with

where σ0 is the maximum standard deviation of the distortions, attained at TFR level S, and 

a and b are multipliers of the standard deviation, to model the linear decrease for larger and 

smaller outcomes of the TFR. The constant c1975(t) is added to model the higher error 

variance of the distortions before 1975, and is given by:

The prior distributions of the variance parameters {a, b, S, σ0, c1975, mτ, sτ} are given in 

Appendix A.

The decrement dc,t in (1) is modeled as a function of the level of the TFR, as follows:
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(2)

where g( , ) is a parametric decline function. This function specifies a five-year decrement 

(decrease) as a function of the current level of the TFR and parameter vector θ. The decline 

function is the sum of two logistic functions, i.e. a double logistic or bi-logistic function 

(United Nations, Department of Economic and Social Affairs, Population Division 2006). 

The double logistic function with country-specific parameter vector θc = (Δc1, Δc2, Δc3, Δc4, 

dc), is given by

where dc is the maximum possible pace of the decline, p1 = p2 = 9 are constants, and the 

Δci’s describe the TFR ranges in which the pace of the fertility decline changes, where 

 is the start level of the fertility decline (see Figure 1).

The parameters of the decline function are estimated for each country. For countries in 

which the start period τc of the fertility transition is within the observation period, the start 

level Uc is fixed at the TFR in that period, Uc = fc,τc. For countries in which the transition 

started before the observation period, the start level is added as a parameter to the model, 

with prior distribution

Given Uc, the five parameters that determine the pace of the fertility decline and the time 

that the transition takes in country c are Δc4, {Δci/(Uc − Δc4) : i = 1, 2, 3}, and dc.

We use a Bayesian hierarchical model (Lindley and Smith 1972; Gelman et al. 2004) to 

estimate the parameters in each country. Transformations of parameters are used to restrict 

their outcomes to realistic values and for the purpose of computation. The Bayesian 

hierarchical model is given by:
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with world-level mean and variance parameters {χ, ψ2, Δ4, δ4, α, δ}. The prior distributions 

of these parameters are given in Appendix A.

To summarize, the country-specific parameters in the Phase II model are given by {γci, Uc, 

dc, Δc4}, i = 1, 2, 3. The hyperparameters are {χ, ψ2, Δ4, αi, δi, δ4} for i = 1, …, 3 and {a, 

b, S, σ0, c1975, mτ, sτ}. An MCMC algorithm is used to get samples of the posterior 

distributions of each of the parameters of the fertility transition model (Gelfand and Smith 

1990). This algorithm is a combination of Gibbs sampling, Metropolis-Hastings and slice 

sampling steps (Neal 2003).

2.2. Post-transition model

This phase of TFR change is modeled by a first order autoregressive time series model, an 

AR(1) model, with its mean fixed at the approximate replacement-level fertility, μ = 2.1:

(3)

where ρ is the autoregressive parameter with |ρ| < 1 and s is the standard deviation of the 

random errors. Both parameters are estimated by maximum likelihood.

2.3. TFR projections

TFR projections during the fertility transition for countries that are currently in Phase II are 

based on the Phase II model (Section 2.1), using the sample from the posterior distribution 

of the model parameters.
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Consider projecting fc,t+1, the TFR in country c in period (t + 1), assuming that it is in Phase 

II in period t. The predictive distribution is represented by a sample . The 

i-th member of the sample, , is given by , where  is the i-th 

member of the sample of TFR outcomes in period t,  is the expected decrement given by 

the decline function evaluated at  and  (the i-th sample of parameter vector θc), and 

 is a random draw from N(0, σ(i)(fc,t)2).

For the countries that are currently in Phase II, the projected start of Phase III is given by the 

earliest period t such that (i) , and (ii) . The projected start 

period will differ between trajectories because it depends on the expected fertility decrement 

(given by the decline parameters) and the random distortion term. For TFR projections of 

countries that are currently in Phase III, and the projections for a country that enters Phase 

III, the AR(1) model is used, as described in Section 2.2.

In all projections, an additional prior distribution is put on future TFR outcomes, fc,t+1 ~ 

U[0, Uc]. The upper bound is used to exclude TFR trajectories in which the fertility 

transition does not take off. The lower bound ensures positive TFR outcomes. This prior is 

enforced by resampling any future distortion term that results in TFR outcomes outside its 

prior bounds. After constructing a large sample of TFR trajectories, the “best” TFR 

projection is given by the median outcome of the TFR trajectories in each period, and the 

bounds of the (1 − α)100% projection intervals are given by the α/2. 100th and (1 − α/2). 

100th quantiles.

3. Using bayesTFR

We have implemented the methodology described above in an R package, called bayesTFR. 

This would be used by UN analysts and others whose task is to generate TFR projections 

including uncertainty bounds for all countries of the world.

To make probabilistic TFR projections using bayesTFR, the user will usually follow three 

basic steps in the following order:

1. Fit the TFR projection model:

a. Calculate the start period of Phase II and the start period of 

Phase III for each country (τc and λc).

b. Get a posterior sample of the Phase II model parameters 

using the MCMC algorithm.

2. Generate future TFR trajectories (this step includes estimating the 

parameters of the AR(1) model in Phase III using maximum-likelihood 

estimation).

3. Analyze the results using a set of functions that summarize, plot, diagnose 

and export results of the two steps above.
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Depending on the size of the MCMC sample, steps 1(b) and 2 are expected to be relatively 

time-consuming. Thus, an analyst will usually perform these steps on different days or 

weeks. It is therefore important to ensure independence and durability of the results from the 

various steps and make the connectivity between steps as easy as possible. This is achieved 

by automatically storing results on the disk and by informing the user about their location, 

while giving the user the option of choosing the location.

