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Abstract

The Physical Activity Monitor (PAM) component was introduced into the 2003-2004 National 

Health and Nutrition Examination Survey (NHANES) to collect objective information on physical 

activity including both movement intensity counts and ambulatory steps. Due to an error in the 

accelerometer device initialization process, the steps data were missing for all participants in 

several primary sampling units (PSUs), typically a single county or group of contiguous counties, 

who had intensity count data from their accelerometers. To avoid potential bias and loss in 

efficiency in estimation and inference involving the steps data, we considered methods to 

accurately impute the missing values for steps collected in the 2003-2004 NHANES. The objective 

was to come up with an efficient imputation method which minimized model-based assumptions. 

We adopted a multiple imputation approach based on Additive Regression, Bootstrapping and 

Predictive mean matching (ARBP) methods. This method fits alternative conditional expectation 

(ace) models, which use an automated procedure to estimate optimal transformations for both the 

predictor and response variables. This paper describes the approaches used in this imputation and 

evaluates the methods by comparing the distributions of the original and the imputed data. A 

simulation study using the observed data is also conducted as part of the model diagnostics. 

Finally some real data analyses are performed to compare the before and after imputation results.
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1. Introduction

The Physical Activity Monitor (PAM) component was introduced in the National Health and 

Nutrition Examination Survey (NHANES) conducted in 2003-2004 to collect objective 

measures of physical activity among a sample of participants ages 6 years and older 

representing the U.S. civilian noninstitutionalized population. This component of the 

NHANES involved providing an Actigraph (Actigraph, LLC; Ft. Walton Beach, FL) model 
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7164 accelerometer to ambulatory participants to wear over their right hip during their 

waking hours for one week after their NHANES examination; for further details see the 

accelerometer protocol [1]. NHANES collected a second round of accelerometer data with 

the same protocol in 2005-2006.

The uniaxial Actigraph measures and records the magnitude of acceleration, which is related 

to the intensity of movement, in a proprietary metric called “counts”, using a proprietary 

signal filtering algorithm. The device also has a step counter function that provides another 

objective measure of physical activity called “steps”. These two quantities measure physical 

activity movement primarily associated with locomotion. A one minute time interval or 

“epoch” was used in NHANES. Data for the counts and steps were recorded and summed 

longitudinally over each 1-minute epoch for up to one week.

The Actigraph manufacturer's software was integrated with the Integrated Survey 

Information System (ISIS) used for device initialization, allowing NHANES staff to 

program each participant's accelerometer with their unique identifier and set the time for 

recording to begin. However, due to an error in the ISIS-Actigraph interface, the devices 

were only initialized to record counts and not steps during the 2003-2004 data collection. 

This error was not discovered until May 2003 after data from approximately the first 8 

geographical areas called (pseudo) primary sampling units (PSUs) (of the the total 30 PSUs) 

had been collected from sample participants. A PSU is typically a county or contiguous 

counties that are sampled at the first stage of the complex multistage sample design of 

NHANES for selecting survey participants (see Section 2). Of these 8 PSU's with missing 

steps all the sample participants in 5 PSUs had missing steps data and 3 additional PSUs had 

more than 85 percent of participants with missing steps data. Steps data were missing for a 

total of 1,804 participants from those 8 PSUs, representing 27 percent of participants with 

accelerometer data. Among the remaining 22 PSUs, steps were missing for less than 2 

percent of accelerometer component participants.

As a result of the missing steps data, the 2003-2004 NHANES data releases have not 

included any accelerometer-defined steps data as this could convey confidential information 

about location of sampled individuals. However several studies have examined the 

2003-2004 NHANES accelerometer data focusing on intensity bouts derived from counts 
and their duration in relation to achieving minimal public health guidelines and time in 

sedentary pursuits [2],[3]. The later 2005-2006 NHANES released accelerometer-defined 

steps data in addition to intensity counts for the first time. Studies have been conducted to 

analyze steps data (see [4]-[7], etc.), as well as to examine the relationship between steps 
and counts [8]. Because NHANES collected only two rounds of accelerometer data with this 

protocol, there is great interest in analyzing the 2003-2004 NHANES steps data for 

comparison or trend analyses with the 2005-2006 NHANES. Pooling this data across these 

two rounds of NHANES can also improve statistical power to conduct studies, e.g., of small 

subpopulations such as Hispanics, and examine associations of accelerometer-measured 

physical activity with all-cause or cause specific mortality using the NHANES Linked 

Mortality Files [http://www.cdc.gov/nchs/data_access/data_linkage/mortality/

data_files_data_dictionaries.htm]. Complete-case analysis on the 2003-2004 NHANES 

accelerometer data conducted by discarding missing steps may lead to bias and reduces 
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efficiency, especially when drawing inferences for subpopulations [9]. Imputation of the 

missing steps is therefore a preferred approach. Nevertheless, the repeated measures 

hierarchical data structure (repeated measures nested within person nested within PSU), the 

special missingness mechanism (item missingness was for sample participants in essentially 

27% of the PSUs), and the skewness of the data created some challenges to conduct 

imputation. Our objective was to choose an imputation method which minimized model-

based assumptions.

Two general methods used for addressing missing data are maximum likelihood (ML) and 

the Bayesian-based multiple imputation (MI) [9,10]. Both methods usually assume that the 

data are missing at random (MAR), i.e., given the observed data, data are missing 

independently of unobserved data, the likelihood (for ML method) or the imputation model 

(for MI method) is correctly specified, and the sample sizes are large enough that 

distributional approximations (i.e., usually normality) are accurate for both methods. If these 

assumptions hold, both methods give approximately unbiased estimation and standard errors 

of population parameters (e.g., means or regression coefficients and their standard errors). 

