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Abstract

Hyperosmotic agents such as maltodextrin negatively impact bacterial growth through osmotic 

stress without contributing to drug resistance. We hypothesized that a combination of maltodextrin 

(osmotic agent) and vancomycin (antibiotic) would be more effective against Staphylococcus 
aureus biofilms than either alone. To test our hypothesis, S. aureus was grown in a flat plate flow 

cell reactor. Confocal laser scanning microscopy images were analyzed to quantify changes in 

biofilm structure. We used dissolved oxygen microelectrodes to quantify how vancomycin and 

maltodextrin affected the respiration rate and oxygen penetration into the biofilm. We found that 

treatment with vancomycin or maltodextrin altered biofilm structure. The effect on the structure 

was significant when they were used simultaneously to treat S. aureus biofilms. In addition, 

vancomycin treatment increased the oxygen respiration rate, while maltodextrin treatment caused 

an increase and then a decrease. An increased maltodextrin concentration decreased the diffusivity 

of the antibiotic. Overall, we conclude that (1) an increased maltodextrin concentration decreases 

vancomycin diffusion but increases the osmotic effect, leading to the optimum treatment 

condition, and (2) the combination of vancomycin and maltodextrin is more effective against S. 
aureus biofilms than either alone. Vancomycin and maltodextrin act together to increase the 

effectiveness of treatment against S. aureus biofilm growth.
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Introduction

Staphylococcus aureus is a particularly challenging biofilm producer that can cause wound 

infections, pneumonia and septic shock. Public concern about this bacterium has risen 

because of its resistance to multiple drugs, especially when found in a biofilm community. 

Biofilms of S. aureus are usually visible in chronic wounds (Zhao et al., 2012). Chronic 

wounds have been associated with colonizing bacteria that adhere to organic surfaces by 

means of extracellular matrix molecules. These colonies, or biofilms, interfere with wound 

healing. Currently, chronic wounds present a serious problem in the world, playing a role in 

the pathogenesis of dental caries, urinary tract infections, chronic bronchitis in cystic fibrosis 

patients, medical instrument colonization, endocarditis, medical implant infections, diabetic 

foot ulcers, pressure ulcers, and venous leg ulcers (Crump and Collignon, 2000; James et al., 

2008; Nickel et al., 1994; Presterl et al., 2005; Singh et al., 2000). Chronic wounds and other 

diseases caused by S. aureus biofilms affect millions of people worldwide, costing billions 

of dollars annually in health care expenses and contributing to hundreds of thousands of 

deaths per year in the United States (Sun et al., 2008). The current practices for combatting 

these diseases are ineffective, and new treatment technologies are needed.

Vancomycin, a glycoprotein, is the primary antibiotic used to treat infections by Gram-

positive bacteria such as S. aureus, Corynebacteria, Listeria, and Streptococcus (Kohanski et 

al., 2010). It mainly targets the cell-wall synthesis of Gram-positive bacteria. Gram-positive 

cells are encased with layers of peptidoglycan (PG), a covalently linked polymer matrix that 

is composed of peptide-linked β-(1-4)-N-acetyl hexosamine (Bugg and Walsh, 1992). PG 

layers are maintained by the activity of transglycosylase and transpeptidase enzymes, which 

add disaccharide peptides to extend glycan strands of existing PG molecules and cross-link 

them to adjacent immature PG units (Park and Uehara, 2008). Vancomycin inhibits the 

maturation of PG by binding to the peptide and blocking the maintenance by transpeptidase 

and transglycosylase cross-linking enzymes (Kahne et al., 2005). Specifically, vancomycin 

binds strongly to peptidoglycan strands in the cell wall, where D-alanyl-D-alanine termini 

lies (Lehmann et al., 2002; Mosier and Ladisch, 2009; Schäfer et al., 1996). The large size of 

vancomycin physically prevents the cross-linking enzymes from interacting with the D-

alanyl-D-alanine peptide end through steric hindrance (Salyers and Whitt, 2005). As a result, 

the cell-wall strength is reduced, causing cells to be susceptible to lysis due to osmotic 

pressure between the external fluid and the cytoplasm.

