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Abstract

We examine two posterior predictive distribution based approaches to assess model fit for 

incomplete longitudinal data. The first approach assesses fit based on replicated complete data as 

advocated in Gelman et al. (2005). The second approach assesses fit based on replicated observed 

data. Differences between the two approaches are discussed and an analytic example is presented 

for illustration and understanding. Both checks are applied to data from a longitudinal clinical 

trial. The proposed checks can easily be implemented in standard software like (Win)BUGS/

JAGS/Stan.
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1 Introduction

The posterior predictive distribution for replicated data yrep under a data model, p(y|θ) with 

prior p(θ) is given by

where p(θ|y) ∝ p(y|θ)p(θ) is the posterior distribution of θ. Samples from the posterior 

predictive distribution are replicates of the data generated by the model. In this paper we will 

discuss approaches for Bayesian model checking for models for incomplete data (so y is not 

completely observed) based on the posterior predictive distribution. We first review the 

relevant literature on posterior predictive checks.
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1.1 Model Fit for Complete Data

Rubin et al. [1] first used the posterior predictive distribution of a statistic to calculate the 

tail-area probability corresponding to the observed value of a test statistic. Meng [2] called 

this probability a posterior predictive p-value. In following, we will refer to it as posterior 

predictive probability due to its problematic interpretation as a p-value [3]. This probability 

is a measure of discrepancy between the observed data and the posited modeling 

assumptions as measured by a summary quantity T (·). The posterior predictive distribution 

of T (yrep) can identify problems when the wrong model is fitted on the data and compared 

with (the distribution of) T (y). For the assumed model, the posterior predictive approach 

provides a reference distribution. The fit of the model to the data is assessed by comparing 

the posterior predictive distribution of T (yrep) with T (y). Meng [2] formally defined this 

probability as,

(1)

In the Bayesian formulation this approach also allows the use of a parameter dependent test 

statistic, called a discrepancy statistic [2, 4]. For a discrepancy, D(y; θ), the reference 

distribution can be computed from the joint distribution of (yrep, θ),

However locating the realized value of D(y; θ) within the reference distribution is not 

feasible since D(y; θ) depends on the unknown θ. This complication has led authors to use 

the tail area probability of D under its posterior reference distribution. Gelman et al. [5] 

constructed a probability as in (1) but eliminated the dependence on unknown θ, by 

integrating out θ with respect to its posterior distribution. The tail area probability of the 

discrepancy statistic is then given by

This is analogous to the posterior predictive probability in (1). The choice of test or 

discrepancy statistic is clearly very important and often reflects the inferential interests. In 

general, these checks are called posterior predictive checks.

1.2 Incomplete Data Model Fit

1.2.1 Notation and Review—To introduce posterior predictive checks for incomplete 

longitudinal data, we need to first introduce some notation and concepts. Let Yi : i = 1, … , n 
denote the J -dimensional longitudinal response vector (with components Yij : j = 1, … , J ) 

for individual i and Y = (Y 1, … , Yn). Let R be the vector, ordered as Y, of observed data 

indicators; i.e., Rij = I{Yij is observed} and let Y obs be {Yij : rij = 1}. The full data is given 

as (y, r); the observed data as (yobs, r). The extrapolation factorization of the full data model 

is,
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(2)

where ωE indexes the conditional distribution of missing responses given observed data (the 

extrapolation distribution) and ωO indexes the distribution of the observed data. The 

parameters ωE and ωO are both functions of ω and can be overlapping, often with ωE 

containing a subset of ωO (see Section 3 for an example). Inference about the full data 

distribution, p(y, r|ω), and the full data response model, p(y|θ(ω)), clearly requires 

unverifiable assumptions about the extrapolation distribution p(ymis|yobs, r, ωE ) for which 

the observed data provide no information. Sensitivity parameters are functions of ωE [6] and 

are used to introduce (external) information about the missing data mechanism.

As an example, consider a bivariate normal model (similar to the data example in Section 4). 

With only missingness in the second measurement, the extrapolation distribution is p(y2|y1, r 
= 0) and its parameters are ωE ; the observed data distribution consists of the following four 

components: p(y1|r = 0), p(y1|r = 1), p(r), and p(y2|y1, r = 1) and ωO are the parameters of 

these four distributions.