The ML method analyzes the full, incomplete data set using maximum likelihood estimation 

based on the observed data likelihood, but does not impute any data. MI imputes data for the 

missing data like traditional single imputation, but instead of imputing just one time, MI 

repeats the imputation mechanism multiple times. Each set of imputations is used to create a 

complete data set resulting in multiple data sets. These data sets are used to empirically 

estimate the within- and between-imputation components of variability from the sampling 

and imputation model. Thus, MI method retains the virtues of single imputation and 

provides correct variance estimation by combining the variance components [11]. The ML 

method is usually not applicable to complex survey data because valid likelihoods for the 

data are not readily available when there is sample weighting or stratified multi-stage cluster 

sampling as part of the sample design. On the other hand, MI is more flexible and can be 

applied to general sample designs. Also, once the missing data are imputed using MI, users 

can often readily apply standard survey software for their analyses with simple formulas for 

combining the within and between imputation variances to obtain accurate variances of 

estimated parameters. One consideration of MI is that, to be accurate, the imputation model 

should be “congenial” with the analysis model. The two models don't have to be identical, 

but they cannot have major inconsistencies [12].

Several papers have introduced procedures to impute missing accelerometer data when 

measuring physical activity. Catellier et al [13] considered both single imputation and MI 

procedures and showed that the performance of either imputation technique depends on the 

proportion of missing data, the correlation of activity across days of week and the missing 

data mechanism. Both algorithms use nonmissing days of participants to impute data for 

missing days. Lee [14] extended the Catellier algorithms and proposed a 2-step MI approach 

by combining available data from invalid wearing day(s), which are defined as study days in 

which the accelerometer is not worn for a specified number of hours, and other valid day(s). 

Kang et al [15] proposed individual information centered methods and determined that 

substituting missing data points using the average of days that are nonmissing was an 

accurate imputation for middle aged and older adults. However, in general these papers don't 

apply to our study due to the nature of missingness in our data: missing the entire series of 
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repeated measured steps for a person and with this missing pattern for every sample 

participant or most participants within the entire sample PSU.

To handle the missing steps data from the affected accelerometers in the 2003-2004 

NHANES, instead of trying to develop complex random effect imputation models, we 

adopted a multiple imputation approach based on semi-parametric models that utilized 

Additive Regression, Bootstrapping and Predictive mean matching methods (ARBP). This 

approach fits alternating conditional expectation (ace) models [16] to estimate optimal 

transformations for both the predictor and response variables used in the additive regression 

models. We will refer to this approach as the ARBP approach. Lee applied the same 

algorithm to implement his 2-step MI approach [14].

The remaining paper is laid out as follows: A description of the NHANES sample design, 

characteristics of the accelerometer data and the missingness of the steps data are given in 

Section 2. In Section 3, the details of the ARBP approach for conducting the imputations are 

provided, along with a description of other multiple imputation methods that were 

considered and the results of simulation studies that were conducted to evaluate the various 

imputation methods. Section 4 reports on several data analyses using the complete-case 

analysis method (i.e., including only observations without missing steps) and using the 

multiply imputed steps data. In Section 5 we summarize the findings using the ARBP 

approach to impute the missing accelerometer data in NHANES, and discuss how well the 

ARBP performed compared to other imputation methods that were tried.

2. The NHANES sample design and the accelerometer data missingness

2.1 NHANES sample design

The 2003-2004 NHANES used a complex sample design with participants selected 

according to stratified multistage cluster sampling. At the first stage of sampling, PSUs 

consisting of counties or contiguous counties were randomly selected from geographically-

based strata. At the subsequent stages, segments consisting of city blocks or their equivalents 

were randomly sampled from the sampled PSUs, then households were randomly sampled 

from the sampled segments, and finally individuals were randomly sampled from the 

sampled households. For the public use data, to protect confidentiality and for variance 

estimation purposes, the sample design was approximated by 15 pseudo sampling strata with 

each stratum containing two pseudo-PSUs. A sample weight was assigned to each 

participant that accounted for the inverse of the probability that the participant was included 

in the sample, adjusted to correct for nonresponse and post-stratification to known 

population totals. NHANES is designed to sample larger proportions of individuals from 

specific subgroups determined by race and ethnicity, income and age than are in the target 

US population. Therefore, the sample weights vary across the participants in these 

subgroups and are used in weighted analyses to estimate population parameters such as 

means, proportions and regression coefficients.
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2.2 The accelerometer data structure, missingness, and logical imputation

The 1-minute epoch record file is a very large data file (>2GB) that contains multiple 1-

minute records per participant for 7,175 participants. The 1-minute epoch records consist of 

sequential minute-by-minute records of activity intensity beginning from the time the device 

was initialized. Each participant has up to 10,080 records of intensity of physical activity. 

The total number of 1-minute epoch records in the file is over 72 million.

Among those 1-minute epoch records, 5.2% of the records were ineligible for accelerometer 

data analysis either because the accelerometer was not in calibration or the data reliability 

was questionable (including 0.18% with missing counts), 63.0% reported zero counts, and 

31.8% reported positive counts (see Figure 1). Among the records that reported zero counts, 

26.7% had missing steps. A simple logical imputation was applied that imputed zero steps 
for those missing values. This is reasonable because of the high concordance between counts 

and steps in observations with zero values (99.8% of the observed steps were zero when 

observed counts were zero). Among the records that reported positive counts, 26.3% had 

missing steps. Multiple imputation procedures were applied to impute the missing steps. 

Details on the multiple imputations are described in Section 3.

Among the records with positive counts, we identified 14 participants who had extremely 

large average counts while the average steps were very small. The observations from these 

participants were excluded from all the multiple imputation procedures because they should 

not have passed the data editing criteria for the NHANES.

3. Methods and models for multiply imputing the 2003-2004 NHANES steps 

data

For the missing steps with reported positive counts, we employed multiple imputation 

methods to impute the missing values. Due to missing data for entire PSUs, repeated 

measurements on individuals, and the skewness of the data as described earlier, finding the 

best model to impute the missing steps data was a difficult task. The development of the 

final imputation model involved several iterations. For a given model, we evaluated the 

imputation results using a simulation study that mimicked the actual missingness patterns. 

The evaluation results led to a modification of the model. The process was repeated several 

times until we found a final model that fit the data well. Features of the methods and final 

model will be described first, followed by a description of evaluations performed. A brief 

description of other models and methods considered will be given at the end of this section 

with further details given in the Appendix.