Vancomycin is widely used to treat wounds infected by S. aureus, but drug resistance is a 

challenge (Foucault et al., 2009; Smith et al., 1999). It was found that prolonged exposure to 

vancomycin caused the emergence of glycopeptide-resistant strains of S. aureus (Smith et 

al., 1999). Genetic transformation could explain the acquisition of resistance to vancomycin. 

VanA gene cluster was found in clinical isolates of bacteria such as Bacillus circulans and S. 
aureus that transcribe vancomycin-resistant proteins (Ligozzi et al., 1998; Mosier and 

Ladisch, 2009; Walsh et al., 1996). When exposed to vancomycin, the antibiotic-resistant 

cell synthesizes a transmembrane protein that sends signals to a regulatory protein that 

activates the transcription of genes that resist the effects of vancomycin. The activation of 

transcription genes yields the synthesis of new peptidoglycan strands that are composed of 

D-alanine-D-lactate. These replace the original strand of amino acids, D-alanyl-D-alanine 
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(Mosier and Ladisch, 2009). Vancomycin was found to bind weakly to these mutated 

strands, failing to weaken the cell wall (Walsh et al., 1996). Vancomycin-resistant bacteria 

also produce more extracellular polymeric substances (EPS) in biofilms (Smith et al., 1999). 

Since antibiotics such as vancomycin are becoming futile against S. aureus biofilms, a multi-

approach system of treatment is needed to improve its efficacy.

Mature biofilms are highly resistant to treatment by antibiotics, biocides, and the host 

immune response, making it difficult to eradicate them (Fux et al., 2005; Lam et al., 1987; 

Leid et al., 2005; Stewart, 1996; Stewart et al., 1994, 2000). A promising approach in 

improving antibiotic effect is to use combination therapy to enhance the bactericidal effects 

of glycopeptide antibiotics such as vancomycin. One example is the use of honey as a 

therapeutic agent on burns (Lineen and Namias, 2008). Honey has been found to have both 

antibacterial properties and osmotic effects; therefore, it is difficult to distinguish its primary 

effect (Nassar et al., 2012; Willix et al., 1992). Alternatively, maltodextrin, which is mainly 

composed of polysaccharides and a common sweetener synthesized from starch, can act as a 

hyperosmotic agent against biofilm cells. Hyperosmosis is a category of osmosis in which 

water activity is reduced in cells and their environment (van der Waal et al., 2011). It causes 

metabolic stress to cells that results in the inhibition of growth and cell lysis. Because we 

know that vancomycin promotes lysis by weakening cell walls and maltodextrin could 

potentially subject cells to external osmotic stress, we hypothesized that a combination of 

maltodextrin and vancomycin would be more effective against S. aureus biofilms than either 

one alone. Maltodextrin is expected to increase osmotic pressure to the external biofilm 

fluid, promoting the likelihood of vancomycin penetrating the biofilm by changing the 

biofilm architecture and eradicating persisting colonies of cells.

The goal of this study was to test whether a combination of maltodextrin and vancomycin is 

more effective against S. aureus biofilms than either one individually. We grew S. aureus 
biofilms in flow cells and treated them with vancomycin, maltodextrin, or both. To 

determine the efficacy of maltodextrin and/or vancomycin, we quantified the changes in: (1) 

volumetric biofilm coverage (VBC), average diffusion distance (ADD), and average biofilm 

thickness; (2) dissolved oxygen (DO) depth profiles, and (3) number of viable cells before 

and after treatment. We measured oxygen depth profiles using DO microelectrodes and 

calculated oxygen consumption rates in the biofilm. These data were used to corroborate our 

notion of the osmotic effect on the biofilm’s local environment and its cells. Biofilms were 

imaged using confocal laser scanning microscopy (CLSM), and structures were quantified 

using image structure analyzer (ISA) (Beyenal et al., 2004; Lewandowski et al., 2007; Yang 

et al., 2001). Since our results indicated a diffusion limitation, we used nuclear magnetic 

resonance imaging to measure the diffusion coefficients of various maltodextrin solutions. 

Finally, we quantified whether vancomycin and/or maltodextrin killed biofilm cells by 

counting colony-forming units (CFU).