1.2.2 Current status quo—Gelman et al. [7] proposed an extension of the posterior 

predictive approach to the setting of missing and latent data. To assess the fit of the model 

they defined a test statistic T (·), which is a function of the complete data. The ’missing’ 

data, either truly missing or latent, were filled in at each iteration using data augmentation. 

The test statistic was compared to the test statistic computed based on replicated complete 

data. Graphical approaches were implemented for model checking along with the calculation 

of posterior predictive probabilities.

1.2.3 Problems with status quo—In our setting of missing data, in particular non-

ignorable missingness, the current checks based on replicated complete data are problematic 

in that the checks will provide different evidence about the fit of the model to the observed 

data by varying sensitivity parameters (which are not identified by the observed data). This 

is an issue since sensitivity parameters a necessary component for the analysis of missing 

data [8]. We provide more details in Section 2.

1.3 Layout of the paper

In Section 2, we provide further details on posterior predictive checks for incomplete 

longitudinal data, point out the problems with replicated complete data checks of Gelman et 

al. [7], and propose an alternative. In Section 3, we provide an analytic example of the two 

approaches. We demonstrate the checks on a data example in Section 4. Finally, we provide 

conclusions, recommendations, and extensions in Section 5.

2 Posterior Predictive Checks for Incomplete Data

In this section we explore posterior predictive checks for incomplete longitudinal data. To 

implement these checks, we will sample from the posterior predictive distribution, p(yrep, 

rrep|yobs, r), though the complete data checks will ignore rrep. When we model the missing 
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data mechanism, as in nonignorable missingness, we can compute data summaries based on 

replicates of observed data and replicates of complete data. Gelman et al. [7] proposed doing 

checks using complete data. However Gelman considered more general settings that include 

latent variables (as missing data), ignorable missingness and nonignorable missingness. We 

focus on the nonignorable case for which we will argue complete data checks are not 

appropriate (at least for assessing model fit to the observed data).

2.1 Complete Data Replications

We now review replicated complete data and the corresponding posterior predictive checks. 

The ’data’ for these checks are sampled from p(yrep, rrep, ymis|ω, yobs, r) (and rrep is 

ignored). For each sample from the above distribution, the complete data is defined as (yobs, 

ymis) and the replicated complete data are yrep; the dimension of yrep is the same as (yobs, 

ymis).

To assess the fit, we choose a test statistic of interest, Tc(·), which we evaluate at each 

sample of complete data, (yobs, ymis) and replicated complete data, yrep. We then compute the 

following posterior predictive probability

In the above, we have implicitly integrated over rrep.

2.2 Observed Data Replications

We now introduce replicated observed data. These are sampled from p(yrep, rrep|ω, yobs, r 
and defined as

i.e., the components of yrep (the replicated complete datasets) for which the corresponding 

replicated missing data indicators, rrep are equal to one. Note that samples of rrep will not 

exactly match r. As such, it is good to use a statistic that is ’normalized’ based on the 

dimension of the (replicated) observed data (e.g., a mean).

To assess the fit, we choose a test statistic of interest, To(·), which we evaluate at yobs and 

each sample from the posterior predictive distribution of . We then compute the 

following posterior predictive probability

(3)
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where  is a function of (yrep, rrep), F is the conditional cdf for rrep, and typically p(yrep|

rrep, ω, yobs, r) = p(yrep|rrep, ω). Computational details for complete and observed data 

replications and checks are given in the next subsection.

2.3 Posterior computations

Here, we provide details on the steps for generating both complete and observed data 

replications.

At iteration k,

1. Sample ω(k) from the observed data posterior, p(ω(k)|yobs,r) or from the 

data augmented posterior,  whichever is simpler 

(the later uses data augmentation explicitly)

2.
Sample  from ; this step is only needed for the 

complete data replications, but can simplify step 1 for the observed data 

replications via data augmentation.

3.
Sample replicated data from 

(a) Complete data replication: Keep 

(b) Observed data replication: Keep 

4. Compute summary quantities

(a) Complete data replication: Compute the summary quantities 

Tc(·) and I{Tc(yrep(k)
) > Tc(y(k))}, where 

(b) Observed data replication: Compute the summary quantities 

To(·) and  where 

For the complete data replications, estimate the desired probability using the empirical 

average of  across all iterations. For the observed data 

replications, estimate the desired probability using the empirical average of 

 across all iterations.

