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Abstract

Drug combination therapy has become the mainstream approach to cancer treatment. One 

fundamental feature that makes combination trials different from single-agent trials is the 

existence of the maximum tolerated dose (MTD) contour, i.e., multiple MTDs. As a result, unlike 

single-agent phase I trials, which aim to find a single MTD, it is often of interest to find the MTD 

contour for combination trials. We propose a new dose-finding design, the waterfall design, to find 

the MTD contour for drug combination trials. Taking the divide-and-conquer strategy, the 

waterfall design divides the task of finding the MTD contour into a sequence of one-dimensional 

dose-finding processes, known as subtrials. The subtrials are conducted sequentially in a certain 

order, such that the results of each subtrial will be used to inform the design of subsequent 

subtrials. Such information borrowing allows the waterfall design to explore the two-dimensional 

dose space efficiently using a limited sample size, and decreases the chance of overdosing and 

underdosing patients. To accommodate the consideration that doses on the MTD contour may have 

very different efficacy or synergistic effects due to drug-drug interaction, we further extend our 

approach to a phase I/II design with the goal of finding the MTD with the highest efficacy. 

Simulation studies show that the waterfall design is safer and has higher probability of identifying 

the true MTD contour than some existing designs. The R package “BOIN” to implement the 

waterfall design is freely available from CRAN.
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1. Introduction

Drug combination therapy has become the cornerstone of cancer treatment. A unique feature 

that distinguishes drug combination dose-finding trials from conventional single-agent trials 

is the existence of the MTD contour in the two-dimensional dose space. In the single-agent 

trial, there is only one MTD under the assumption of monotonicity (i.e., toxicity 

monotonically increases with the dose), whereas in the combination trial, multiple MTDs 
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(i.e., the MTD contour) may exist in the dose matrix. Depending on the study objective, 

phase I drug-combination trials may aim to find a single MTD or the MTD contour in a 

prespecified dose combination matrix.

Numerous dose-finding designs have been proposed for finding a single MTD of drug 

combinations. Conaway, Dunbar, and Peddada [1] proposed a drug combination dose-

finding method based on the order of the restricted inference. Yin and Yuan [2, 3] proposed 

Bayesian dose-finding designs based on latent contingency tables [2] and a copula-type 

model [3] for drug combination trials. Braun and Wang [4] developed a dose-finding method 

based on a Bayesian hierarchical model. Wages, Conaway and O’Quigley [5] extended the 

continuous reassessment method (CRM) [6] based on partial ordering of the dose 

combinations. Braun and Jia [7] generalized the CRM to handle drug combination trials. 

Riviere et al. [8] proposed a Bayesian dose-finding design based on the logistic model. Cai, 

Yuan and Ji [9] and Riviere et al. [10] proposed Bayesian adaptive designs for drug 

combination trials involving molecularly targeted agents, among others.

The aforementioned designs are devised for finding a single MTD in the drug combination 

matrix. They are not suitable for finding the MTD contour due to several reasons. First, most 

of these designs make the decision of dose assignment and selection based on parametric 

dose-toxicity models, and in practice the assumed models are more likely to be misspecified 

than correctly specified. When our goal is to find a single MTD, model misspecification is 

not of a particular concern. This is because as long as the assumed model provides a good 

local fit around a MTD, it often leads to correct identification of that MTD, even though the 

global fit of the model is poor and biased [9, 11]. However, when our goal is to find the 

MTD contour, model misspecification can be disastrous and lead to misidentification of the 

MTD contour. This is because in order to correctly identify the MTD contour, we must 

precisely estimate the whole dose-toxicity surface, which typically is not possible under 

misspecified models. In other words, finding the MTD contour is much more susceptible to 

the influence of model misspecification than finding a single MTD. Second, the dose finding 

algorithms used in the existing designs are typically myopic in the sense that they assign the 

next new (cohort of) patient to the dose that has the toxicity estimate closest to the target 

toxicity rate. As a result, these designs tend to concentrate the patient allocation at a certain 

local region (e. g., one of the MTDs) and thus loses the opportunity to learn about other 

regions of the dose space. Without adequately learning about the whole dose space, it is 

generally not possible to accurately identify the whole MTD contour.

Several designs have been developed for finding the MTD contour. Thall et al. [12] proposed 

a six-parameter model-based design to find three MTDs; however, that design assumes that 

the doses are continuous and can be freely changed during the trial, which is not common in 

practice. Wang and Ivanova [13] proposed a design to find the MTD contour based on a 

parametric model, assuming that the logarithm of the toxicity probability of a drug 

combination is a linear function of the doses of the two drugs. As discussed previously, to 

find the MTD contour, these model-based designs are susceptible to model misspecification. 