Materials and Methods

Inoculum Preparation

ATC1743 strain of S. aureus expressing green fluorescent protein (gfp) (Nayduch et al., 

2013; Peterson et al., 2008), provided by Niles Donegan from the Geisel School of Medicine 
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at Dartmouth College, was used in this study. S. aureus was grown overnight in 5 mL of 

tryptic soy broth (TSB) (Fisher Scientific, catalog #211825) supplemented with 5 μL (10 

μg/mL) of chloramphenicol (catalog #C1919-25G, 1:1000 dilution) at 37°C on a rotary 

shaker (Lab Line L. E. D. Orbital Shaker Model 3518, 90 rpm). An overnight culture (1 mL) 

was used to inoculate 75 mL of TSB supplemented with 75 μL of chloramphenicol (10 

μg/mL) in an Erlenmeyer flask and allowed to grow for 5 h at 37°C on a shaker (90 rpm).

Growing and Treating the Biofilms

A single-pass flat plate flow reactor (40 × 4 × 1 mm from Fisher Scientific, catalog 

#15-455-102) was used to grow and image the biofilms. The reactor was sterilized with 20% 

v/v bleach for 30 min and UVexposure (5 min each side). Then the apparatus was washed 

with autoclaved nanopure water for 20 min. We used silicone tubing (Cole Parmer, catalog 

#EW-96410-14) and a peristaltic pump (Gilson Minipuls 2) to feed the flat plate flow cell 

(Figure S1) with a medium solution of 0.1 × TSB supplemented with 10 μg/mL 

chloramphenicol at a flow rate of 24 mL/h.

Inoculum culture (5 mL) was introduced into the flow cell and left for a static period of 4 h. 

A flow of medium solution at 18 mL/h was started after the static period, and a biofilm was 

allowed to develop for 40 h. The biofilm was imaged after 40 h using CLSM. We call this 

the “initial biofilm.” Five milliliters of 10 mM maltodextrin (36,000 μg/mL) or 5 mL of 2 

mM vancomycin (2,900 μg/mL) or a mixture of the two at desired concentrations (5 mL 

total volume) was introduced to the 40-h old biofilm and imaged after 8 h of treatment. TSB 

(10%) with a chloramphenicol supplement (10 μg/mL) was used in making the solutions of 

maltodextrin and vancomycin. The same procedures were administered for treatments with 

different concentrations of maltodextrin. In addition, a control biofilm was grown and 

imaged without vancomycin or maltodextrin treatment.

Maltodextrin and vancomycin were both purchased from Sigma Aldrich (catalog #419672 

and #861987). In a separate study, we found that the minimum inhibitory concentration 

(MIC) of vancomycin was 5.8 μg/mL (4 μM) for planktonic cells (data not shown). We 

chose 2 mM because a significantly higher concentration was needed to be effective against 

biofilms and our preliminary screening showed that 2 mM could be used to treat biofilms.

Imaging and Quantifying the Biofilm Structure

Time-lapse images were acquired using CLSM. Each biofilm was imaged before any 

treatments were introduced (“initial biofilm”) and after 8 h of exposure to treatment. At least 

ten discrete images were taken each time. Experimentally we found that a minimum of seven 

CLSM images were required to obtain statistically representative structural numbers for 

each imaging section following procedures described in our recent paper (Istanbullu et al., 

2012). Each experiment was performed at least three times.

Volumetric biofilm coverage, average diffusion distance, and biomass thickness were 

estimated using ISA (Beyenal et al., 2004; Yang et al., 2000). Average values were 

calculated and errors were taken from the standard deviations of ten images. VBC is defined 

as the ratio of biofilm volume to total volume imaged. ADD refers to the average linear 

distance between a cluster pixel and the nearest void pixel; this is the average distance a 
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substrate must diffuse in the cell cluster (Lewandowski and Beyenal, 2014). The average 

biomass thickness defines the average thickness of the biofilm without taking into account 

voids or areas with no cell clusters. By imaging gfp we only image the bacteria population 

rather than entire biofilm structure. Therefore, the structural parameters we report refer to 

physical orientation of cells, but not to the surrounding extracellular polymeric matrix.