3.1 Multiple imputation based on Additive Regression, Bootstrapping and Predictive mean 
matching

Final multiple imputations were created using the ARBP approach, as implemented by the R 

package ‘‘aregImpute” [17]. Predictors used in the imputation models will be described first, 

followed by some details on the ARBP approach.
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3.1.1 Predictors used in the imputation models—The imputation was done 

separately within the 12 groups formed by gender (male, female) and age categories (6-7, 

8-11, 12-19, 20-39, 40-59, 60+) using a common set of predictor variables (see Table 1). We 

decided to run the imputation separately by those 12 groups because they are used to 

develop the sample weights, so it is recommended that when data analyses are stratified by 

gender and age groups that the strata used are these groups. Doing the imputation within 

these 12 groups also addresses the congeniality of the imputations. In addition, the 

relationships among the selected predictors and the response that were used in the 

imputation models varied across those groups.

Counts was the most highly correlated predictor of steps. The Pearson correlation coefficient 

between steps and counts ranged from 0.62 to 0.81 across the 12 gender-age groups. Upper 

leg length was included as a predictor for the models of subjects 8 years old or older; it was 

not available for the 6-7 year olds. It is important to include sampling design information in 

multiple imputation for missing data with complex survey designs [18], therefore the sample 

weight and dummy variables indicating PSU were included as predictors to adjust for the 

complex sampling design. To account for person-level effects in steps, person level average 

counts was also included as a predictor. Given that the imputed data are typically provided to 

the data users for various analytic goals, a recommended practice is to include as many 

predictors as possible in the imputation model to ensure the imputation model is “congenial” 

with the models used for analyzing the multiple imputed data sets [12], even though some of 

these predictors may not be strongly associated with the outcome variable. Therefore, we 

also included race/ethnicity (for all age groups), blood pressure (for ages 8+), HDL 

cholesterol, education, marital status, and smoking status (for ages 20+) as predictors in the 

imputation models. Table A.1 in the Appendix reports the adjusted R-squares from the linear 

regression models of steps on the full list of covariates shown in Table 1 (call it the full 

model) and on square root of counts only (call it the reduced model). The similarity between 

the two sets of models indicates that the contribution of the covariates other than counts is 

negligible in predicting steps. Both age in months and square age in months were included 

in the final imputation models to adjust for person-specific age. The person level sample 

sizes for records that went into the linear regressions and multiple imputation procedures are 

also reported in Table A.1.

3.1.2 Imputation method using the ARBP approach—The ARBP approach was 

adopted to create the final multiple imputations. The ARBP approach fits ace models to 

estimate optimal transformations for both the predictors and the response variable (steps) 

used in the additive regressions.

A main feature of the ace algorithm is to provide nonlinear transformations of both the 

predictors and the response to maximize the correlation between the transformed response 

and the sum of the transformed predictors. An ace regression model has the general form:
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where g is a function of the response variable, Y,hj are functions of the predictors xj, j = 

1, ..., p and ϵ is the error term. The optimal transformation functions g and hj are estimated 

using an iterative method by minimizing , which 

involves unexplained variance, and maximizing the correlation between the transformed 

outcome and the sum of the transformed predictors. These optimal ace transformations are 

derived solely from the given data and do no require a priori assumptions of any functional 

form for the outcome or predictor variables and thus provide a powerful tool for exploratory 

data analysis. The a priori assumption-free feature of the ace algorithm also protects against 

uncongeniality.

The ARBP algorithm takes all aspects of uncertainty in the imputations into account by 

using the bootstrap to approximate the process of drawing predicted values from a full 

Bayesian predictive distribution. Instead of taking random draws of residuals from fitted 

imputation models, the algorithm by default uses predictive mean matching, where the 

observation having the closest predicted transformed value is the donor. To be more specific, 

after initialization and burn-in steps, the imputation algorithm is performed iteratively 

according to the following main steps: (1) for each variable containing any missing values, 

draw a sample with replacement from the observations in the entire dataset in which the 

current variable being imputed is non-missing; (2) fit a flexible additive model to predict this 

target variable while finding the optimum transformation of it (unless the identity 

transformation is forced); (3) use this fitted flexible model to predict the target variable in all 

of the original observations; and (4) impute each missing value of the target variable with 

the observed value whose predicted transformed value is closest to the predicted transformed 

value of the missing value following the predictive mean matching approach. Once the 

imputations are computed, the same process will be repeated to impute the next variable 

with missing values while including the imputed current variable as a predictor. The 

iterations repeat until all the variables with missing values are imputed. The whole 

imputation process is repeated multiple times to obtain multiply imputed data. For other 

options and more details, see [17]. For our data, we only have one target variable, steps, to 

be imputed.

Five sets of imputations for missing steps using ARBP approach were created for each of the 

12 gender-age groups. Those 1-minute epoch records were combined with the 1-minute 

epoch records that went through logical imputation as well as those from the 14 participants 

that were excluded from the multiple imputation procedures. The final imputation file 

contains 68,527,007 eligible 1-minute epoch records where the accelerometer was in 

calibration (PAXCAL=1, where PAXCAL is a variable on the public use file indicating 

whether the accelerometer is in calibration) and the data were deemed reliable 

(PAXSTAT=1, where PAXSTAT is a variable on the public use file indicating reliability of 

the accelerometer data), with five sets of post imputation steps. We chose to use five 

imputations for practical reasons as the final imputation file is very large.

3.1.3 Imputation model evaluation through simulation—To evaluate the 

performance of the imputation method described in section 3.1.2, we conducted a simulation 
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study using the observed data from the 22 PSUs with nearly complete data to check how 

well our imputation procedure using ARBP was working. To simulate a missing data pattern 

that was similar to the original missing data pattern, we randomly selected 6 out of the 22 

PSUs (after removing the small number of the observations with missing steps), then set the 

observed steps in the selected PSUs to missing. We then applied the ARBP approach to 

produce 5 sets of multiply imputed data for the missing steps in the 6 PSUs using the 

observed data from the 16 remaining PSUs. The 1 minute epoch records with zero counts 
were excluded from this simulation study. Table A.2 at the appendix shows that the 

distribution of steps in the simulated data is similar to the original data.