2.4 Issues

Posterior predictive checks based on replications of complete data have some advantages. 

For example, under ignorable missingness, which does not require explicit specification of 

the missing data mechanism, it is not a problem to create replications of the complete data. 

But of course, in that situation, it is not possible to assess the joint fit of the observed 

responses and the missingness indicators and checks condition on the observed missingness 
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indicators. Obviously, this approach loses some power versus a setting with no missing data 

since the missing data are filled in (via data augmentation) under the assumed model; thus, 

slightly biasing the checks in favor of the model. However, in the setting of nonignorable 

missingness, the checks have a fatal flaw as they are not invariant to the extrapolation 

distribution [9] and are not in the spirit of sensitivity analysis (an essential part of the 

analysis of missing data as documented in a recent NRC report [8]). To be more explicit, two 

models with the same fit to the observed data, i.e., the same p(yobs, r|ωO) but different 

(implicit) extrapolation distributions, p(ymis|yobs, r, ωE ) can give different conclusions on 

model fit using posterior predictive checks based on replicated complete data, i.e., the values 

of posterior predictive probabilities change with different extrapolation distributions. This is 

not a desirable property for a check designed to assess model fit to the observed data.

Checks based on replicated observed data satisfy the property of invariance to the 

extrapolation distribution and provide the same conclusions as the extrapolation distribution 

(i.e., sensitivity parameters are) is varied (unlike checks based on replicated complete data), 

i.e., different nonignorable models with the same fit to the observed data. In addition, they 

can assess any features of the joint distribution of (yobs, r) as desired. However, one would 

surmise that some power is lost relative to checks with no missing data (and possibly 

complete data replication checks) given a lack of one-to-one correspondence between the 

observed data responses and the replicated observed data responses; for example, Yij might 

be observed in the actual data, but is not necessarily ’observed’ in the replicated data.

We will explore these checks further in practice using a simple analytical example in the 

next section.

3 Analytical Example

In this section we examine analytically the behavior of the posterior predictive probability 

based on observed data and complete data replications under a simple, illustrative model: a 

mixture model for a bivariate response given by

(4)

where there is only missingness in Y2 and [Y2|Y1, R2 = 0 ] is the extrapolation distribution. 

Here,  and ; note that we have set some of 

the parameters in the extrapolation distribution equal to corresponding observed data 

parameters. Δ is the only parameter that only appears in the extrapolation distribution. Δ is a 

sensitivity parameter that measures departures from MAR; Δ = 0 corresponds to MAR. The 

purpose of this is to better understand and illustrate the behavior of both checks described in 

Section 2 in a simple setting.
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3.1 Derivation of posterior predictive probabilities

Let n be the total number of subjects and n1 the number of subjects with r2 = 1. Assume the 

data are sorted so that all the units with missing Y2 are at the end. Let 

 and .

We specify a (diffuse) normal prior on the regression parameter, α, α ~ N (0, ν2), and to 

simplify the below derivation, we assume the remaining parameters are known. The test 

statistic for the complete data replication, Tc(·), and the observed data replication, To(·) are 

defined as the corresponding means of Y2 (details in what follows). For the observed data 

replications approach, To(·) is evaluated at the observed data at time 2, , 

and the replicated observed data at time 2, . The corresponding (posterior 

predictive) tail area probability can be approximated as

(5)

where 

 and 

.

For the complete data replication approach, Tc(·) is evaluated at the completed data at time 

2,  and the replicated complete data at time 2, . The 

corresponding tail area probability can be approximated as

(6)
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where  and . Details on the derivation of both these 

probabilities can be found in the supplementary materials.

3.2 Comparison and implications

We will examine two main properties of the posterior predictive checks: ’power’ and ’Type I 

error’. In what follows, we will define ’power’ as the ability of the posterior predictive check 

to detect model departures or inadequacies. Good ’power’ results when the posterior 

predictive probabilities approach either zero or one when there are model departures/

inadequacies. On the other hand, ’Type I error’ refers to the situation of having probabilities 

approaching zero or one when a correct model is specified.