The following sections describe the three steps above in more detail, using an example for a 

demonstration of the main package functions. Note that we chose to demonstrate the 

package on a realistic example, i.e. an example with a large number of MCMC iterations. 

Because running the functions of the first two steps can take several hours, it is not 

recommended to run the presented code as such when learning how to use the package. 

Users who wish to explore the functionality on a toy example should reduce the number of 

iterations to the order of magnitude of 10. Use help(function) for more specifics about each 

function described below and details about its arguments.

3.1. Fitting the TFR projection model

Fitting the TFR projection model is invoked by the function run.tfr.mcmc. The function 

uses historical time series of the TFR, provided by the United Nations and delivered as part 

of the package. Optional arguments start.year and present.year determine which 

year is the first year and the last year of the time series that should be included in the 

computation. As the name suggests, the main functionality is running the MCMC algorithm 

to obtain a posterior sample of Phase II model parameters. The calculation of the start period 

of Phase II and the start period of Phase III for each country is embedded within this 

function. This section discusses the details of the MCMC algorithm.

Starting a new simulation—Most arguments in the function run.tfr.mcmc refer to the 

parameters of the prior distributions of the hyperparameters described in Section 2.1, as well 

as the starting values of all model parameters (see Appendix A for default values on the 

priors). Although all additional arguments in run.tfr.mcmc have reasonable default 

values, there are a few arguments that a user will be most likely to modify; nr.chains 

determines the number of MCMC chains to run, iter sets the length of each MCMC, and 

output.dir is the location on disk where the results are written. Let us assume that the 

user wishes to have all results stored in a sub-directory of the current working directory, 

called “mylongrun”:

R> simulation.dir <- file.path(getwd(), 'mylongrun')

This directory will be used throughout the paper, with reference to it as the simulation 
directory.

Now, consider the following example:

R> m1 <- run.tfr.mcmc(nr.chains=5, iter=7000, output.dir=simulation.dir)
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The call launches an MCMC simulation of five chains, 7,000 iterations each, with results 

stored in the simulation directory. Additional arguments include argument thin, which 

controls the thinning interval, e.g. thin = 5 means that every 5-th iteration is stored on 

disk (the default is no thinning). Argument seed can be used to fix the seed of the random 

number generator in order to assure reproducible results.

In addition to setting the argument iter to the desired length, the user can pass here the 

value “auto”. In such a case, the function attempts to automatically determine the length 

needed for convergence of the MCMC algorithm by adequate exploration of the posterior 

distribution. It first runs the simulation for a pre-defined number of iterations (by default 

three chains with 62,000 iterations each), then launches a procedure of convergence 

diagnostics using burnin 2000 and a thinning interval of 80 (see Section 3.3 for more 

details). If it results in a “not converged” state, it continues running the MCMCs. This is 

repeated until the simulation converges or a given number of repetitions is reached. All 

default settings for such an automatic simulation can be overwritten using the argument 

auto.conf.

At the end of the simulation, the simulation directory contains one sub-directory per chain, 

called “mcx” where x is an identifier of the chain. Each such sub-directory contains one text 

file per parameter. Names of the hyperparameters and their correspondence to the notation in 

Section 2 can be obtained from Table 1. All files contain one value per (thinned) iteration, 

except alpha and delta which contain three values per iteration. The full file names 

consist of the names in the table and the suffix “.txt”. Note that alphat_ i are not stored, 

since they can be computed on the y. Country-specific parameters are stored in one file per 

parameter and country. The correspondence of the file names and the notation in Section 2 is 

shown in Table 2. Each file has the suffix “_country code.txt”, with code being the UN 

country code which are 3-digit codes following ISO 3166-1 numeric standard. The gamma 

files contain three values per (thinned) iteration, the remaining ones contain one value per 

(thinned) iteration and the gammat_ i parameters are not stored. The model does not 

generate MCMCs for countries that are in Phase I.

Even though all the parameter files contain results from each (thinned) iteration, they are not 

necessarily written into files at each such iteration. Instead, they are collected in the memory, 

or a buffer. Argument buffer.size controls the number of iterations between two 

consecutive storing, i.e. the size of the buffer, and thus can make the simulation more 

runtime efficient. The larger the buffer.size, the fewer operations on disk. However, the 

larger the buffer.size, the more information can be lost in case of failure. The argument 

defaults to 100.

Meta information about the simulation is stored as a binary file, called 

“bayesTFR.mcmc.meta.rda”, in the main simulation directory. Furthermore, each “mcx” 

subdirectory contains meta information about the specific chain in a binary format. This file 

is called “bayesTFR.mcmc.rda”.

The function also supports parallel processing for running the individual chains on multiple 

processors, and thus achieve a speedup proportional to number of processors or chains. To 
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use this functionality, argument parallel is set to TRUE and optionally set the argument 

nr.nodes to the required number of processors. By default, the function will launch each 

chain in a separate process. Thus, the above code can be sped-up by a factor of up to 5 by 

adding parallel=TRUE to the list of arguments. Note that this functionality requires the R 

package snowFT (Ševčíková and Rossini 2010) being installed.

As mentioned above, the estimation uses historical UN time series included in the package. 

One can overwrite all or some of the values with user-specific data. This can be achieved by 

using the argument my.tfr.file, which should point to a file of the structure described in 

Section 3.4.

Continuing an existing simulation—There are several reasons for wanting to continue 

running an existing simulation. For example, MCMC diagnostics might show that some 

parameters have not converged. Another reason could be an interrupted simulation due to a 

hardware or software failure. Given the computationally expensive nature of such 

simulations, starting a run from the beginning can lead to the loss of several days of 

computation in extreme situations.

