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Abstract

Propensity score methods, such as subclassification, are a common approach to control for 

confounding when estimating causal effects in non-randomized studies. Propensity score 

subclassification groups individuals into subclasses based on their propensity score values. Effect 

estimates are obtained within each subclass and then combined by weighting by the proportion of 

observations in each subclass. Combining subclass-specific estimates by weighting by the inverse 

variance is a promising alternative approach; a similar strategy is used in meta-analysis for its 

efficiency. We use simulation to compare performance of each of the two methods while varying: 

a) the number of subclasses, b) extent of propensity score overlap between the treatment and 

control groups (i.e., positivity), c) incorporation of survey weighting, and d) presence of 

heterogeneous treatment effects across subclasses. Both methods perform well in the absence of 

positivity violations and with a constant treatment effect with weighting by the inverse variance 

performing slightly better. Weighting by the proportion in subclass performs better in the presence 

of heterogeneous treatment effects across subclasses. We apply these methods to an illustrative 

example estimating the effect of living in a disadvantaged neighborhood on risk of past-year 

anxiety and depressive disorders among U.S. urban adolescents. This example entails practical 

positivity violations but no evidence of treatment effect heterogeneity. In this case, weighting by 

the inverse variance when combining across propensity score subclasses results in more efficient 

estimates that ultimately change inference.
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1. Introduction

Propensity score methods are one approach to control for confounding when estimating 

causal effects in non-randomized studies [1, 2]. These methods have several advantages. 

First, confounding is controlled for in the design stage instead of the analysis stage of the 

research, similar to a randomized control trial. Second, such approaches facilitate 
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examination of the extent to which there is common support between those in the treatment 

and control groups (e.g., the extent of propensity score overlap between the two groups). 

Low-or no-support scenarios indicate violations of the positivity assumption [3]. 

Identification of such scenarios allow the researcher to employ approaches to reduce reliance 

on model extrapolation. Third, when propensity score approaches are coupled with an 

outcome analysis, like regression adjustment, the approach can be thought of as double 

robust [4]. Propensity score methods typically include matching, weighting, and 

subclassification. We focus on subclassification in this paper.

Propensity score subclassification has been described previously [5] and has been used in a 

variety of disciplines, including economics [6], health economics [7], psychology [8], and 

epidemiology [9]. It is a recommended approach for using propensity scores with complex 

survey data [10]. Briefly, it involves the following steps. First, a propensity score is 

estimated for each individual, i, that is the predicted probability of being treated given 

observed potential confounding variables. Next, the vector of propensity scores is divided 

into subclasses, typically based on quantiles. Once the subclasses have been identified, the 

average treatment effect (ATE) or another desired estimand is estimated within each of the j 
subclasses. Finally, the subclass-specific effect estimates are combined to estimate the 

overall effect.

How many propensity score subclasses to create remains a matter of debate. In theory, if 

each propensity score subclass contains a set of identical propensity scores (and treatment 

assignment is strongly ignorable and the sample size is large), then propensity score 

subclassification will control for all confounding [1]. However, in practice, each subclass 

will not be composed of individuals with equal propensity scores. The number of subclasses 

necessary to control for the majority of confounding will depend on the sample size and data 

generating mechanism, but traditional guidance is that 5 subclasses should remove 90% of 

the bias contributed by each covariate [5]. Another consideration in determining the number 

of subclasses and their quantile cutpoints is ensuring adequate numbers of treated and 

untreated observations within each subclass. If the sample size allows, increasing the 

number of subclasses beyond 5 should provide further confounding control [11, 12].

In this paper, we estimate the ATE. The overall ATE estimated from propensity score 

subclassification is the weighted mean of the subclass-specific effect estimates where each 

subclass-specific weight is equal to the proportion of observations in the jth subclass [13, 5]. 