Note that given a fixed sample size, n, as η → 0 (more and more missing data), the term 

 will be smaller so that both approaches will have less “power” to detect model 

departures. As an illustration, Figure 1 shows the number of times that the checks detect 

model departures (based on the posterior predictive probability being less than 0.05 or 

greater than 0.95) at various values of η when the model is misspecified with parameter 

values based on the data example in Section 4. Both approaches detect less model departures 

(less power) as η increases.

We first examine the posterior probability for the complete data replication approach. Since 

C is Op(1), (6) can be written as , where c(Δ) and v(Δ) are functions of Δ. 

So the probability using complete data depends on the sensitivity parameter, Δ, which 

indicates the check is not invariant to the extrapolation distribution. In addition, as |Δ| → ∞, 

the denominator and numerator in (6) are both Op(Δ), so the probability can be 

approximated by , which only depends on n1 but no 

other data. Figure 2 plots the posterior predictive probabilities using both the observed data 

replication approach and complete data replication approach at various values of Δ when one 

model is correctly specified and the other misspecified. The probabilities using the observed 

data stay the same across different Δ, but the probabilities using the complete data approach 

change with Δ and eventually converge to  as Δ → +∞ and 

 as Δ → −∞

One specific departure from the model fit is if we assume ξ = 0, but in truth, ξ ≠ 0. The term 

B in the posterior probability for the observed data replications is now 

. In (5), the dominating term in the 

numerator,  will drive the probabilities to zero or one. In (6), although for a 

given Δ, the probability will go to zero or one when n1 → ∞, the complete replicate 
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approach will have less power than the observed replicate approach because (6) has a larger 

denominator than (5). Furthermore, its power is inversely correlated with |Δ|, i.e. the larger |

Δ| is, the less power the complete data replication approach has. In the extreme case, when |

Δ| is of higher order than , the probability will only depend on n1 as shown earlier, 

which results in no power at all. Figure 3 shows the number of times that the checks detect 

model departures (the posterior predictive probability is less than 0.05 or greater than 0.95) 

at various values of Δ when the model is misspecified using parameter values based on the 

data example. The observed data replication approach identifies more model departures than 

the complete data replication approach. Also, the complete data replication approach 

identifies less as |Δ| increases.

In the simple case when σ1 = σ2 and Δ is set to φξ, the probability in (5) is approximately 

 (6) is approximately . When the correct model is 

specified, both (5) and (6) are Φ(H) where  since both B and D are 

 and they are independent (though given the data the two probabilities are not 

necessarily the same). So the two approaches will have the same Type I error. When σ1 = σ2 

but Δ ≠ φξ, the complete replicate approach will have larger Type I error, since it has larger 

variance than H. Figure 4 shows the number of times that the checks falsely detect model 

departures (based on the posterior predictive probability being less than 0.05 or greater than 

0.95) at various values of Δ when the model is correctly specified in an example where σ1 = 

σ2. The observed data replication approach identifies the same number of model departures 

as the complete data replication approach when Δ = φξ. The complete data replication 

approach identifies more (larger Type I error) as |Δ| increases. In general, the complete data 

replication approach has larger Type I error especially when |Δ| is large. There are 

exceptions, for example, when Δ = φξ and σ1 < σ2, the observed approach has larger Type I 

error.

4 Data example

We illustrate the checks using the model in Section 3 on data from a randomized clinical 

trial. The objective of the trial was to examine the effects of recombinant human growth 

hormone therapy for building and maintaining muscle strength in the elderly. The study, 

which we will refer to as GH, enrolled 161 participants and randomized them to one of four 

treatments arms. Various muscle strength measures were recorded at baseline, 6 months, 12 

months. We focus on mean quadriceps strength, measured as the maximum foot-pounds of 

torque that can be exerted against resistance provided by mechanical device. We will focus 

on two of the treatment groups, Exercise + Growth Hormone (EG) and Exercise + Placebo 