We compared several statistics of the imputed values with those based on the original values 

for the 6 PSUs in the simulated data. The statistics included mean, standard deviation, 

median, mode, between person variance, within person variance and range (not weighted by 

the sample weights), which were used to describe the distribution of the original and 

imputed steps values for all the gender-age groups in the 6 PSUs from one of the sets of 

imputations (see Table S.1 in the Supplement file for details). We can see from the 

comparison that the distribution of the imputed data was similar to the distribution of the 

original data, except where the imputed data underestimate the between person component 

of variance. We repeated this simulation experiment 10 times by randomly resampling 6 

PSUs to obtain relative biases. Similar results were found from all 10 experiments. Each 

experiment contained 12 independent ARBP MI programs for the 12 gender-age groups and 

the running time for each program varied from several hours to more than 10 hours using the 

NIH high-performance computing cluster system. There was also large overlap between the 

samples across experiments (simulations) because we randomly sampled 6 PSUs out of 22 

PSUs for each simulation. We decided not to use more replications because of the similar 

results among the 10 experiments, the large computational burden for each experiment, and 

the large overlap among the samples across replication.

Let θ denote a summary statistic (e.g., mean, median) within a gender-age group,  and 

 denote the estimate based on imputed and original steps from the i-th simulation 

respectively. The relative bias of θimp (RELBIAS) was computed by averaging the relative 

differences between  and , i = 1, ..., m across the m experiments, i.e., 

, where m=10 for our case. The corresponding 

standard Monte-Carlo simulation error for the relative bias of θimp (SE_RELBIAS) is 

computed as

Table 2 presents the relative biases and standard Monte-Carlo simulation errors of the 

statistics described earlier (those reported in Table S.1 in the supplement file). The 

imputations tended to slightly underestimate the various statistics given in Table S.1, with a 

large degree of underestimation for the between person component of variance. Table 3 

presents the correlation coefficients between steps and counts using imputed and original 
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steps, at the minute level and person level, as well as the averages of the within person 

correlation between steps (original and imputed) and counts. The relative biases in the 

correlation coefficients between the original and imputed data are reported in the same table, 

among which we can see some large relative biases. The results indicate that the imputed 

data generally preserved the minute level correlations, but increased the person level 

correlations even though we incorporated person level covariates as fixed effects in the 

models. Adding a person level random effect to the imputation model may be helpful to 

reduce the person level correlations. However, the current ARBP algorithm is not flexible 

enough to incorporate random effects. To add person level random effects to our imputation 

model, new algorithms based on mixed effect models [19] would have to be developed. 

Given the multiple levels of hierarchical data structure resulting from the complex 

multistage sample design and repeated measurements, and as mentioned earlier our goal of 

choosing an imputation approach that minimized model assumptions, we did not include a 

random effect component in our imputations. Practical concerns of the large data set size and 

the skewness of the data were also considerations for not including random effects.

In Table 4 we present the between and within imputation variances as well as the ratio of the 

between to the total imputation variances for the mean steps (without using survey weights) 

based on one simulation experiment. We also present the average ratios based on the ten 

experiments. We can see that the between imputation variance ranges from about 2.5% to 

36% of the total imputation variance indicating there can be a substantial contribution to the 

variability of estimates of mean steps due to the imputation process.

As a further empirical examination of the imputation methods, we compared the covariates 

for the observations with missing steps to those without missing steps to help explain 

differences between the imputed and original steps. Using two sample t-tests we compared 

the gender-age group means between those individuals with missing steps to those with 

observed steps for the continuous covariates (except counts) listed in Table 1. We found no 

significant differences for the majority of the comparisons except those for the 20-39 year 

old male group.

3.2 Other multiple imputation models considered

Before deciding on the ARBP method we considered a wide range of methods involving 

multiple imputation. This section provides a short summary of our efforts; see Figure 2 for a 

flowchart of the methods we investigated and the Appendix for more details. Given the fact 

that the steps and counts data are both continuous and highly correlated, we initially tried to 

adopt multiple linear regression multiple imputation approaches to address the missing steps 
data from affected accelerometers in the 2003-2004 NHANES. These models involved 

regressing steps on counts, square root of counts, and 3, 4 and 5 knot restricted cubic 

regression splines of counts. Because the predicted steps from these regression models could 

be out of range, we considered linear regression models with various constraints on the 

range of the predicted steps. Box-Cox transformation of steps was also considered. Next 

propensity score imputation and propensity scores included as covariates in a multiple linear 

regression imputation model, predictive mean matching, and a benchmarking approach in 

conjunction with the square root transformed counts in a multiple linear regression model 
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were considered. In general we were unable to remove imputation bias that was detected 

from the simulation evalution, especially bias in the median, mode and within and between 

person variances of steps. These multiple imputations were implemented using the PROC 

MI procedure in SAS 9.3 (SAS Institute Inc., Cary, NC), a general program that performs 

multiple imputations with regression models and an approximate Bayesian bootstrap [13] or 

Monte Carlo Markov Chain approach. We used the standard PROC MI syntax that is 

available from the SAS online manual (https://support.sas.com/documentation/cdl/en/statug/

63033/HTML/default/viewer.htm#statug_ mi_sect003.htm). Per one reviewer's suggestion, 

we include the core PROC MI codes for the group of 6-7 year old boys at Appendix A.3. 

The PROC MI code for the rest of the gender-age groups are the same as the 6-7 year old 

boys except for a few additional predictors that were applicable only for certain age groups 

as described in Table 1. Other parts of the codes are available upon request to the authors.

4. Analyses of multiply imputed steps data from the 2003-2004 NHANES

This section illustrates properties of the multiply imputed steps through typical analyses of 

accelerometer data found in the literature. Estimates of population quantities and estimated 

standard errors are compared between analyses with multiply imputed data and those 

obtained with complete cases. We used SAS 9.3 sample survey procedures to account for the 

complex sampling design of NHANES. We followed the method of analyzing multiply 

imputed data given in section 3.3-3.5 of Rubin's book [13] and used SAS PROC 

MIANALYZE (http://support.sas.com/rnd/app/stat/procedures/mianalyze.html) to obtain the 

final estimates and standard errors based on the five sets of final multiply imputed data.

4.1 Analyses of the patterns of stepping cadence in the 2003-2004 NHANES

Cadence (steps per minute) is a gait parameter that has been traditionally measured using 

short distance walking tests. Laboratory studies of adult walking behavior have consistently 

found that a cadence of 100 steps/min is a reasonable threshold for moderate intensity. 