This approach is sometimes called weighting by the sample size. Combining subclass-

specific effects has a number of analogies with other methods. One well-known approach 

that underlies the Mantel-Haenszel method [14, 15] and is commonly used in combining 

studies for meta-analysis [16] is weighting by the inverse variance [17]. In this approach, 

each weight is equal to the inverse estimated variance of the study/subclass-specific ATE 

estimate. An advantage of this approach is that it will result in optimal efficiency if 1) the 

subclass-specific ATEs are normally distributed, 2) the subclasses are independent, and 3) 

the subclass-specific ATEs are estimating a common estimand [17]. Although these 

assumptions may be violated to varying degrees when combining estimates across 

propensity score subclasses, it is possible that inverse variance weighting may nonetheless 

outperform weighting by the proportion in subclass in some scenarios. The inverse variance 
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weighting method is expected to result in more efficient ATE estimates than weighting by 

the proportion in the subclass because inverse variance weighting gives more weight to 

subclasses with more information (the inverse variance is the same as the information 

matrix). For example, there is little information in subclasses dominated by one treatment 

group, which is reflected in large variance estimates for the subclass-specific ATE estimate. 

The inverse variance weighting approach would down-weight such unreliable subclass-

specific estimates whereas the proportion in subclass weighting approach would not.

To our knowledge, these two approaches have not been compared for estimating a difference 

or risk difference using propensity score subclassification. Austin conducted a simulation 

comparing the two methods in estimating an odds ratio [18]. However, his method of 

estimating the odds ratio was biased [8]. Thus, it is of interest to compare the two 

approaches in the scenario where the outcome is linearly related to the propensity score and 

the estimand is collapsible, since Cochran’s theory underlying subclassification is based on 

such a relationship [19]. Sanchez-Meca et al. conducted a simulation comparing weighting 

by the sample size to weighting by the inverse variance for combining studies in meta-

analysis [20]. The authors found that in terms of bias, weighting by the sample size nearly 

always performed better, especially in the presence of treatment effect heterogeneity and 

with small sample sizes. However, in terms of efficiency, weighting by the inverse variance 

nearly always performed better. It is unclear whether or not the results of this simulation, 

which was designed to mimic meta-analysis, would translate to propensity score 

subclassification. In addition, Hullsiek and Louis and Myers and Louis used weighting by 

the inverse variance to combine propensity score subclasses in simulations comparing 

different methods for forming and choosing the number of subclasses [21, 22], but they did 

not compare weighting by the inverse variance to other methods of combining subclasses.

Our objective is to compare the well-established practice of combining propensity score 

subclasses by weighting by the proportion in each subclass to weighting by the inverse 

variance. We consider various data-generating scenarios commonly encountered in 

observational studies such as practical positivity violations, treatment effect heterogeneity in 

which the effect modifier is also related to treatment, and a complex survey design with 

survey weights. Propensity score subclassification with complex survey data has been 

discussed previously [10], but the extent to which practical violations of the positivity 

assumption and heterogeneity of effects across propensity score subclasses affect 

performance of propensity score subclassification have not been examined. The paper is 

organized as follows. In Section 2, we introduce notation. In Section 3, we detail the two 

methods we compare for combining subclass-specific estimates. The simulation studies are 

described in Section 4. In Section 5, we apply the two approaches to an illustrative example 

estimating the association between living in a disadvantaged neighborhood and past-year 

anxiety or depression among U.S. urban adolescents. Section 6 concludes.

2. Notation

We consider two overarching scenarios: one where the data come from a complex survey 

and one where the data do not. For the non-survey scenario, we observe the following data: 

O1 = (W, A, Y) for each of N i.i.d. observations i = 1, …, N. For the survey scenario, we 
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observe O2 = (W, Δ, ΔA, ΔY) for each observation i. W is a vector of four covariates, Δ is a 

binary (0/1) variable indicating membership in a survey sample, A is a binary (0/1) variable 

indicating treatment status, and Y is continuous outcome variable.

We assume the following causal relationships. In defining them, we use Pearl’s notation 

where f denotes a deterministic function and U denotes exogenous random errors [23]. Three 

of the covariates, W1, W3, and W4 are exogenous: (W1, W3, W4) = fW(UW). W2 is a 

function of W1: W2 = fW2(W1, UW2). Survey membership is a function of the three 

exogenous covariates: Δ = fΔ(W1, W3, W4, UΔ). Treatment status is a function of W1 and 

W2: A = fA(W1, W2, UA). The outcome is a function of treatment, W1, and W2: Y = fY (W1, 

W2, A, UY).