Dissolved Oxygen Depth Profile Measurement

To measure DO concentration depth profiles within S. aureus biofilms, microelectrodes with 

a tip diameter less than 20 μm were used in this study. The DO microelectrodes were 

constructed and used according to Lewandowski and Beyenal (Lewandowski and Beyenal, 

2014). Before DO measurements, microelectrodes were calibrated in air and Na2SO3 

solution. Since it was not feasible to use DO microelectrodes with our flow cells, we 

measured DO profiles in biofilms grown in a membrane biofilm reactor (Davenport et al., 

2014). We followed the procedures described above. The biofilms were placed on agar 

surface and then DO depth profiles were measured. DO concentrations were measured at 5 

μm intervals from the top to the bottom of a biofilm. The microelectrode was mounted on a 

micromanipulator (Model M3301L, World Precision Instruments, New Haven, CT) 

equipped with a stepper motor (Model 18503, Oriel, CT). LabView© software was used to 

control the position of the microelectrode as it travelled into the biofilm. The position of the 

microelectrode was monitored using a stereomicroscope (Zeiss Stemi 2000, Carl Zeiss 

Microscopy, NY). The experimental setup used to measure DO profiles is shown in Figure 

SI1B. We reported our results as the distance from air-liquid interface. The oxygen 

consumption rate was calculated from the slope of the dissolved oxygen concentration 

profile and normalized per unit surface area of the membrane. At any given time, the oxygen 

flux to the biofilm and the oxygen consumption rate will be equal (Byron Bird et al., 2007).

Bacterial Viability Measurements

The biofilms were grown in a membrane biofilm reactor and treated for 24 h with 

vancomycin and/or maltodextrin at selected concentrations (2 mM vancomycin and 10 mM, 

20 mM, or 30 mM maltodextrin). Colony-forming units (CFU) were determined according 

to published procedures (Lewandowski and Beyenal, 2014). The reported results and error 

intervals represent the average values and standard deviations from triplicate experiments.

Data Analysis

All experiments were performed in at least three biological replicates. For imaging 

experiments, we took at least 10 CLSM images for each experiment and calculated the 

average biofilm structural parameters. The average of three independent biological 

experiment results was expressed as mean ± standard error and analyzed using single-factor 

ANOVA with a post hoc pairwise comparison test and Bonferroni correction to determine 

whether there was a significant difference between the control and treated biofilms. Similar 

statistical analysis was done for CFU count results. For statistically significant testing, we 

used P ≤ 0.05. Calculations and statistical analyses were performed using Microsoft Excel©.
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Relative Effective Diffusivity in Maltodextrin Solution

Nuclear magnetic resonance imaging was used to measure the relative effective diffusivity in 

the presence of maltodextrin. In order to determine the effect of maltodextrin on the 

diffusion rate of vancomycin, nuclear magnetic resonance with pulsed field gradients was 

performed. Four concentrations of maltodextrin (0, 10, 20, and 30 mM) were tested using 

the Bruker diffusion tensor imaging method (Dti_Standard). Each experiment was 

performed using 16 averages, a 1-s repetition time, diffusion gradients of 2 and 10 ms 

(duration and separation, respectively), and a total of 7 independent diffusion weightings, 

similar to our previous publications (Renslow et al., 2010, 2013). Figure SI2A shows an 

example raw intensity image of the maltodextrin solution at 234 × 234 μm2 resolution. Each 

intensity image was fitted using the Bloch-Torrey equation to derive relative diffusivity 

values for vancomycin in growth medium. Figure SI2B shows the final relative diffusivity 

values as a function of maltodextrin concentration.

Results and Discussion

Biofilm Structure

Figure 1 shows example CLSM images of biofilms treated with various combinations and 

individual treatments of maltodextrin and vancomycin. These images are a visual 

representation of the structural differences among treated and non-treated biofilms. Figure 2 

shows how VBC changes under various treatment conditions including the control. The 

average VBC of the control biofilm decreased to 85.2 ± 8.7% of that of the initial biofilm. 