Several papers in the literature analyzed the patterns of adult or youth stepping cadence and 

peak stepping cadence in the 2005-2006 NHANES (e.g., [4]-[6]). Cadence has been used to 

describe step accumulation patterns as a way to study free-living ambulatory behavior. We 

repeated some of the cited analyses on stepping cadence using the 2003-2004 NHANES data 

with and without imputing the missing steps.

Data collected by accelerometers such as Actigraph in a natural free-living environment can 

be divided into wear and nonwear time intervals. Nonwear time intervals include periods 

during which participants are asked not to wear their monitor, such as sleeping, showering, 

and aquatic activities. Wear time usually includes all waking periods and requires a specific 

number of hours of wearing for a day to be considered valid [20]. For this study, a SAS 

macro (http://riskfactor.cancer.gov/tools/nhanes_pam/) supplied by the National Cancer 

Institute was used to determine nonwear time (defined as >=60 consecutive zeros, allowing 

minimal interruptions). To be consistent with the literature, a valid day was defined as 

having at least 10 hours of accelerometer wear time on a day and the analyses were limited 

to those participants with at least one valid day of data.
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At the 1-minute epoch record file (with and without imputing the missing steps), we first 

defined the cadence variable from steps using the zero category and seven categories of 

approximately 20-step-per-minute increments: zero cadence (non-movement during wearing 

time), 1-19 (incidental movement), 20-39 (sporadic movement), 40-59 (purposeful steps), 

60-79 (slow walking), 80-99 (medium walking), 100-119 (brisk walking), and 120+ (faster 

locomotion) steps per minute. Then within each nonzero cadence category, the average 

amount of time (min/day) and average steps/day were calculated over valid days for each 

participant. Finally within each age-gender group, the overall average amount of time (min/

day) and overall average steps/day accounting for the survey weights and sample design 

were computed within each cadence category. The computation was repeated twice, with 

and without imputed steps. The time spent at zero steps per minute (excluding nonwear 

time) was also calculated. Figure 3 shows the scatter plots of the estimated mean 

minutes/day accumulated within each designated incremental cadence category (including 

minutes of zero cadence) recorded during wearing time for the overall sample and the 12 

gender-age groups before and after imputation. Figure 4 shows the scatter plots of the 

estimated mean steps/day under the same structure. Note that the scales in Figures 3 and 4 

differ across the different cadence categories to present the spread of the data points better 

than possible with a common scale. The detailed numerical results are presented in Tables S.

2 and S.3 in the supplement file. From Figures 3 and 4, we can see that for both steps/day 

and minutes/day, the estimated means are very similar before and after imputation except for 

the fastest locomotion cadence category (steps/min ≥120) where the means of the pre-

imputed data are larger than the means after imputation. We explored further for the fastest 

locomotion cadence category using the simulated data and found similar patterns (see Figure 

5). This indicates that the imputation method may introduce some bias for extreme steps. 

From the standard errors shown in Tables S.2 and S.3 in the supplemental file, we can see 

that the estimated means after imputation compared to those before imputation have smaller 

standard errors for about 2/3 of the estimates, indicating the imputation is conferring 

increased efficiency.

4.2 Analyses of the relationship between accelerometer-determined steps/day and 
metabolic syndrome

Sisson et al [7] analyzed the associations between accelerometer-determined steps/day and 

the odds of having metabolic syndrome (MetS) and its individual cardiovascular disease 

(CVD) risk factors in the U.S. population using the 2005-2006 NHANES data. We repeated 

part of their regression analyses using the 2003-2004 NHANES data with some minor 

modifications. The same process as described in Section 4.1 was used to determine the valid 

days and valid participants aged 20+.

Following the American Heart Association/National Heart, Lung, and Blood Institute (AHA/

NHBLI) guidelines [21], classifications of MetS were based on three or more of the 

following: 1) high waist circumference (>=102 cm for men and >=88 cm for women); 2) 

high levels of triglycerides (>=150 mg/dL or on drug treatment); 3) low level of HDL 

cholesterol (<40 mg/dL for men and <50 mg/dL in women or on drug treatment); 4) elevated 

blood pressure (>=130 mmHg systolic or >=85 mmHg diastolic or drug treatment); 5) 

elevated fasting glucose (>=100 mg/dL or on drug treatment).
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Logistic regression models were used to determine if steps/day was associated with odds of 

MetS and individual CVD risk factors. The associations of the continuous steps/day with the 

prevalence of MetS and the individual CVD risk factors were investigated for the total 

sample, and separately for men and women, adjusting for age, gender, ethnicity (NH white, 

NH Black, Mexican American, other), education (<high school, high school degree or 

equivalent, > high school), percentage fat in diet, and usual occupational/domestic physical 

activity (sits mostly vs stands/carries loads/heavy work). The analyses were repeated two 

times, once using steps without imputation, and the other using the five sets of multiply 

imputed steps.

Odds ratios for the continuous steps/day (per 1000 steps/day) for predicting metabolic 

syndrome and the five individual CVD risk factors with and without imputation for steps 
were computed (see Table S.4 in the supplement file). The results are generally consistent 

before and after imputation. A reviewer noted that it is not surprising to see the similarity 

between before and after imputation for the odd ratios for metabolic syndrome as a function 

of steps since there is little information about the bivariate relationship given that the steps 
were imputed. Information recovery could be larger for other parameters.

We also fitted the models without adjusting for usual occupational/domestic physical 

activity. The odds ratios for steps/day were very similar to those reported in Table S.4, so we 

do not report them in this paper.

5. Summary and Discussion

This paper describes the statistical methodology and procedures used to impute missing 

steps data from incorrectly initialized accelerometers in the NHANES 2003-2004. Due to 

the special missingness situation (repeated measurements within person, missing a variable 

for all persons within a PSU) and skewness of this data set, various commonly used 

imputation methods did not work well for the missing steps data. After trying several 

approaches including propensity score, linear regression, linear regression with 

transformations (e.g., square root transformation of the counts data, Box-Cox 

transformations of the steps data) and spline model regression, which either did not preserve 

relationships between variables (the propensity score method) or showed consistent 

imputation biases resulting in higher means, medians and modes, a semiparametric multiple 

imputation approach, ARBP, based on ace models and predictive mean matching was 

adopted, The imputation using ARBP was applied separately for each of the 12 gender-age 

groups. Several approaches were used for data analyses and model diagnostics (as suggested 

in [22]). We also compared the distribution of the observed data with the distribution of the 

imputed data in an experiment that simulated the missingness patterns in order to better 

understand how well the imputed data reflected the distribution of the original data. The 

different analyses and evaluations showed that the imputation using ARBP worked fairly 

well except that it may have some limitations on imputing extreme steps.