We are interested in estimating the ATE, defined as E(Y (1) − Y (0)) with the expectation 

taken over all i, where for each a ∈ {0, 1}, Y (a) is the potential outcome had treatment A = 

a been assigned. This estimand is identifiable under several assumptions. First, we assume 

strongly ignorable treatment assignment: (Y (0), Y (1)) ⫫ A|W and 0 < P(A = 1) < 1 (i.e., 

positivity) [1]. Second, we assume consistency, which means that the potential outcome of 

individual i under his/her observed treatment equals his/her observed outcome: 

. Third, we assume that the stableunit treatment value 

assumption (SUTVA) holds, which means that there is one version of treatment and the 

potential outcome of individual i does not depend on the treatment assignment of another 

individual [1].

3. Propensity score subclassification approach

We estimate the propensity score using a correctly specified parametric logistic regression 

model of treatment, A, as a function of covariates, W. For the survey scenario, we estimate 

the model among those observations with Δ = 1, as those would be the individuals with 

observed data in a typical survey application. As previously recommended, we fit the 

propensity score model without incorporating the survey weights for the survey scenario 

[24].

Next, observations are categorized into subclasses by dividing the distribution of propensity 

scores into J quantiles of equal total size (treated and control subjects combined), where J is 

the number of subclasses desired. All observations are retained. In practice, other 

approaches may be used: quantiles of unequal size, quantile divisions based on the size of 

either the treated and control groups, and discarding observations outside the area of 

common support.

Within each propensity score subclass, the subclass-specific ATE and its variance are 

estimated. For the non-survey scenario, the ATE for subclass j is estimated as follows: 

, where N is the total number of 

observations, Nj is the number of observations in subclass j, êi is the estimated propensity 

score, Q̂j = (q̂j−1, q̂j], and q̂j is the j sample quantile. [11] For the survey scenario, we assume 

that the survey weights, defined as svywti = 1/P(Δi = 1|Wi), are known and correctly 
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specified, which is a common assumption in survey analyses [25]. In this case, the ATE for 

subclass j is estimated as follows: 

. We estimate the variance of 

each subclass-specific, survey-weighted ATE estimate using Taylor linearization in the the 

survey package in R [25, 26].

The next step, which is primary concern of the study, entails combining the subclass-specific 

ATE estimates to estimate the overall ATE.

3.1. Weighting by the proportion in subclass

In the non-survey scenario, when combining across propensity score subclasses by 

weighting by the proportion in each subclass, each subclass weight is defined as wj = Nj/N. 

The overall ATE is estimated as . The variance of  is estimated 

as , where  is the estimated variance of .

In the survey scenario,  is now the survey-weighted ATE estimate in subclass j. Each 

subclass weight is now defined as  [10] (i.e., the proportion 

of the population in that subclass). The overall ATE and its variance are estimated as above 

with these modified weights.

3.2. Weighting by the inverse variance

In the non-survey scenario, when combining across propensity score subclasses by 

weighting by the inverse variance, the weights now equal the proportion of inverse estimated 

variance in the jth subclass, , and the overall ATE is estimated as 

. The variance of the overall ATE estimate is estimated as 

.

In the survey scenario,  is the survey-weighted ATE estimate in subclass j, and  is 

the variance of the survey-weighted, subclass-specific ATE. The overall ATE and its 

variance can be estimated as above.

4. Simulations

4.1. Overview and setup

We conducted a simulation study to compare performance of inverse variance weighting 

versus proportion in subclass weighting for combining propensity score subclasses to 

estimate the ATE under several scenarios.
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In the base simulation, we consider a simple data-generating mechanism with a constant 

treatment effect in which the positivity assumption is met. We call this data-generating 

mechanism DGM 1 and provide its details in Table 1. In this base simulation, we consider 

both the survey and non-survey scenarios described in Section 2. We vary the number of 

subclasses, considering 5, 10, and 30 subclasses. We use N = 2, 000 for 5 and 10 subclasses, 

and use N = 5, 000 for 30 subclasses to ensure adequate numbers of treated and untreated 

observations in each subclass.