Let us assume that we want to extend MCMCs created in the previous section by 1,000 

iterations each. This can be done as follows:

R> m2 <- continue.tfr.mcmc(iter=1000, output.dir=simulation.dir)

At the end of processing this call, each chain will be 8,000 iterations long.

The function also allows the user to specify identifiers of chains to be continued, using the 

optional argument chain.ids. This feature can be especially useful if there is a failure 

when running the chains in parallel. In such a case, the chains will most likely be of different 

lengths and the continuation can be defined for each chain separately.

As when starting a new simulation, the arguments parallel and nr.nodes can be set to 

run the continuation in parallel, and the argument iter can be set to “auto” to combine the 

run with convergence diagnostics.

Accessing existing MCMC results—If at later time point it is desirable to access the 

MCMC results, this can be done as follows:

R> m3 <- get.tfr.mcmc(sim.dir=simulation.dir)

Here m3 is an object of class bayesTFR.mcmc.set (as is m1 and m2) that contains all 

information about the MCMC simulation, including a pointer to the disk where the 

parameter traces are stored. In this example, the object m3 is identical to the m2 object above.

To extract a specific chain out of the MCMC set, for example the second one, use
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R> m3.chain2 <- tfr.mcmc(m3, chain.id=2)

which results in an object of class bayesTFR.mcmc. Similarly, function tfr.mcmc.list 

returns a list of such objects, corresponding to selected MCMC chains. Both objects from 

our examples, m3 and m3.chain2, can be used in various functions described in the 

following sections.

3.2. Generating projections

Generating new projections—After obtaining a posterior sample of the Phase II model 

parameters, as discussed in Section 3.1, one can generate a sample from the posterior 

distribution of future TFR trajectories for all the countries of the world, as described in 

Section 2.3, using the function tfr.predict. To create a TFR projection until 2100 from 

the results generated in Section 3.1, the user needs to pass the simulation directory where the 

MCMC results are stored (argument sim.dir), the end year of the projection (argument 

end.year), the MCMC burnin (argument burnin), and either a thinning interval (argument 

thin) or the number of trajectories to generate (argument nr.traj):

R> pred1 <- tfr.predict(sim.dir=simulation.dir, end.year=2100, burnin=2000,

                        nr.traj=3000, verbose=TRUE)

In this call, the function will remove 2,000 iterations from the beginning of each chain, and 

use 3, 000 equally-spaced parameter values out of the remaining 5 × 6, 000 = 30, 000 

iterations in total for generating the trajectories. Setting the argument seed ensures 

reproducibility of the projections.

An optional logical argument use.diagnostics makes it possible to use the burnin and 

thinning interval from an existing convergence diagnostics object. This is especially useful if 

the MCMCs were generated using the iter="auto" option. The function automatically 

finds values of burnin and thin that led to a convergence of the simulation, and thus those 

arguments can be omitted.

The AR(1) parameters μ, ρ and s for the post-transitional phase as defined in Section 2.2 can 

be set by the user using the arguments mu, rho and sigmaAR1, respectively. The default 

outcomes are μ = 2.1, and the maximum-likelihood estimates for ρ and s.

The trajectories are stored in a binary format, by default in a sub-directory of sim.dir, 

called “predictions”. An argument output.dir can be given where another location can be 

specified. In the prediction directory, a binary file containing meta information is stored, 

called “prediction.rda”, and one binary file per country, containing all trajectories for each 

projection year, including the present year. These files are called “traj countrycode.rda” 

where code is the UN country code. In the example above, the number of future TFR 

outcomes would be 2, 000 × 19 values per file (because present.year in the 

run.tfr.mcmc function defaults to 2010 which gives 19 five-years projections). In 

addition, two summary comma-separated text files are created: One in a user-friendly 
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format, called “projection summary user friendly.csv”, the other using a UN-specific coding, 

called “projection summary.csv”. Both files contain for each country in each projection 

period the median outcome, the lower and upper bounds of the 80% and 95% projection 

intervals, the median outcome plus/minus 0.5 child and a projection in which the TFR is 

kept constant.

Optionally, the projection function stores a sample of trajectories in a comma-separated text 

format which is called “ascii trajectories.csv”. The size of the sample can be controlled by 

the argument save.as.ascii which defaults to 1,000 trajectories. The trajectories are 

selected using equal spacing. No trajectories are saved in the text format if the argument is 

set to zero.

The projection function also saves the thinned MCMC traces (which were used to construct 

the projected trajectories) to disk. It allows the user to perform subsequent operations on the 

traces in timely efficient manner. The storage place is called “thinned_mcmc_thin_burnin” 

in the main simulation directory with thin and burnin being the actual values of thin and 

burnin, respectively, and it has the same structure as described in Section 3.1. If such 

thinned traces already exist (for example they could have been created by the convergence 

diagnostics procedure prior to this call, see Section 3.3), the step of constructing and storing 

the thinned traces is skipped and instead they are loaded from disk and directly used for 

generating the trajectories. This scenario is most likely to be used in combination with 

use.diagnostics being set to TRUE when the projection trajectories are to be generated 

on the same MCMC chains that passed the convergence test.

Finally, note that if the object m3 from Section 3.1 is available in our R environment, we can 

obtain the same projection results by replacing the argument sim.dir with the argument 

mcmc.set=m3 in the above call.

Accessing an existing projection—An existing projection, such as the one above, can 

be accessed by:

R> pred2 <- get.tfr.prediction(sim.dir=simulation.dir)

Here, pred2 is equal to pred1, which is an object of class bayesTFR.prediction. It 

contains all the information about the projection, including a pointer to the trajectories. The 

object can be passed to various functions for analyzing results, see Section 3.3.