Although there was a difference between average VBC for various treatment conditions 

during 8 h, it was not statistically significant (P = 0.16). The increases in standard deviations 

indicated an increase in biofilm heterogeneity (Lewandowski and Beyenal, 2014). When 

biofilms were treated with 2 mM vancomycin, we found that VBC decreased to 81.0 

± 13.5% of that of the initial biofilm. However, this increase was not statistically significant 

either (P = 0.23).

When biofilms were challenged with 10 mM maltodextrin, we found that VBC decreased to 

98.3 ± 14% after 8 h of treatment, indicating a minimal upset in biofilm growth. When 

biofilms were challenged with 20 mM maltodextrin, VBC was reduced after 8 h of treatment 

to 95.2 ± 13.0% of that of the initial biofilm. VBC decreased to 62.2 ± 8.9% of that of the 

initial biofilm when biofilms were challenged with 30 mM maltodextrin. Overall, we found 

that increased maltodextrin concentration decreased VBC (Fig. 2). Finally, when the 

biofilms were challenged with a combination of 2 mM vancomycin and 10 mM 

maltodextrin, VBC decreased dramatically, to 1.5 ± 0.0% of that of the initial biofilm (Fig. 

2). When we challenged the biofilm with a combination of 20 mM maltodextrin and 2 mM 

vancomycin, we found that this combination was nearly as effective as the 10 mM 

maltodextrin and 2 mM vancomycin treatment (15.7 ± 4.6% of the initial biofilm was 

present after 8 h). When biofilms were treated with 30 mM maltodextrin and 2 mM 

vancomycin, a 9.41 ± 5.9% increase in VBC was observed. This demonstrates the effects of 

maltodextrin and vancomycin on VBC.
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Figures SI3 and SI4 show the average diffusion distance (ADD) and relative average biofilm 

thickness of treated biofilms and control biofilms. These measurements show a similar trend 

to that of VBC and demonstrate that the addition of both maltodextrin and vancomycin 

significantly affected the biofilm structure. These findings show that maltodextrin and 

vancomycin combinations decrease the ADD of biofilms. These results are discussed in 

detail in the supplementary information. ADD can be considered the diffusion distance an 

antibiotic molecule must travel to reach a cell inside a colony. With higher values for 

diffusion distance, the antibiotic is expected to have a longer penetration time. Vancomycin 

alone did not change ADD within biofilms. Thus, vancomycin alone will take a longer time 

to diffuse inside a cell cluster. The use of a hyperosmotic agent reduced the distance for 

diffusion (Figure SI3). We expected that reduced ADD in the presence of maltodextrin 

would cause vancomycin to be more effective against biofilm because of the shorter 

distances vancomycin would need to diffuse.

Effectiveness of Treatments Against Biofilms

Figure 3 shows the effectiveness of treatments against S. aureus biofilms as the logarithm of 

the colony-forming unit density (CFU/cm2). The log (CFU/cm2) was decreased (8.89 

± 0.32) when the biofilm was treated with a combination of 10 mM maltodextrin and 2 mM 

vancomycin in comparison to the control (10.93 ± 0.07) biofilms. In contrast, vancomycin 

alone did not effectively reduce CFU density for S. aureus biofilms, even though the data 

show a significant statistical difference against the control. When biofilms were treated with 

10 mM, 20 mM, and 30 mM maltodextrin only, log (CFU/cm2) of 10.05 ± 0.28, 10.42 

± 0.13, and 9.85 ± 0.40, respectively, were observed. The maltodextrin only treatments did 

not show relevant reduction of CFU density compared to the control. In the case of 20 mM 

or 30 mM maltodextrin along with 2 mM vancomycin, we observed the log (CFU/cm2) to be 

10.0 ± 0.29 or 10.05 ± 0.28, respectively, demonstrating that increasing the maltodextrin 

concentration in a treatment with vancomycin was not effective. The combination of 10 mM 

maltodextrin and 2 mM vancomycin produced the largest CFU density reduction. Although 

a 2-log reduction is not very high, it verifies our hypothesis.