We perform two additional simulations in which we slightly change the data-generating 

mechanism from the base simulation. For the first variation, we incorporate practical 

violations of the positivity assumption, which occur when some observations in the treated 

group have a low predicted probability of being in the untreated group and some 

observations in the untreated group have a low predicted probability of being in the treated 

group. Such violations of the positivity assumption are not unusual when using observational 

data [27] and may compromise performance of estimators (e.g., in terms of bias, decreased 

efficiency) [28]. The data-generating mechanism reflecting practical violations of the 

positivity assumption (DGM 2) is given in Table 1 and its effect on the estimated propensity 

scores is also given in Table 1. For the second variation, we incorporate treatment effect 

heterogeneity where the effect modifier is also associated with the treatment. Such a 

scenario results in heterogeneity of treatment effects by the propensity score or propensity 

score subclasses. This final data-generating mechanism (DGM 3) is also given in Table 1 

and its effect on the estimated ATE is also given in Table 1.

We evaluate performance of each method in terms of average percent bias, variance, 95% 

confidence interval (CI) coverage and mean squared error (MSE) across 1,000 simulation 

iterations. This number of iterations was sufficient for convergence of the MSE for all 

results. In addition, we present the percent difference comparing the MSE from the inverse 

variance weighting method to the MSE from the proportion in subclass weighting method 

and identify the best performing method for each simulation scenario, taking into account all 

of the performance metrics. We use R version 3.1.2 for all analyses.

4.2. Results

Table 2 summarizes the results from the base simulation (DGM 1), Table 3 summarizes 

results from the simulation incorporating violations of the positivity assumption (DGM 2), 

and Table 4 summarizes results from the simulation incorporating heterogeneous effects 

across propensity score subclasses (DGM 3).

In Table 2, we see that both methods of combining estimates across propensity score 

subclasses perform well. This is expected as the assumptions underlying propensity score 

subclassification are met. The inverse variance weighting method performs slightly better 

than the proportion in subclass weighting method for all scenarios.

In Table 3, which reflects practical positivity violations in DGM 2, the performance of each 

method worsens slightly, as expected. The two combining methods continue to perform 

similarly, and the inverse variance weighting method performs slightly better than the 

proportion in subclass weighting method for all scenarios.
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In Table 4, performances of the two methods differ across the survey and non-survey 

scenarios. In the non-survey scenario, weighting by the proportion in subclass performs 

better than weighting by the inverse variance in terms of bias, coverage, and MSE. In the 

survey scenario, both methods perform poorly. Weighting by the proportion in subclass 

performs slightly better in terms of MSE, but weighting by the inverse variance performs 

better in terms of confidence interval coverage.

We also examined performances of the two weighting methods when the propensity score 

model was misspecified, which was operationalized as including only the main terms of the 

regression of the covariates on treatment status. Relative performance was similar as seen for 

Tables 2–4 and is summarized in Table A1 of the online appendix.

5. Illustrative Example

5.1. Overview and setup

We now apply both the inverse variance and proportion in subclass weighting methods to 

estimate the association between living in a disadvantaged neighborhood and past-year 

DSM-IV anxiety or depressive disorder among urban-dwelling U.S. adolescents. This 

association has been estimated previously using propensity score subclassification [9]. The 

data are from the National Comorbidity Survey Replication Adolescent Supplement (NCS-

A), which has been described previously and uses survey sampling weights to generalize 

results to the population of U.S. adolescents [29, 30, 31]. We use the same exposure, 

outcome, and covariates as in the original paper [9]. Covariates include adolescent age, race/

ethnicity, immigrant generation, family income, maternal age at birth of the adolescent, 

maternal level of education, whether or not the adolescent lived his/her whole life with 

his/her mother and/or father, and residence in the Northeast, Midwest, South, or West. We 

restrict to the subsample of urban-dwelling adolescents, because the effect of living in a 

disadvantaged neighborhood on adolescent anxiety and depression has been shown to differ 

by urbanicity [9]. For illustrative purposes, we use only one imputed dataset for missing 

variables. Each adolescent and her/his parent or guardian provided informed assent and 

consent. The Human Subjects Committees of Harvard Medical School and the University of 

Michigan approved recruitment and consent procedures.