3.3. Analyzing results

Summary functions—There are a few summary functions available in the package. To 

get summary information about the m3 object obtained as shown in Section 3.1, we can use

R> summary(m3, meta.only=TRUE)

MCMC parameters estimated for 196 countries.
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Hyperparameters estimated using 196 countries.

WPP: 2008

Input data: TFR for period 1950 – 2010 .

Number of chains = 5

Iterations = 1 : 40000

Thinning interval = 1

Chains sample sizes: 8000, 8000, 8000, 8000, 8000

This gives meta information about the MCMC simulation. Setting meta.only to FALSE 

will give more detailed information about the hyperparameters, using the summary function 

of the coda package (Plummer et al. 2010). For getting the same information about the 

country-specific parameters, it is advisable to do it for a specific country, using the argument 

country which is either the name or the numerical UN code of the country. The thinning 

interval and length of burnin can be controlled by the arguments thin and burnin, 

respectively. Furthermore, one can set the argument chain.id to a specific MCMC chain 

identifier to get information about one specific chain, or pass the one-chain object, such as 

m3.chain2, directly to the summary function. Further arguments, par.names and 

par.names.cs, respectively, can be set to restrict the summary information to specific 

parameters, country-independent and country-specific, respectively (see Tables 1 and 2 for 

the specific names). For example, the following command gives information only about the 

parameters specific to Ireland, and not about the hyperparameters:

R> summary(m3, country='Ireland', par.names=NULL, thin=10, burnin=2000)

...

Country: Ireland

Iterations = 2010:8000

Thinning interval = 10

Number of chains = 5

Sample size per chain = 600

1. Empirical mean and standard deviation for each variable,

   plus standard error of the mean:

                    Mean      SD  Naive SE Time-series SE

U_c372           7.13182 0.93419 0.0170558       0.017998

d_c372           0.11762 0.03656 0.0006675       0.001117

Triangle_c4_c372 1.62505 0.21343 0.0038967       0.005596

gammat_1_c372    0.08643 0.09264 0.0016913       0.002850

gammat_2_c372    0.28125 0.19192 0.0035039       0.007104
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gammat_3_c372    0.63232 0.20714 0.0037818       0.008716

2. Quantiles for each variable:

                     2.5%     25%     50%    75%  97.5%

U_c372           5.599465 6.33729 7.13513 7.9244 8.7063

d_c372           0.067479 0.09007 0.11023 0.1384 0.2092

Triangle_c4_c372 1.234277 1.47621 1.61336 1.7699 2.0551

gammat_1_c372    0.007388 0.03000 0.05798 0.1043 0.3424

gammat_2_c372    0.031371 0.13053 0.23380 0.3973 0.7309

gammat_3_c372    0.189780 0.49025 0.66663 0.7999 0.9375

Note that in the default settings parameters γci and αi (i = 1, 2, 3) are considered only in 

their transformed form. This is because the signature of the summary function defines the 

MCMC parameters as follows:

function(..., par.names = tfr.parameter.names(trans=TRUE),

              par.names.cs = tfr.parameter.names.cs(trans=TRUE),

         ...)

To include also parameters on the original scale, remove the trans argument (or 

equivalently set it to NULL). The value trans=FALSE means that only parameters on the 

original scale are considered.

Another summary function is available for prediction objects. Using the pred2 object 

obtained as shown in Section 3.2, we can get statistics about the projected trajectories, 

starting with the last observed period (periods are denoted by their midyear):

R> summary(pred2, country='Czech Republic')

Projections: 18 ( 2013 – 2098 )

Trajectories: 3000

Burnin: 2000

Parameters of AR(1):

  mu   rho  sigma

 2.1 0.906 0.0922

Country: Czech Republic

Projected TFR:

     mean     SD 2.5%   5%  10%  25%  50%  75%  90%  95%97.5%

2008 1.41 0.0000 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41

2013 1.48 0.0922 1.30 1.33 1.36 1.41 1.48 1.54 1.60 1.63 1.66

2018 1.54 0.1238 1.30 1.33 1.38 1.45 1.54 1.62 1.70 1.74 1.78
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2023 1.59 0.1425 1.31 1.36 1.40 1.50 1.59 1.69 1.77 1.83 1.87

2028 1.64 0.1566 1.32 1.38 1.44 1.53 1.64 1.74 1.84 1.90 1.95

2033 1.68 0.1702 1.34 1.40 1.47 1.57 1.68 1.80 1.90 1.96 2.02

2038 1.72 0.1810 1.37 1.43 1.49 1.60 1.72 1.85 1.96 2.02 2.07

...

Setting an optional argument compact to FALSE will extend the set of quantiles to a larger 

set.

Exploring TFR trajectories—In addition to the summary function that gives commonly 

used quantiles of the trajectories, one can plot the posterior sample of trajectories, including 

user-defined projection intervals. For example,

R> tfr.trajectories.plot(pred2, country='Burkina Faso', pi=c(95, 80, 75),

                         nr.traj=100)

shows the median outcomes, and lower and upper bounds of the 95, 80 and 75% projection 

intervals (see Figure 2). In addition, the graph includes the median outcomes +/− 0.5 child. 

This variant can be turned off by setting the argument half.child.variant=FALSE. The 

number of trajectories displayed is controlled by the argument nr.traj. Note that nr.traj 

in this function only influences the display – the quantiles included in the graph are 

computed using trajectories defined in the tfr.predict function (see Section 3.2), in our 

case 3, 000.

The same information in a tabular form can be obtained using:

R> tfr.trajectories.table(pred2, country='Burkina Faso', pi=c(95, 80, 75))

Its output is similar to the one from the summary function, except that it includes user-

defined projection intervals and the historical time series.