(EP), denoted as Z = 1 and Z = 2. Of the 78 randomized to these two arms, only 53 had 

complete follow-up (and the missingness was monotone); see Table 1. For illustration, we 

focus on the month 0 (baseline) and month 12 measures. As such, Y = (Y1, Y2)T is quad 

strength measured at months 0 and 12. The corresponding observed data indicators are R = 

(R1, R2)T. In this data, the baseline quad strength is always observed, so P (R1 = 1) = 1.
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Let (yobs,i, ri, zi) be the observed data for subject i, i = 1, …, 78. We fit the data from both 

treatment groups to the model introduced in Section 3. The parameters of the observed data 

model, ωO, are given diffuse priors. The test statistic for each treatment group is defined as 

the corresponding means of Y2. For example, for the treatment group EG, the test statistics 

used in the observed data replication approach are 

and , and the test statistics used in the complete 

data replication approach are  and 

. We calculate and compare the posterior predictive 

probabilities using complete and observed replications at various values (0, 5, 10, 20, −5, 

−10 and −20) of the sensitivity parameter Δ. Note previous analyses (e.g., [6]) considered 

negative Δ’s up to a value of −20 as dropouts were thought to be doing worse than 

completers. However, for illustration here, we also consider positive values of Δ.

Table 2 shows the marginal means of the responses E(Y1) and E(Y2) estimated from the 

model for different Δ. E(Y2) changes with the sensitivity parameter. The posterior predictive 

probabilities using observed and complete replicated datasets at various values of the Δ are 

shown in Table 3. As shown in Section 3, the posterior predictive probabilities using 

observed replicated datasets are invariant to the sensitivity parameter Δ; those using 

complete replicated datasets change dramatically with Δ. Also using observed replicated 

datasets seems to have more power (posterior predictive probability of 0.08 for EG) to detect 

model departure than using complete replicated datasets (posterior probability probability ≥ 

0.2 for EG) given the observed differences in means at month 12 in Table 1.

Given the relatively poor fit, we tried to improve the fit by not assuming the parameters were 

the same for EP and EG. In particular, we use the same model but with separate parameters 

for EP and EG. Table 4 has the marginal means for the responses for EP and EG and Table 5 

has posterior predictive probabilities in the new model. Clearly model fit is improved with 

posterior probabilities very close to 1/2.

5 Conclusion

We have proposed a convenient way to assess the fit of the Bayesian models in the presence 

of incomplete data using posterior predictive checks; such checks can easily be implemented 

in WinBUGS/JAGS/Stan (see the supplementary materials for WinBUGS code for the model 

and checks from Sections 3 and 4). Both approaches (based on either complete or observed 

data replications) not surprisingly result in less power than if we actually had complete data. 

And the analytical example and data example showed how sensitivity parameters, Δ in our 

development in Sections 3 and 4, can have a large impact on the assessment of model fit for 

complete replication approaches. The fact that the observed replications satisfy the 

invariance to the extrapolation distribution un- like the complete replications which arguably, 

is a necessary property [9], leads us to recommend checks based on the replicated observed 

Xu et al. Page 10

Stat Med. Author manuscript; available in PMC 2017 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



data as the preferred approach for nonignorable missingness even at the potential loss of 

power in some settings. Our approach, using the observed replications, separates the fit of 

the model to the observed data from the (subjective) reasonableness of the imputations. 

These two pieces correspond respectively to the two components in the extrapolation 

distribution.

Clearly, further work needs to be done to better understand the behavior and operating 

characteristics of these checks based on replicated observed data in various settings with 

nonignorable missingness and potentially causal inference settings for which checks should 

also share a property similar to the invariance to the extrapolation distribution. However, 

comparing the complete and observed data replications by simulation will not serve a useful 

purpose since only the latter have the desired invariance property.