Biofilm Respiration

DO depth profiles are used to quantify changes in the oxygen respiration rate within biofilms 

resulting from vancomycin and maltodextrin treatment. Many antibiotics are effective when 

cells are rapidly growing, and utilizing oxygen as their electron acceptor. For example, 

aminoglycosides are oxygen transporter-dependent in order to reach their target, and 

penicillin inhibits cell wall synthesis when bacteria are actively dividing, as well as 

vancomycin (Bryan et al., 1979; Mascio et al., 2007; Tuomanen et al., 1986). In a biofilm 

environment, oxygen is readily depleted at the top layer, forcing deeper cells to utilize 

alternative electron-acceptors that could lead to anaerobic respiration. Cells grow slower 

anaerobically compared to aerobic respiration, hence, biofilms have layers of inactive cells. 

The pH of the deeper layer of biofilms is low due to accumulation of acidic waste products 

of anaerobic respiration (Stewart and Costerton, 2001; Zhang and Bishop, 1996). In 

addition, for a fully active biofilm, it is expected that the dissolved oxygen concentration 

near the bottom of the biofilm will be zero (Lewandowski and Beyenal, 2014). When cells 

are under stress or combating environmental invaders, perturbation in metabolic reaction 
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rates may occur as a response. For example, the acquisition of amoxicillin resistance in 

Eschericha coli causes reorganization of metabolic network by up- and down-regulation of 

specific genes in order to overcome the metabolic cost (Händel et al., 2013). Therefore, DO 

depth profiles and oxygen consumption rates can give us information about the metabolic 

state of biofilms. Since we found 2 mM vancomycin and 10 mM maltodextrin to be the 

optimum treatment condition, we present DO depth profile results for this condition.

Figure 4A shows the DO depth profiles and oxygen consumption rates before, and after 4 

and 8 h of exposure to 2 mM vancomycin. The oxygen consumption rate increased after 4 h, 

demonstrating increased oxygen consumption by the biofilm. The increase of the oxygen 

consumption rate was expected, since during an antibiotic-induced stress response cells 

increase metabolic reactions, resulting in oxygen being depleted from the substrate (Händel 

et al., 2013). Similarly, we found an increase in the oxygen consumption rate after 4 h of 

treatment with 10 mM maltodextrin (Fig. 4B). However, the oxygen consumption rate 

decreased after 8 h of treatment. The initial increase in DO for maltodextrin-treated biofilms 

shows that maltodextrin affects metabolic reactions. When the biofilm was challenged with a 

combination of 10 mM maltodextrin and 2 mM vancomycin (Fig. 4C), the oxygen 

consumption rate continuously decreased throughout the 8-h period. To treat S. aureus 
biofilms on wounds successfully, we need oxygen to penetrate the wound bed. Oxygen is 

required for the wound to heal (Gottrup, 2004; Schreml et al., 2010). Comparing the DO 

profiles presented in Figure 4, we conclude that the combination of 10 mM maltodextrin and 

2 mM vancomycin provided a higher oxygen penetration compared to the application of 

only 2 mM vancomycin.

Treating biofilm with vancomycin alone caused an increase in oxygen uptake, indicating that 

the biofilm utilized more oxygen when challenged with vancomycin. This could be because 

of the biofilm’s tendency to counteract the invasion of antibiotic by enhancing metabolic 

processes that produce resistance or a stress response (Händel et al., 2013). Other studies 

reported a major reduction in growth rate was observed to compensate the cost of expressing 

vanA operon, a resistance gene to vancomycin, in vancomycin-resistant S. aureus (Foucault 

et al., 2009; Martínez and Rojo, 2011). Consequently, the increase in oxygen consumption 

rate shows the possibility that S. aureus biofilm can utilize oxygen for the regulation of 

resistive genes in the presence of vancomycin. This possibly explains how vancomycin alone 

was not very effective in eradicating the biofilm. Many studies have shown that bacterial 

fitness is reduced in the presence of antibiotics because the bacteria utilize the substrates to 

develop defense and to improve other biological mechanisms instead of optimizing for 

growth (Andersson and Hughes, 2010; Händel et al., 2013). In the presence of maltodextrin 

alone, the oxygen consumption rate within the S. aureus biofilm showed an initial increase 

after 4 h and then a decrease after 8 h. This effect may be due to an initial hyperosmotic 

stress response of the biofilm followed by a decrease in activity due to prolonged exposure 

to maltodextrin. Oxygen consumption readily decreased when S. aureus biofilm was treated 

with a combination of 10 mM maltodextrin and 2 mM vancomycin. Interestingly, this was 

the condition that was the most effective against S. aureus biofilms (Fig. 3).
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Possible Mechanisms and Combination Effects of Maltodextrin and Vancomycin