Generally, using imputed data has the potential to adjust for biases that can occur with 

complete-case analysis and other methods by incorporating predictors observed for both 

complete and incomplete cases in the imputation model; and using multiple imputations 
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reflects the extra uncertainty due to imputation. Although there was not clear evidence of 

such biases in our analyses regardless of the unusual mechanism of missingness, there was 

greater efficiency from the imputation by utilizing data on counts and other variables from 

the PSUs with missing steps data in the imputation models.

A goal of this study was to make the final imputed steps data publicly available so that 

researchers can utilize them for their particular data analyses. Since the missing data were 

mainly isolated in certain PSUs that convey geographical information, the flagging of the 

imputed data along with other information in the NHANES could reveal the identity of 

surveyed individuals. To protect confidentiality and for ease in data analysis, we considered 

releasing just one single set of imputed data without flagging. However, based on our five 

sets of imputed data, we found that the between imputation variances were nontrivial and 

should not be ignored. An alternative option would be to make multiple sets of imputed data 

available through a research data center because of the potential disclosure risk involved.

Recent research (e.g., [23]) has suggested use of greater than the traditional number of five 

or fewer sets of imputed data, especially if the fractions of missing information for various 

analyses are high. Thus, if multiply imputed data for steps in the 2003-2004 NHANES are 

made available, a larger number of imputations could be considered, though the large size of 

the imputed data set would need to be taken into account. Creation of additional sets of 

imputations is straightforward once the imputation model has been developed, and the 

handling of larger numbers of imputations in standard analyses is facilitated through the use 

of software packages that include programs for analyzing multiply imputed data. For 

specialized analyses, especially those that require human intervention during the analysis, 

however, using a small number of imputations is desirable. With one of the simulated data, 

we compared the between imputation variance using 20 sets versus five sets of multiply 

imputed data and found no difference. Given the computational resource requirements for 

analyzing these data, we feel five sets are sufficient.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

Appendix A: Other multiple imputation models considerred

A.1 Initial model selection and evaluation

We started with investigating the relationship between steps and counts. We ran a regression 

model on steps including a linear term for counts as the predictor. The range of the predicted 

steps based on the linear model relationship was much wider than the range of the observed 

steps (400+ compared to 200). We also examined scatter plots of steps against counts. For 

Liu et al. Page 13

Stat Med. Author manuscript; available in PMC 2017 December 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



example, the scatter plot for the 6-7 year old boys is given in Figure A.1. The nonlinear 

shape of the scatter plot suggested that a square root transformation of intensity may 

improve the linear relationship between steps and counts. The estimated Pearson correlation 

coefficients between steps and counts across the 12 gender-age groups increased from 

0.62-0.81 (before the square root transformation) to 0.75-0.86 (after the square root 

transformation), indicating a stronger linear relationship between steps and the square root 

of counts. A logrithmic transformation was also considered but then dropped because the 

square root transformation showed a larger correlation with the steps variable.

To further explore the relationship between steps and counts, we fitted a LOESS curve 

through the scatter plot (see the grey line in Figure A.1). The nonlinear shape of the LOESS 

curve suggested using a restricted cubic regression spline for counts in the prediction model 

[24]. We therefore considered 3, 4 and 5 knot splines of the counts variable and compared 

prediction of steps from these three spline models to the prediction of steps from the 

regression model with counts as a linear variable and the regression model with the square 

root of counts. All five regression models included the other covariates listed in Table 1 as 

well. The box-plots of the observed steps and the predicted steps for each gender-age group 

from the five regression models were examined (plots not shown). The predicted steps using 

the square root transformation appeared to reflect the range and extreme percentiles of the 

observed steps better than the other models. However, when using a spline, the adjusted R-

squares were larger, the residual plots appeared to be more symmetric (data not shown) and 

the median and interquartile range of the predicted steps values were somewhat closer to the 

observed steps data than for the model using the square root transformation. The 

performance of the three spline models were very similar, with slightly better performance 

from the 4 knot spline. Based on this analysis, we dropped the linear model and the models 

with the 3 or 5 knot splines from further analysis.

To evaluate the two sets of competitive regression models, using either a square root 

transformation or a 4-knot spline of the counts variable, we used the same simulated data as 

those described in Section 3.1.3. We applied SAS PROC MI, using the multiple linear 

regression method. To limit the range of imputed steps, we set constraints of maximum=200 

and minimum=0. PROC MI uses a proper imputation methodology where the procedure fits 

the regression model first based on the observed data. For each imputation, new parameter 

values are drawn from the posterior predictive distribution of the parameters [9]. If the 

constraints are not satisfied, the procedure randomly redraws the parameters until the 

constraints are satisfied or the pre-defined maximum number of iterations is reached. For 

more details about this procedure, see http://support.sas.com/rnd/app/papers/miv802.pdf.

We compared the imputed steps from each model with the original steps using the 

simulation approach described in Section 3.1.3, where 6 randomly selected PSUs with 

complete steps and counts data were set to have missing steps data. We found that the 

imputed data had a higher median and mean than the original value. Similar results were 

found from all 10 experiments (data not shown), which indicated that the two linear models 

selected may introduce imputation bias.
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A.2 Further model development and evaluation

Since the model evaluation in section 3.2.1 indicated some imputation bias in the two 

models identified (using the 4-knot spline or square root transformed counts), we explored 

other imputation approaches based on linear regression. We discarded the 4-knot spline 

model since it violated the maximum=200 constraint for three of the gender-age groups and 

produced no better results than the square root model. The following summarizes the various 

imputations approaches and findings.

Starting with the imputation model with square root transformed counts (call it square root 

model from now on), we applied the Box-Cox transformation [25] to the dependent variable 

(steps) and examined its performance using the same simulation data as described earlier. 