In this example, the propensity score is the predicted probability of living in a disadvantaged 

neighborhood as a function of covariates. As was done previously, we classify participants 

into one of eight subclasses with divisions at the 30th, 40th, 50th, 60th, 70th, 80th, and 90th 

propensity score percentiles. We group all participants below the 30th propensity score 

percentile together to ensure adequate sample size in the treated and control groups in this 

first subclass. We discard individuals with propensity scores outside the convex hull to limit 

practical positivity violations. Excluding these individuals improves internal validity but 

compromises external validity. Including individuals without comparable counterparts in the 

other treatment group would rely on extrapolation in estimation, thereby compromising 

internal validity. By excluding these individuals, we improve internal validity but lose the 

ability to interpret our results as strictly applying to the population of urban, U.S. 

adolescents. The lack of an interpretable population may be of concern in cases where there 

is demonstrated treatment effect heterogeneity. We run survey design-based, weighted linear 
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regression models in each of the eight propensity score subclasses to estimate the difference 

in risk of having a prevalent anxiety or depressive disorder comparing those living in 

disadvantaged versus non-disadvantaged neighborhoods. Variances are calculated as for the 

simulation. We compare results when we ignore the survey design and weights, which 

estimates the effect of living in a disadvantaged neighborhood on risk of having a prevalent 

anxiety or depressive disorder in the NCS-A sample of urban-dwelling adolescents with 

comparable counterparts in disadvantaged and non-disadvantaged neighborhoods, and when 

we incorporate the survey design and weights, which estimates the risk in the U.S. 

population of urban-dwelling adolescents with comparable counterparts in disadvantaged 

and non-disadvantaged neighborhoods.

Table 5 summarizes the treatment probabilities and survey weights for this illustrative 

example and compares them to those used in the simulation scenarios. The survey weights 

are stabilized for ease of comparison; stabilization is achieved by dividing an individual i’s 

weight by the mean of all weights . The distribution of treatment 

probabilities in the illustrative example falls in between the distributions for DGMs 1 and 2, 

but is closer to the practical positivity violations scenario in DGM 2, suggesting that 

practical violations of the positivity assumption may be a slight concern even after dropping 

individuals outside the area of common support. Although our decision to drop individuals 

whose propensity scores fall outside the area of common support and to combine the first 

two quantiles differ from our simulation, they follow the the approach used in the original 

paper [9]. Moreover, data-generating mechanisms from the simulation align with key 

characteristics from the illustrative data after restriction to the area of common support, like 

degree of propensity score overlap between the treatment and control groups and distribution 

of survey weights (Table 5).

5.2. Results

Figure 1 shows the estimated associations and 95% CIs for living in a disadvantaged 

neighborhood and past-year depression or anxiety disorder (interpreted as the difference in 

risk of current anxiety or depressive disorder comparing a scenario where all adolescents 

live in a disadvantaged neighborhood to one where none of them do). First, we show the 

association ignoring survey weights (top panel, labeled “not survey weighted” in Figure 1), 

which is the association among urban-dwelling adolescents in the survey sample. Second, 

we show the association incorporating survey weights (bottom panel, labeled “survey 

weighted”), which is the association among urban-dwelling adolescents in the U.S. For each 

of the two associations—among those in the survey sample and those in the U.S.—we 

compare weighting by the proportion in subclass to weighting by the inverse variance.

For both the survey-weighted and non-survey-weighted associations, the confidence 

intervals are narrower when weighting by the inverse variance. This narrowing is enough to 

result in a change in inference between the two methods. If we were to weight by the 

proportion in subclass, we would conclude that there is no statistically significant 

association between neighborhood disadvantage and adolescent depression and anxiety in 

either the survey sample or in the U.S. population. However, if we were to weight by the 
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inverse variance, we would conclude that there is a statistically significant association 

between living in a disadvantaged neighborhood and increased prevalence of current anxiety 

or depressive disorder for both the survey sample and U.S. population of urban adolescents.

Because this is not a simulation, we do not know the true effect, so we cannot know the 

optimal method in this particular case. However, we can align this illustrative example with 

the simulation scenario it most closely resembles. Based on model fit statistics, there is no 

evidence of treatment effect heterogeneity in the outcome model (i.e., models that 

incorporated treatment effect heterogeneity did not fit as well), and based on a partial F test, 

there is no evidence of treatment effect heterogeneity across propensity score subclasses. 

However, we acknowledge that this does not rule out the presence of heterogenous treatment 

effects. There is evidence of practical positivity violations, and we use 8 subclasses with a 

sample size of 4,172. Therefore, this illustrative example may be best represented by the 

simulation using DGM 2 (reflecting positivity violations) and 10 subclasses (Table 3, rows 2 

and 5). In this simulation scenario, weighting by the inverse variance was found to perform 

best. Therefore, we conclude that, for urban-dwelling U.S. adolescents, living in a 

disadvantaged neighborhood is associated with a 6.7 percentage point increased risk of 

having an anxiety or depressive disorder in the past year (RD: 0.067, 95% CI: 0.007, 0.126).