We do note that the complete replications can be useful to assess the ’reasonableness’ of 

imputed missing response (as in one of the examples in [7]), but not to assess model fit 

based on observed data. The other important message is that methods used for latent data are 

often not valid for (nonignorably) missing data (other than similar computational 

algorithms). We see the same idea in the recommendations for DIC in [10] which do not 

coincide with those in [11] and the fact that different distributions for latent variables 

provide differential fits to the observed data unlike different values for sensitivity parameters 

(in the extrapolation distribution) for nonignorable missngness.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
’Power’ of detecting model departures using the observed data replication approach and 

complete data replication approach (percent of times the posterior predictive probability < 

0.05 or < 0.95 in 100 replicated datasets) at various values of η. The true data model has 

parameters n = 100, µ = 62, ξ = 9, σ1 = 28, σ2 = 24, α = 16, φ = 0.9, τ = 16. The model is 

misspecified by assuming ξ = 0 when performing model checks. Δ = 0, 20, 100 are used for 

complete data approach.
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Figure 2. 
Posterior predictive probabilities using the observed data replication approach and complete 

data replication approach at various values of Δ. The true data model has parameters n = 

1000, µ = 62, ξ = 9, σ1 = 28, σ2 = 24, α = 16, φ = 0.9, τ = 16, η = 0.5. The data example has 

n1 = 495, so . When performing model checks, one model is correctly 

specified and the other misspecified by assuming ξ = 0.
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Figure 3. 
’Power’ of detecting model departures using the observed data replication approach and 

complete data replication approach (percent of times the posterior predictive probability < 

0.05 or > 0.95 in 1000 replicated datasets) at various values of Δ. The true data model has 

parameters n = 100, µ = 62, ξ = 9, σ1 = 28, σ2 = 24, α = 16, φ = 0.9, τ = 16, η = 0.5. The 

model is misspecified by assuming ξ = 0 when performing model checks.
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Figure 4. 
Type I error using the observed data replication approach and complete data replication 

approach (percent of times the posterior predictive probability < 0.05 or > 0.95 in 1000 

replicated datasets) at various values of Δ when model is correctly specified and σ1 = σ2. 

The true data model has parameters n = 500, µ = 62, ξ = 9, σ1 = σ2 = 28, α = 16, φ = 0.9, τ 
= 25, η = 0.7.
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Table 1

Growth hormone trial: sample means (standard deviations) stratified by treatment group

Treatment R 2 n Y 1 Y 2

EG 0 16 58 (23)

1 22 78 (24) 88 (32)

All 38 69 (25) 88 (32)

EP 0 9 70 (35)

1 31 65 (24) 72 (21)

All 40 66 (26) 72 (21)

All 0 25 62 (28)

1 53 70 (24) 79 (27)

All 78 68 (26) 79 (27)
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Table 2

Marginal means of responses estimated from the model for different Δ

Δ =

Response 0 5 10 20 −5 −10 −20

Y 1 67.6 67.6 67.6 67.6 67.6 67.6 67.6

Y 2 76.6 78.2 79.9 83.1 75.0 73.4 70.1
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Table 3

Posterior predictive probabilities using observed data replications and complete data replications for both 

treatments

Treatment Type 0 5 10
Δ =
20 −5 −10 −20

EG observed 0.08 0.08 0.08 0.08 0.08 0.08 0.08

EG complete 0.30 0.27 0.24 0.20 0.33 0.36 0.43

EP observed 0.84 0.84 0.84 0.84 0.84 0.84 0.84

EP complete 0.69 0.72 0.75 0.80 0.66 0.62 0.55

Stat Med. Author manuscript; available in PMC 2017 November 30.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Xu et al. Page 20

Table 4

Marginal means of responses estimated from the model for different Δ

Δ =

Treatment Response 0 5 10 20 −5 −10 −20

EG Y 1 69.3 69.3 69.3 69.3 69.3 69.3 69.3

EG Y 2 79.3 81.4 83.5 87.7 77.1 75.0 70.8

EP Y 1 65.9 65.9 65.9 65.9 65.9 65.9 65.9

EP Y 2 73.3 74.5 75.6 78.0 72.1 70.9 68.5

Stat Med. Author manuscript; available in PMC 2017 November 30.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Xu et al. Page 21

Table 5

Posterior predictive probabilities using observed data replications and complete data replications for both 

treatments

Treatment Type 0 5 10
Δ =
20 −5 −10 −20

EG observed 0.50 0.50 0.50 0.50 0.50 0.50 0.50

EG complete 0.50 0.50 0.50 0.50 0.49 0.49 0.49

EP observed 0.50 0.50 0.50 0.50 0.50 0.50 0.50

EP complete 0.50 0.50 0.50 0.51 0.50 0.50 0.49
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