The evaluation results showed that using a Box-Cox transformation helped to reduce bias for 

only some of the gender-age groups (e.g., female 12-19, female 20-39). However, the 

maximum limit restriction had to be relaxed for most of the gender-age groups in order to 

make the program run successfully, which resulted in some extreme imputed values (e.g., 

steps>=600) that had to be truncated.

Next we considered a propensity score imputation method implemented in SAS PROC MI 

(http://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/

viewer.htm#statug_mi_sect021.htm). For each gender-age group, this procedure first creates 

an indicator variable with value zero for observations with missing steps and value one 

otherwise, and then fits a logistic regression model (using the same covariates as those 

included in the square root model) to create propensity scores. The observations within each 

gender-age group were then divided into a fixed number of groups (we used three for the 6-7 

year old and five for all other gender-age groups) based on the propensity scores. Finally an 

approximate Bayesian bootstrap imputation [11] was applied to each propensity group [26]. 

The same procedure was repeated multiple times to form multiple imputation sets. The 

model diagnostics using the simulated data showed that the propensity score approach 

maintained the marginal distributions, but not the correlation between the steps and counts. 

For example, the person correlation between the steps and counts for the 6-7 years old 

reduced from 0.6233 based on original data to 0.0018 based on imputed data. Similar 

reduction were found in most other gender-age groups (data not shown).

We also combined a propensity score method with the regression method. Within each 

gender-age group, five approximately equally sized categories of observations (three for the 

6-7 year old) were formed with similar propensities before we applied the square root 

modeling approach within each gender-age-propensity category. The evaluation results using 

simulated data did not show any improvement using this approach in terms of reduction in 

imputation bias.

We next tried to use the predictive mean matching method of imputation implemented in 

SAS PROC MI (http://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/

viewer.htm#statug_mi_sect020.htm). The predictive mean matching method ensures that 

imputed values are plausible and might be more appropriate than the regression method if 

the normality assumption is violated [27]. However, due to the large database, the 

computations were not feasible.
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Finally we used a benchmarking approach in conjunction with the square root regression 

model method with the following 3 steps: (1) do multiple imputation (five times) for minute 

level steps using the square root model through PROC MI; (2) do multiple imputation (also 

five times) for person level average steps through a corresponding person level square root 

model, using person level average for steps and the square root of counts (the records 

included in the model are at person level); and (3) benchmark the minute level imputed steps 

to the person level imputed steps so that the aggregated mean steps from the minute level 

imputation match with the person level imputed steps. For each imputation set, the 

calibration was carried out only once instead of five times using randomly assigned unique 

pairs. The evaluation results using simulated data showed a slight reduction in the 

imputation bias compared to the square root model approach.

Figure A.2 displays overview box-plots of the original steps and the predicted steps for the 

6-7 years old boys from five different multiple imputation methods for the 6 PSUs from one 

simulation (only one set of the multiply imputed data was used): the ARBP approach 

(ARBP), the square root model (SQRT), the propensity score approach (PROP), the Box-

Cox transformed model (BOXC), and the benchmarking approach (BCHM). An extreme 

imputed value produced by the Box-Cox transformed method (imputed steps >600) was 

removed from the plot for a better comparison across the different methods. Overall, the 

ARBP approach performed the best among all the methods we considered across all the age-

gender groups.

A.3 SAS codes for PROC MI

/*paxstep is the variable name for steps*/

/*paxinten is the varaible name for counts*/

/*paxinten2 is the square root of counts*/

/*paxinten_p is the person level average of counts*/

/* SPL4INTEN1 and SPL4INTEN2 are the knots variables created for splines 

with 4 knots*/

/* paxstep_boxcox is the boxcox transformed steps variable*/

/*“bmxbmi paxday timea bmxht bmxwaist agemon agemonsq wtmec2yr ridreth2 PSU” 

are the rest predictor names used for the 6-7 year olds, see Table 1 for 

details*/

PROC MI codes for the square root model

proc mi data=inputfilename seed=13951639 minimum=0 maximum=200 NIMPUTE=5 

MINMAXITER=1000000 round=1

out=outputfilename(keep=seqn paxn riagendr agea paxstep_orig 

paxstep_missstat2 paxstep_noimp _imputation_ paxstep paxinten paxinten_p);

class paxday timea ridreth2 PSU;

var paxinten2 paxinten_p bmxbmi paxday timea bmxht bmxwaist agemon agemonsq 

wtmec2yr ridreth2 PSU paxstep;
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monotone reg(paxstep = paxinten2 paxinten_p bmxbmi paxday timea bmxht 

bmxwaist agemon agemonsq wtmec2yr ridreth2 PSU/ details); run;

PROC MI codes for the 4 spline model

proc mi data= inputfilename seed=13951639 minimum=0 maximum=200 NIMPUTE=5 

MINMAXITER=1000000 round=1

out= outputfilename (keep=seqn paxn riagendr agea paxstep_orig 

paxstep_missstat2 paxstep_noimp _imputation_ paxstep paxinten paxinten_p);

class paxday timea ridreth2 PSU;

var paxinten SPL4INTEN1 SPL4INTEN2 paxinten_p bmxbmi paxday timea bmxht 

bmxwaist agemon agemonsq wtmec2yr ridreth2 PSU paxstep;

monotone reg(paxstep = paxinten SPL4INTEN1 SPL4INTEN2 paxinten_p bmxbmi 

paxday timea bmxht bmxwaist agemon agemonsq wtmec2yr ridreth2 PSU/details); 

run;

PROC MI codes for the Boxcox model

proc mi data= inputfilename seed=13951639 minimum=0.717734625 maximum=9 

NIMPUTE=5 MINMAXITER=1000000 round=1

out= outputfilename (keep=seqn paxn riagendr agea paxstep_orig 

paxstep_missstat2 paxstep_noimp _imputation_ paxstep_boxcox paxinten 

paxinten_p);

class paxday timea ridreth2 PSU;

var paxinten2 paxinten_p bmxbmi paxday timea bmxht bmxwaist agemon agemonsq 

wtmec2yr ridreth2 PSU paxstep_boxcox;

monotone reg(paxstep_boxcox = paxinten2 paxinten_p bmxbmi paxday timea bmxht 

bmxwaist agemon agemonsq wtmec2yr ridreth2 PSU/ details); run;