Bacteria can adapt to environments with high osmotic stress through osmoregulation. Oral 

streptococci were found to regulate genes in response to osmotic stress from NaCl; 

downregulation of gtfB and comC were responsible for biofilm dispersal, and upregulation 

of gene pathways for carbohydrate metabolism were observed (Liu et al., 2013). However, 

cell death can occur when osmotic stress is high enough to affect other metabolic processes 

within the cells. Houssin et al. (1991) concluded that E. coli inhibition by NaCl and sucrose 

was caused by inhibition of electron transfer, and sugar transport due to conformational 

changes in the cell membrane or plasmolysis.

Combination of antibiotics and antimicrobial agents are being studied in literature. Jenkins 

and Cooper have shown that there is synergistic effect between manuka honey and oxacillin 

against methicillin-resistant S. aureus (MRSA) (Jenkins and Cooper, 2012). The synergy 

resulted in the restored susceptibility of MRSA to methicillin through down-regulation of 

the mecR1, part of the mec gene complex that is the source of resistance against methicillin 

(Jenkins and Cooper, 2012). Synergistic effects between manuka honey and other antibiotics 

such as rifampicin, gentamicin, and clindamycin against S. aureus were also reported (Liu et 

al., 2015). Our results show that the combination of 10 mM maltodextrin and 2 mM 

vancomycin yielded the most changes in biofilm structure as well as killing the most cells in 

the biofilm (~2 log reduction of CFU density). Although the combination effect only showed 

a 2-log reduction in CFU density, this 2-log change may be significant in the context of a 

real infection and can be tested through in vivo experiments. In our case, we tested this 

effect for already developed mature biofilm; it may be more significant in initially 

developing biofilms, because of the inoculum effect (Corrado et al., 1980; Li and Ma, 1998; 

Rose et al., 2009). Young biofilms grown for 24 h can have 7–8 logs of CFU (Amorena et 

al., 1999; Barraud et al., 2013; Culler et al., 2014; Freitas et al., 2014). The more 

maltodextrin is present in the medium, the higher the osmolality of the solution will be 

(Rong et al., 2009). Meanwhile, higher maltodextrin concentrations cause slower diffusion 

of vancomycin; this was demonstrated by decreasing relative diffusivity (Figure SI2B). In 

practical terms, a dose-dependent optimum response is expected; this is shown schematically 

in Figure 5. We found that among the conditions tested in this study the most effective 

maltodextrin concentration was 10 mM. Higher maltodextrin concentrations did not inhibit 

cells in biofilms more effectively. The highest concentration of maltodextrin, 30 mM, 

showed the most insignificant effect among the various concentrations in conjunction with 2 

mM vancomycin. This may be due to blockage of the diffusion pathway of vancomycin 

molecules into the cells. By itself, 30 mM maltodextrin was effective in reducing biofilm 

coverage and thickness, indicating the presence of an osmotic effect.

In addition, a simple test model was developed to determine the implications of a hindered 

diffusion of vancomycin in the presence of maltodextrin. COMSOL Multiphysics (ver. 

5.0.1.276), a finite element methods software package for solving simultaneous differential 

equations, was used to simulate a 100-μm S. aureus biofilm in the presence of vancomycin 

(model modified from Renslow et al., 2013a; Renslow et al., 2013b). Two conditions were 

tested: (1) no maltodextrin present and (2) 30 mM maltodextrin. This simple model 

demonstrated that the vancomycin full penetration time (defined as a 99% concentration at 
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the bottom of the biofilm) increased from 4 h when no maltodextrin was present to 7 h when 

30 mM of maltodextrin was added. This increased penetration time leads to a 2.5 times 

greater dose duration (time × concentration) at the top of the biofilm than at the bottom. The 

bottom cells will have a better chance of surviving than the top cells because of the 

difference in exposure. Thus, the results indicate that maltodextrin concentration affects the 

penetration of vancomycin when applied together to the biofilm. Increasing the maltodextrin 

dose decreases the ability of vancomycin to diffuse within the biofilm and, thus, its killing 

effect. The results above support what we observed in the flow cell experiments, that 10 mM 

maltodextrin had a larger effect against S. aureus biofilms than 20 mM or 30 mM 

maltodextrin. In conclusion, the combined effect of maltodextrin and vancomycin is affected 

by the concentration of maltodextrin because of diffusion resistance.