If it is of interest to create trajectory graphs for all countries at once, one can use:

R> tfr.trajectories.plot.all(pred2, output.dir='trajplotall', nr.traj=100,

                             output.type='pdf', verbose=TRUE)

This creates one pdf-file per country in the directory called “trajplotall”. In addition to “pdf”, 

other possible output types are “png”, “jpeg”, “bmp”, “tiff”, or “postscript”.

Posterior distribution of the double logistic function—The posterior results for the 

double logistic function (DLF) as defined in Equation (2) can be viewed using:
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R> DLcurve.plot(country='Burkina Faso', mcmc.list=m3, burnin=2000,

                pi=c(95,  80, 75), nr.curves=100)

The output is shown in Figure 3. The function argument mcmc.list is a pointer to the five 

MCMC chains from our example run. Alternatively, it can be a list of selected chains (result 

of tfr.mcmc.list), just a single MCMC chain (such as m3.chain2), or a prediction 

object (such as pred1 and pred2).

In the figure, the median outcomes and projection intervals of the DLF that are shown are 

calculated based on the sample of posterior DLFs, namely the DLFs that are given by the 

(thinned) iterations of the given chains, after removing the user-specified number of burnin 

iterations from each chain. For time-efficiency, a maximum of 2,000 DLFs are computed. 

The projection intervals are given by the corresponding quantiles of the posterior sample of 

DLFs on a fine grid of TFR outcomes. For the display, a number of curves given by 

nr.curves are selected using equal spacing and plotted. The observed 5-year decrements 

are also shown in the graph as filled circles.

The DLF graphs can be created for all countries at once using:

R> DLcurve.plot.all(m3, output.dir='DLplotall', nr.curves=100,

                    output.type='pdf', burnin=2000, verbose=TRUE)

Again, it creates one pdf-file per country in the directory called “DLplotall”, and the 

output.type argument can be changed to one of “png”, “jpeg”, “bmp”, “tiff”, and 

“postscript”.

TFR world map—The package supports creating world maps for any projection period 

and quantile of the posterior sample of TFR trajectories. It is based on the R package 

rworldmap (South 2010), which in turn uses among others the package fields (Furrer et al. 
2010) for creating a nice legend. It allows user-defined settings of the coloring scheme. 

Calling simply

R> tfr.map(pred2)

creates a world map of the TFR in the last observed time period, in heat colors as the default. 

The user can pass further optional arguments, such as quantile=p for the p·-100th 

quantile, with 0 ≤ p ≤ 1, or projection.year to specify the projection time which is given 

as the middle year of a projection period, e.g. 2013 for the period 2010–2015 or 2018 for the 

period 2015–2020. Furthermore, any arguments of the rworldmap function 

mapCountryData can be passed to the tfr.map function, to change the display. In order to 

control the map device, the tfr.map function has an argument device which can be any 

device type, such as “png”, “pdf”, etc. In the default setting (device=‘dev.new‘), a new 
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graphical device pops up every time this function is called. An argument device.args is a 

list of arguments passed to the chosen device (see help on mapDevice of rworldmap).

The bayesTFR package offers a function for automatically assembling graphical parameters 

and tfr.map arguments. The function is called get.tfr.map.parameters. For example, 

the following code generates the map in Figure 4:

R> params <- get.tfr.map.parameters(pred2)

R> do.call('tfr.map', params)

The color scheme follows quantiles of a Gamma distribution estimated from the last 

observed TFR, here the displayed TFR. It defaults to 50 color categories which can be 

changed using the argument nr.cats. Any other arguments that the tfr.map function 

accepts can be passed to get.tfr.map.parameters.

This way of creating the graphical parameters has the advantage that we can now use 

params from the previous example to generate maps for other projection periods on the 

same scale. For example

R> do.call('tfr.map', c(list(projection.year=2053, device='png',

            device.args=list(width=1000, file='worldTFR2053.png')), params))

R> dev.off()

creates a png-file, shown in Figure 5, which has the same color scale as Figure 4. If the maps 

do not have to be on the same scale, one can set the argument same.scale=FALSE in 

get.tfr.map.parameters.

To generate world maps from all projection periods at once, the command

R> tfr.map.all(pred2, output.dir='tfrmaps', output.type='pdf')

creates a set of maps in pdf-format in the directory “tfrmaps”. Any argument mentioned 

above can be passed here, such as quantile, nr.cats, same.scale or any argument of 

the tfr.map function.

MCMC parameter traces—The traces of the MCMC parameters can be graphically 

explored using two functions: one for plotting country-independent parameters, the other for 

plotting country-specific parameters. Using our example,

R> tfr.partraces.plot(mcmc.list=m3, par.names='Triangle4', nr.points=100)

will create a graph for parameter Δ4, containing one trace per MCMC chain (in our example 

five traces), as shown in Figure 6. The argument nr.points (or optionally thin) controls 
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the number of points plotted in each trace. One could also remove the burnin period from the 

plot using the argument burnin, or pass any graphical parameters, such as xlim or ylim. 

The argument par.names can contain any subset of the names in Table 1 to be plotted; 

leaving out the argument will create a graph for each country-independent parameter. In 

addition to the name alpha, one can use alpha_i (i = 1, 2, 3) to get traces for a specific 

value of i. The same applies to its transformed equivalents.

Plotting country-specific parameters is done analogously, using the function 

tfr.partraces.cs.plot. The graph in Figure 7 was generated using

R> tfr.partraces.cs.plot(country='Netherlands', mcmc.list=m3, nr.points=100,

                         par.names='Triangle_c4')

An optional argument chain.ids can be passed to both functions if traces from specific 

MCMC chains are to be plotted.