PROC MI codes for the propensity model

proc mi data= inputfilename seed=13951639 NIMPUTE=5 MINMAXITER=1000000 

round=1

out= outputfilename (keep=seqn paxn riagendr agea paxstep_orig 

paxstep_missstat2 paxstep_noimp _imputation_ paxstep paxinten paxinten_p);

class paxday timea ridreth2 PSU;

var paxinten2 paxinten_p bmxbmi paxday timea bmxht bmxwaist agemon agemonsq 

wtmec2yr ridreth2 PSU paxstep;

monotone propensity(paxstep = paxinten2 paxinten_p bmxbmi paxday timea bmxht 

bmxwaist agemon agemonsq wtmec2yr ridreth2 PSU/ NGROUPS=3 details); run;

PROC MI codes for the PMM model

proc mi data= inputfilename seed=13951639 minimum=0 maximum=200 NIMPUTE=5 
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MINMAXITER=1000000 round=1

out= outputfilename (keep=seqn paxn riagendr agea paxstep_orig 

paxstep_missstat2 paxstep_noimp _imputation_ paxstep paxinten paxinten_p);

class paxday timea ridreth2 PSU;

var paxinten2 paxinten_p bmxbmi paxday timea bmxht bmxwaist agemon agemonsq 

wtmec2yr ridreth2 PSU paxstep;

monotone regpmm(paxstep = paxinten2 paxinten_p bmxbmi paxday timea bmxht 

bmxwaist agemon agemonsq wtmec2yr ridreth2 PSU/ details); run;

Appendix B: Appendix tables for Section 3

Table A.1

Person level sample sizes
*
 and adjusted R-squares from the minute level linear regressions 

of steps on the full list of predictors (full model) and on square root of counts only (the 

reduced model)
**

Gender Age total number of 
respondents

number of 
respondents with 
nonmissing steps

Adjusted R2 from 
Full model

Adjusted R2 from 
Reduced model

Male 6-7 136 99 0.5633 0.5602

8-11 268 196 0.6334 0.6276

12-19 978 712 0.7484 0.7406

20-39 643 474 0.7559 0.7524

40-59 572 433 0.7691 0.7572

60+ 729 528 0.7116 0.7021

Female 6-7 145 113 0.5623 0.5576

8-11 299 238 0.6145 0.6145

12-19 916 665 0.705 0.6982

20-39 756 546 0.6861 0.6836

40-59 608 442 0.6979 0.6818

60+ 749 541 0.6459 0.6378

*
The sample sizes are for the person level records that went into the linear regressions and the multiple imputation 

procedures.
**

The models were run with minute level records.
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Figure 1. 
Accelerometer data structure and missingness
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Figure 2. 
Flowchart of other imputation models considered
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Figure 3. 
Scatter plots of the estimated mean minutes/day accumulated within each designated 

incremental cadence category (including minutes of zero cadence) recorded during wearing 

time for the overall sample and the 12 gender-age groups based on steps before and after 

imputation
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Figure 4. 
Scatter plots of the estimated mean steps/day accumulated within each designated 

incremental cadence category recorded during wearing time for the overall sample and the 

12 gender-age groups based on steps before and after imputation
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Figure 5. 
Scatter plot of the estimated mean minutes/day and steps/day for the Faster Locomotion 

cadence category for the overall sample and the 12 gender-age groups based on steps before 

and after imputation – from one simulated data
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Figure A.1. 
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Figure A.2. 
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Table 1

List of covariates used for this study

Predictor variables Type Range of values or categories*

Counts
1 continuous 1 to 32,703 (zeros were excluded)

Body Mass Index (kg/m
2
)

continuous 12.4 to 64.97

Standing height (cm) continuous 109.6 to 203.2

Waist Circumference(cm) continuous 32.0 to 170.7

Upper Leg Length (cm)
2 continuous 24.7 to 54.0

Age at screener in months
3 continuous 72 to 1,056

Day of the week categorical Monday, ..., Sunday.

Time of the day categorical ‘Midnight-5:59am’, ‘6:00-11:59am’, ‘Noon-5:59pm’, ‘6:00-11:59pm’;

Race/Ethnicity
4 categorical Non-Hispanic White, Non-Hispanic Black, Mexican American, Other Race –Including 

Multi-Racial, and Other Hispanic

Full Sample 2Year MEC continuous 1,673.6 to 159,302.8

Exam Sample Weight PSU categorical 1,2, ..., 30 (30 PSUs)

Blood pressure(mm Hg) 
2 continuous 79 to 227

Direct HDL-Cholesterol (mg/dL) 
4 continuous 19 to 154

Education
4 categorical Less than high school, High school diploma (including GED), More than high school

Marital status
4 categorical Married vs Other

Smoking status
4 Never smoker, current smoker, past smoker

1
Both minute level counts and person level average counts were included in the final imputation models.

2
Upper leg length and blood pressure were included in the final imputation models for ages 8 years and older.

3
Both age in months and square age in months were included in the final imputation models.

4
HDL cholesterol, education, marital status, and smoking status were included in the final imputation models for ages 20+.
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Table 4

The between and within imputation variance for mean steps estimated from 5 sets of imputations

Gender Age Group

Variance of mean steps based on one simulated data Average ratio (between var over total var) based on 
five sets of simulated data

Within imp Between imp Total Between 
Var/Tot Var 

(%)

Average ratio (%) Standard error (%)

Male 6-7 0.0016 0.0007 0.0025 29.6 27.3 3.8

8-11 0.0009 0.0000 0.0009 5.2 20.4 7.4

12-19 0.0003 0.0000 0.0003 10.4 10.0 3.6

20-39 0.0003 0.0001 0.0004 15.9 10.6 2.2

40-59 0.0001 0.0000 0.0001 11.6 16.0 2.5

60+ 0.0002 0.0001 0.0003 17.9 14.4 4.4

Female 6-7 0.0014 0.0004 0.0018 20.4 14.7 2.2

8-11 0.0007 0.0001 0.0008 12.5 21.9 4.9

12-19 0.0003 0.0000 0.0003 2.5 5.6 2.6

20-39 0.0003 0.0001 0.0004 23.7 14.8 3.6

40-59 0.0002 0.0001 0.0003 18.4 15.8 4.0

60+ 0.0001 0.0000 0.0001 35.6 28.8 3.9
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