Conclusions

A combined treatment with maltodextrin and vancomycin significantly decreased the 

volumetric biofilm coverage and average diffusion distance of biofilms. Our findings 

demonstrate that the hypothesized combined effect is dose-dependent but follows a “u-

shaped” function rather than a classic sigmoidal response curve. For a fixed concentration of 

antibiotics, increasing the concentration of the hyperosmotic agent works in combination to 

damage biofilm structure and harm bacteria, but there is a threshold after which further 

increases in the concentration of the hyperosmotic compound slow the diffusion of the 

antibiotic and the treatment effectiveness is reduced. Overall, S. aureus biofilms showed 

changes in morphology and fluorescence after treatment with maltodextrin in combination 

with vancomycin. The oxygen consumption rate through the biofilms decreased, indicating 

that the biofilm was not consuming as much oxygen as it did before the treatment. In 

addition, the oxygen consumption rate increased in the presence of vancomycin alone, 

indicating a sudden increase in metabolic processes in the biofilms. Under the combination 

treatment with maltodextrin and vancomycin, oxygen was able to penetrate further toward 

the bottom of the biofilm. In a wound, this could mean oxygen being delivered to the host 

cells and promoting healing. Overall, we found that vancomycin and maltodextrin can work 

together to increase the efficiency of biofilm treatment.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
CLSM (10×) images of S. aureus biofilms expressing gfp after 8 h of treatment. The images 

represent a compressed z-series, in which multiple x–y planes from the top to the bottom of 

the biofilm are combined. Side views are also shown.
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Figure 2. 
Volumetric biofilm coverage (VBC) under various treatment conditions with maltodextrin 

(MD) and vancomycin (V). The concentrations used were as follows: 2900 μg/mL V (2 

mM), 36000 μg/mL MD (10 mM), 72000 μg/mL MD (20 mM), and 108000 μg/mL MD (30 

mM). The bars depict the results for the initial biofilm (before treatment) and after 8 h of 

exposure to treatment. The data are means from 10 images taken for each of three biological 

replicates. The error bars represent the standard errors of the means calculated from the 

triplicate measurements. Stars indicate statistically significant differences from the initial 

biofilm.
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Figure 3. 
Effect of various concentrations of maltodextrin in treatments with 2 mM vancomycin on 

colony-forming unit counts in S. aureus biofilms (n = 3). The data are means from at least 

three biological replicates. The error bars represent the standard errors of the means 

calculated from the triplicate measurements. Stars indicate statistically significant 

differences from the initial biofilm.
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Figure 4. 
Dissolved oxygen depth profiles measured before and after the treatments. A: Treatment 

with vancomycin. The oxygen consumption rate (OCR) showed an increase after 4 h and a 

gradual decrease after 8 h of treatment (inset). B: Treatment with 10 mM maltodextrin. The 

oxygen consumption rate showed an increase and then a decrease (inset). C: Treatment with 

10 mM maltodextrin and 2 mM vancomycin. The oxygen consumption rate showed a 

gradual decrease throughout the 8-h treatment (inset). The initial horizontal lines show the 

location of the biofilm surface. For all figures the zero hours refer to biofilms grown for 72 

h.
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Figure 5. 
Schematic of proposed mechanism of the combined effect of antibiotic and hyperosmotic 

agents. An increased hyperosmotic compound concentration is expected to increase the 

osmotic effect. However, increasing concentration of hyperosmotic compound also reduces 

the diffusion of molecules inside the biofilm. Therefore, a high dosage of a hyperosmotic 

compound can be counterproductive.
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