Posterior distribution of the model parameters—The density of the posterior 

distribution of the MCMC parameters can be viewed using the functions 

tfr.pardensity.plot (for country-independent parameters) and 

tfr.pardensity.cs.plot (for country-specific parameters). Optional arguments 

par.names and chain.ids have the same meaning as in the case of plotting parameter 

traces in the previous section. The following code was used to generate Figure 8:

R> tfr.pardensity.plot(pred2,

                       par.names=c('alphat', 'Triangle4', 'delta', 'sigma0'),

                       dev.ncol=4, bw=0.05)

If passing a prediction object as the first argument, the posterior distribution is plotted using 

the same thinned MCMCs that were used for generating the projection trajectories, in this 

example of length 3, 000. Alternatively, one can pass a set of MCMCs, such as our objects 

m2 or m3, in which case the distribution is constructed using all stored iterations. Here, 

setting an argument burnin can be useful in order to discard the burnin iterations.

The dev.ncol argument controls the number of plots per row and the bandwith argument 

bw is passed to the underlying density function. Function tfr.pardensity.cs.plot is 

used in the same way, except that country must be given as the first argument to specify for 

which country the density of country-specific parameters should be plotted.

MCMC convergence diagnostics—The package provides a convenient all-in-one 

function for determining convergence of the simulated MCMC chains, called 

tfr.diagnose, as well as a lower-level diagnostic function with the possibility of various 

user-defined settings, called tfr.raftery.diag. Here, we only explain the main 

functionality; for more information see the help-file of those functions.
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The main results in the functions are based on the run length diagnostic of Raftery and 

Lewis (1992b,a, 1996), as implemented in raftery.diag in the coda package (Plummer et 
al. 2010). This function is repeatedly called for different sets of parameters and its results are 

bundled together.

To run convergence diagnostics on chains stored in the simulation directory using 2000 

iterations as burnin and 10 iterations as the thinning interval, one can use

R> diag <- tfr.diagnose(simulation.dir, thin=10, burnin=2000)

The function stores the resulting object on disk, in a sub-directory of simulation.dir 

called “diagnostics” with file name being “bayesTFR.convergence 10 2000.rda”. The 

numbers 10 and 2000 in the file name are the values of the argument thin and burnin, 

respectively.

To obtain diagnostics results stored on disk, use

R> diag2 <- get.tfr.convergence(simulation.dir, thin=10, burnin=2000)

R> summary(diag2)

...

Convergence checked on 196 countries out of 196 countries total.

Simulation has converged.

Number of trajectories to be used: 3000

Status: green

In this example, diag and diag2 contain the same data.

If the diagnostic suggests that the chains converged, as in our case, it gives a suggestion how 

many projection trajectories to generate, which is simply the total number of iterations (after 

removing burnin) divided by the thinning interval. This number can be then passed to the 

tfr.predict function as the argument nr.traj. If the chains did not converge, the 

function gives a recommendation, how many more iterations to run to achieve convergence.

To find diagnostics objects for all combinations of thin and burnin available on disk, run

R> diag.list <- get.tfr.convergence.all(simulation.dir)

which returns a list of all such objects.

The tfr.diagnose function proceeds as follows to determine if the simulation has run 

long enough:
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1. For each parameter j and each MCMC chain i remove the given burnin and 

thin by the given thinning interval.

2. Run raftery.diag with arguments r=0.0125 and q=0.025 on each of 

those arrays and obtain the value of N0.025(i, j) which is the estimated 

unthinned length of chain i for parameter j.

3. Obtain the median of N0.025(i, j) over all chains i, say Ñ0.025(j).

4. The same as 2. with changing the q argument to q=0.975, obtain N0.975(i, 
j) and its median over chains Ñ0.975(j).

5. Take N̂ = maxj{Ñ0.025(j), Ñ0.975(j)} and compare with the total number of 

iterations that your simulation contains, i.e. summed over all chains after 

removing burnin from each chain.

The function results in a state “not converged” (or “red”) if N̂ is larger than the total number 

of iterations, or in a state “converged” (or “green”) otherwise.

If the optional logical argument keep.thin.mcmc of tfr.diagnose is set to TRUE, the 

thinned traces used in the diagnostics procedure, collapsed into one chain, are stored on disk. 

They are then automatically found and used by the tfr.predict function, if called with 

the same thin and burnin (see Section 3.2).

The functions run.tfr.mcmc and continue.tfr.mcmc offer the option of combining an 

MCMC simulation with convergence diagnostics, by setting the argument iter="auto". In 

such a simulation, the diagnostics object is computed (using burnin=2000 and thin=80 as 

defaults) and stored automatically during the simulation, possibly multiple times, until 

convergence. Then, the tfr.predict function can be called with 

use.diagnostics=TRUE in which case the number of trajectories and burnin is 

automatically determined from the diagnostics object.

3.4. Using user-specific data

As mentioned in previous sections, the estimation functions use historical UN time series 

included in the package. One can use the data function to explore those data:

R> data('UN2008')

R> colnames(UN2008)

 [1] "Index"     "country"   "country_code" "1950–1955" "1955–1960"

 [6] "1960–1965" "1965–1970" "1970–1975"    "1975–1980" "1980–1985"

[11] "1985–1990" "1990–1995" "1995–2000"    "2000–2005" "2005–2010"

[16] "2010–2015" "2015–2020" "2020–2025"    "2025–2030" "2030–2035"

[21] "2035–2040" "2040–2045" "2045–2050"

However, it is sometimes of interest to supply user-specific data for one or more countries. 