6. Conclusion

In this paper, we compare two methods for combining propensity score subclasses to 

estimate an ATE. The first, which is the main propensity score subclass effect estimate 

combining method referenced in the literature, is a weighted combination of subclass-

specific ATE estimates where the weights equal the proportion of individuals in each 

subclass. The second, a popular method for combining studies for meta-analysis, uses 

weights that are the inverse variances of the subclass-specific ATE estimates. We find that 

both methods perform well under standard assumptions of positivity and constant treatment 

effects, with weighting by the inverse variance slightly outperforming weighting by the 

proportion in subclass. However, weighting by the proportion in subclass outperforms 

inverse variance weighting in the presence of heterogeneous effects across propensity score 

subclasses in the non-survey scenario. Our results suggest that, in some cases, combining 

propensity score subclasses by weighting by the inverse variance can improve upon the usual 

approach.

Within a subclass, the ATE estimate equals the average treatment effect on the treated (ATT) 

estimate. Although we focus on estimating the ATE in this paper, the ATT can be easily 

estimated by combining subclass-specific estimates weighting by the proportion of treated 

individuals in each subclass. Although it is possible to estimate the ATT by combining 

subclass-specific estimates using the inverse variance weighting method, estimating the 

variance of a subclass-specific ATT estimate is not straightforward. This is a limitation of 

the inverse variance method for combining subclasses.

Another limitation of the inverse variance weighting method is that it is only recommended 

for constant effects [32]. This is because when there are heterogeneous effect estimates 

across propensity score subclasses, the weights should reflect the estimand of interest—in 
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this case, the ATE [19]. Weights representing the proportion of individuals in each subclass 

weight the subclass-specific ATE estimates to reflect the ATE in the full sample. In contrast, 

while inverse variance weights are related to the sample size, they are not designed to weight 

the subclass-specific estimates to reflect the ATE in the total sample. It is also important to 

point out that depending on the causal question of interest, in the presence of treatment 

effect heterogeneity, the ATE may no longer be an appropriate estimand. In addition, 

weighting by the inverse variance can reduce the number of effective subclasses [21].

In addition, we identify an area for caution in using propensity score subclassification: in a 

complex survey scenario in the presence of heterogeneous effects across subclasses, 95% CI 

coverage of both methods is poor and other methods to address confounding should be 

examined.

For simplicity, we do not combine propensity score subclassification with outcome model-

based adjustment like regression or g-computation. However in practice, such combination 

is recommended and can fully (as opposed to mostly) control for confounding if the 

outcome model is correct [11]. Future work should examine whether this study’s findings 

hold when there is additional adjustment in each subclass.

The 95% CI coverage in our simulation results is slightly less than 95% in the baseline 

scenario where the positivity assumption is met and the treatment effect is constant (Table 

2). For lower numbers of subclasses, this is likely due to bias due to incomplete confounding 

control [11]. Indeed, we see that as the number of subclasses increases, coverage increases 

and approaches 95%. It is possible that even at 30 subclasses, coverage does not reach 95% 

due to remaining confounding as well as slightly underestimating the variance by not 

accounting for estimation of the propensity score or estimation of the subclass-specific 

weights [32, 11]. However, previous guidance suggests that this is typically of little practical 

importance [32].

In conclusion, our simulation study provides evidence that combining propensity score 

subclasses by weighting by the inverse variances of the subclass-specific ATE estimates may 

outperform the standard method of weighting by the proportion in the subclass in the case of 

a constant treatment effect. Both methods of combining propensity score subclasses are 

simple to implement in any standard statistical software, making them accessible and 

practical options for applied researchers.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Illustrative example: subclass-specific and overall ATEs estimated without (top panel) and 

without (bottom panel) survey weights. Overall ATEs compares combining subclasses by 

weighting by the proportion in each subclass versus weighting by the inverse variance. Each 

ATE is the estimated difference in risk of anxiety or depressive disorder comparing those 

living in disadvantaged versus non-disadvantaged neighborhoods.
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