Such a file, say my_tfr_file, should have the same structure as the UN2008 data, i.e. one row 
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per country and columns containing the TFR in different time periods. The only required 

column is country_code containing the UN 3-digit codes of countries. Values in this 

column should be contained in the UN lookup table, called WPP2008_LOCATIONS:

R> data('WPP2008_LOCATIONS')

R> # list all available countries and their aggregations

R> WPP2008_LOCATIONS[,2:3]

The estimation function will overwrite the default UN data by any TFR columns supplied in 

my_tfr_file for the given countries. For example, if my_tfr_file contains

"country_code" "country" "2005–2010"

  124          "Canada"      1.5

the estimation will use the UN time series for Canada for all time periods except 2005–2010 

where it is replaced by 1.5.

my_tfr_file also allows two additional columns, namely last.observed which serves the 

purpose of dealing with missing data and will be discussed in Section 3.6, and 

include_code which is significant for estimation and aggregations. include_code can 

have three different values:

• 2: Country is included in the MCMC estimation (as described in Section 

3.1).

• 1: Country is not included in the MCMC estimation, i.e. it does not have 

any influence on the posterior sample of hyperparameters and thus the 

posterior samples of parameters for the other countries. Projections for 

such a country are still possible; a sample of the posterior distributions of 

its parameters is obtained based on the posterior sample of the model 

hyperparameters. This can be useful for example for countries with 

unusual historical pattern of TFR, or in case of aggregated TFR outcomes 

for subsets of countries, which will be discussed in more detail in Section 

3.5.

• 0. Country is ignored.

The default values for include_code are taken from WPP2008_LOCATIONS and are 

overwritten by those supplied in my_tfr_file. See for example countries that are by default 

included in the estimation:

R> WPP2008_LOCATIONS[WPP2008_LOCATIONS[,'include_code']==2,2:3]

The package contains a template of my_tfr_file, called “my_tfr_template.txt”, located in the 

data directory.
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3.5. Aggregations

The UN data file of historical TFR time series contains TFR outcomes for subsets of 

countries, for example for specific areas, continents or the whole world. By default 

include_code in WPP2008_LOCATIONS is set to 0 for any aggregated area, which means 

aggregations are ignored in the estimation process. However, it is often of interest to obtain 

projections of aggregated TFR outcomes for these areas. We implemented a simple approach 

to obtain the projections for these aggregates: Treat the aggregated countries as a “new 

country” (without including it in the MCMC estimation). In this approach, the posterior 

sample of the hyperparameters (from Table 1) is used to generate a posterior sample of the 

country-specific parameters for the aggregation1.

The posterior sample for aggregate-specific parameters can be obtained in two ways in the 

bayesTFR package; during the initial MCMC simulation described in Section 3.1, or 

afterwards. The former saves computation time while the latter allows for generating 

projections for additional aggregations that were not considered at the time of the initial 

simulation. In the first approach, the user has to overwrite the include_code values of the 

aggregates using a user-defined file that includes the include_code column, as discussed 

in Section 3.4. Typically, one would set the include_code for such aggregates to 1, which 

means that only country/aggregation-specific parameters are to be estimated. For example, 

to run the MCMC simulation that includes “World” without “World” having an impact on 

the hyperparameters, one can create a file containing just one line of data:

"country_code" "country" "include_code"

900            "WORLD"          1

If user-specific historical TFR values are to be used, additional columns with the specific 

time period headers can be added. Passing the name of this file into the run.tfr.mcmc 

function as the my.tfr.file argument will generate aggregate-specific parameters for the 

aggregation “World”. The user can then proceed as usual with generating projections as 

described in Section 3.2 – “World” will be automatically included in the set of countries for 

which future TFR trajectories are created. It is advisable to include all aggregations for 

which projections are needed into the user-defined TFR file, as the second approach of 

dealing with aggregations requires additional steps.

If an MCMC run has already finished and we wish to make projections for aggregated TFR 

outcomes for the aggregate that was not included in my_tfr_file, a posterior sample of the 

aggregate-specific parameters like above can be obtained with the command

R> m4 <- run.tfr.mcmc.extra(simulation.dir, countries=900)

1The authors would like to thank John Bongaarts for suggesting this approach.
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which uses random draws from the posterior samples of the hyperparameters stored in 

simulation.dir to sample the aggregate-specific parameters for the subsets of countries 

with UN code given by the argument countries, here 900 which is “World”. The next step 

is to generate projections. If projections have already been generated for the countries that 

were included in the first run (that was stored in simulation.dir) before creating m4, one 

can save computation time by using

R> pred3 <- tfr.predict.extra(simulation.dir, save.as.ascii=0)

This call checks which countries/subsets of countries have posterior samples of the model 

parameters, but no projections, and generates projections for these countries/subsets of 

countries. Then one can examine the results as usual using

R> summary(m4, country=900, par.names=NULL)

R> summary(pred3, country=900)

R> tfr.trajectories.plot(pred3, country=900, nr.traj=100)

R> DLcurve.plot(country=900, mcmc.list=m4, burnin=2000, nr.curves=100)

Results of the last two calls are shown in Figures 9 and 10.

3.6. Imputing missing values

The TFR data set that is included in the package (UN2008) gives the UN estimates from 

1950–1955 until 2005–2010 for all countries. For a number of countries the most recent 

entries are not actually observed – they are estimated based on UN methodology (United 

Nations, Department of Economic and Social Affairs, Population Division 2006). The 

package allows the user to exclude these periods when fitting the projection model, and to 

construct estimates for the missing periods based on the estimated model parameters. In this 

approach, the last observation period is changed to the last period in which TFR data was 

available, and projections start from that period.

Information about the last observed data point for each country is included in the package, in 

a file called “UN2008_with_last_obs.txt” located in the data directory.2 This file has the 

same structure as the UN2008 data, except that it has an additional column called 

last.observed containing the year of the last observation in each country. Thus, we can 

treat the TFR data starting from that year and later as missing. If the year of the last 

observed data point is greater than or equal to ti + 3, the missing time periods start at the 

period [ti+1, ti+2]. If it is smaller than ti + 3, it starts one period earlier, namely [ti, ti+1]. 

Similarly, the user can provide her/his own TFR file as described in Section 3.4 with the 

column last.observed included.

To use the UN file and let the model impute the missing estimates, we can run the following 

code:

2Data provided by the UN Population Division.
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R> simulation.dir.miss <- file.path(getwd(), 'runwithmissingdata')

R> my.tfr.file <- file.path(.find.package('bayesTFR'),

                           'data', 'UN2008_with_last_obs.txt')

R> m5 <- run.tfr.mcmc(nr.chains=5,  iter=8000, 

output.dir=simulation.dir.miss,

                      my.tfr.file=my.tfr.file)

R> pred4 <- tfr.predict(sim.dir=simulation.dir.miss, end.year=2100,

                        burnin=2000, nr.traj=3000, verbose=TRUE)

In the above commands, we set a different simulation directory in order not to overwrite our 

previously generated results. Then we pass the TFR file included in the package into the 

MCMC estimation. The resulting m5 object is equivalent to the m2 and m3 objects, except 

that the missing data were not included in the estimation. The result of the projection 

generation, pred4, is equivalent to the pred1 and pred2 objects except that missing data 

are replaced by the median of the generated trajectories. See Figure 11 for an example of 

generated trajectories for Congo using the pred4 object. The imputed values are marked by 

a green line. For comparison, Figure 12 shows the corresponding plot created from the 

pred2 object, i.e. without considering missing data. As can be seen, imputing missing 

values increases the uncertainty bounds. Note that in this simulation, six countries were 

excluded from the MCMC estimation, since their last observed data points indicated being in 

Phase I. This information can be obtained from summary of the m5 object.

4. Graphical user interface

We have developed a graphical user interface (GUI) for the bayesTFR package, also as an R 

package called bayesDem. Its design follows the described workflow as a set of tabs, 

starting at the left with running the MCMC algorithm, and continuing to the right with 

“Continue MCMC”, generating projections and exploring results, see Figure 13. Each tab is 

usually divided into sub-tasks, implemented again as tabs. For example, the “Run MCMC” 

tab in the figure contains one tab for fitting the Phase II model for all countries as described 

in Section 3.1 and another tab for obtaining posterior samples of model parameters for 

aggregations, called “Extra Areas & Regions”. Each tab contains a “Generate Script” button 

that provides the corresponding bayesTFR commands with all argument values from the 

GUI filled in. Thus, by copying and pasting the user can easily create a batch file of various 

tasks conveniently from the GUI. Almost all features of the package described in this paper 

can be accessed through the GUI, including generating plots and maps, or running and 

exploring convergence diagnostics.
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Appendix

A. Prior distributions

The prior distributions on the variance parameters {a, b, S, σ0, c1975, mτ, sτ}, defined in 

Section 2.1, are given by:

The correspondence of these parameters to their argument names and default values used in 

bayesTFR version 1.0-0 is shown in the following tables.

notation al au bl bu σl σu

argument name a.low a.up b.low b.up sigma0.low sigma0.up

default value 0 0.2 0 0.2 0.01 0.6

notation cl cu Sl Su m0 s0

argument name const.low const.up S.low S.up mean.eps.tau0 sd.eps.tau0

default value 0.8 2 3.5 6.5 −0.25 0.4

The prior distributions on the world-level mean and variance parameters {χ, ψ2, Δ4, δ4, α, 
δ} is given by:
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with their correspondence to argument names and default values:

notation χ0 ψ0 α0.p δ0 δ4.0 Δ4.0

argument name chi0 psi0 alpha0.p delta0 delta4.0 Triangle4.0

default value −1.5 0.6 −1, 0.5, 1, 5 1 0.8 0.3
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Figure 1. 
Five-year decrements as given by the double logistic decline function g(θc, fc,t) plotted 

against the TFR. The horizontal TFR axis is negatively oriented (i.e. decreasing from left to 

right).
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Figure 2. 
Projected trajectories for Burkina Faso.
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Figure 3. 
Visualization of the posterior distribution of the double logistic function for Burkina Faso.
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Figure 4. 
World map visualizing the TFR in 2005–2010 in each country.
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Figure 5. 
World map visualizing the median TFR projection in 2050–2055 in each country.
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Figure 6. 
Parameter traces for the parameter Δ4, generated via the simulation in Section 3.1.
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Figure 7. 
Parameter traces for the country-specific parameter Δc4 for the Netherlands, generated via 

the simulation in Section 3.1.
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Figure 8. 
Density of the posterior distribution of various country-independent parameters.
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Figure 9. 
Projected trajectories for the world.
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Figure 10. 
Posterior distribution of the double logistic function for the world.
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Figure 11. 
Projected trajectories for Congo with missing data imputed by the projection model. The last 

observation year for Congo is 1985. The plot was created using the object pred4.
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Figure 12. 
Projected trajectories for Congo without missing data, i.e. the UN estimates are considered 

as observed TFRs. The plot was created using the object pred2.
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Figure 13. 
Graphical user interface for bayesTFR, from the package bayesDem.
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Table 2

Country-specific parameters from Section 2 with their corresponding names in the code. They can be obtained 

using tfr.parameter.names.cs().

γc1,2,3 Uc dc Δc4

gamma U d Triangle_c4 gammat_i
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