Yuan and Yin [14] proposed a sequential method to find the MTD contour by converting 

two-dimensional dose finding into a series of one-dimensional dose findings. Adrian et al. 

[15] recently proposed a product of independent beta probabilities escalation (PIPE) design 
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to find the MTD contour based on Bayesian model averaging, without assuming a 

parametric form on the dose-toxicity curve.

In this article, we propose a simple, practical dose-finding design to find the MTD contour 

for drug combination trials. Our design adopts the sequential dose-finding strategy proposed 

by Yuan and Yin [14] which divides the original trial into a series of subtrials. Within each 

subtrial, the investigational doses are fully ordered. The key feature of the new design is that 

the subtrials are conducted sequentially in a certain order, such that the results of each 

subtrial will be used to inform the design (e.g., the dose range and the starting dose) of 

subsequent subtrials. Such information borrowing allows the proposed design to explore the 

two-dimensional dose space efficiently using a limited sample size, and also decrease the 

chance of overdosing and underdosing patients. We further extend our approach to phase I/II 

designs to accommodate the consideration that even when doses on the MTD contour have 

similar toxicity, they may have very different efficacy or synergistic effects due to drug-drug 

interaction. Simulation studies show that the proposed design is robust and outperforms 

existing designs. The new design is implemented in R package “BOIN” and available from 

CRAN.

The remainder of this article is organized as follows. In Section 2, we propose the new 

design based on the divide-and-conquer strategy and extend it to phase I/II trials. We briefly 

describe the software to implement the waterfall design in Section 3. In Section 4, we 

investigate the operating characteristics of the proposed design based on simulation studies. 

In Section 5, we conclude with a brief discussion.

2. Methods

2.1. Divide and conquer

Finding the MTD contour is substantially more challenging than finding a single MTD in 

the two-dimensional dose combination space. To find a single MTD, we do not need to learn 

the whole dose space. Once the dose finding algorithm settles down in a region that contains 

a MTD, we only need to learn that local region in order to correctly find that MTD. In 

contrast, in order to find all MTDs (i.e., the MTD contour) existing in the dose matrix, we 

must explore and learn the whole dose matrix, otherwise there is always a risk of missing or 

misidentifying some MTDs. The challenge is how to use a very limited sample size, a 

characteristic of phase I trials, to learn the whole dose matrix and find the MTD contour.

A general strategy for handling a difficult task, such as finding the MTD contour, is to divide 

it into several small tasks that are easy to complete. Taking that strategy, Yuan and Yin [14] 

proposed to partition the dose matrix into a series of blocks (i.e., groups of doses), within 

which the doses are fully ordered, and then find the MTD within each block. In other words, 

the strategy is to divide the two-dimensional dose-finding problem into a series of simpler 

one-dimensional dose-finding problems. Each of these one-dimensional dose-finding 

problems is referred to as a “subtrial.” When we have used that design in practice, the 

clinicians have raised several practical issues. First, the design starts the trial at the second 

lowest dose, A2B1, rather than at the lowest dose. In practice, clinicians strongly favor 

starting the trial at the lowest dose, A1B1, for safety considerations. Second, to improve trial 

Zhang and Yuan Page 3

Stat Med. Author manuscript; available in PMC 2017 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



efficiency, the design of Yuan and Yin [14] continuously shrinks the search space by 

removing some doses on the basis of the MTD identified in the previous subtrial. However 

in practice, that rule may be too stringent. Due to the small sample size, the MTD identified 

in a subtrial may be incorrect. As a result, the true MTD may be incorrectly removed from 

the subsequent subtrials. Third, Yuan and Yin [14] did not provide detailed guidance on 

when and how to switch from one subtrial to the next one. This is a critical issue when 

implementing the design and requires careful consideration.

To address these concerns, we introduce a new dose-finding design, the waterfall design. 

The “waterfall” characterizes the process of sequentially finding the MTD contour, moving 

from the top of the dose matrix to the bottom, as described later. A new partition scheme is 

used to partition the dose matrix into blocks such that the trial always starts with the lowest 

dose. In addition, the results from the prior subtrial are used only to set the starting dose 

rather than to directly shrink the dose space for the subsequent trial, which gives the design 

more flexibility to move around and identify the MTD more precisely. We also propose a 

practical rule to determine when to switch from one subtrial to the next.

2.2. Waterfall design

Consider a trial combining J doses of drug A, A1 < ··· < AJ, with K doses of drug B, B1 < ··· 

< BK, and let AjBk denote the combination of Aj with Bk. Given the J × K dose matrix, 

finding the MTD contour is equivalent to finding an MTD, if it exists, in each row of the 

dose matrix. Without loss of generality, we assume that J ≤ K such that the dose matrix is in 

a “landscape” orientation (i.e., more columns than rows). If drug A has more dose levels 

than drug B (i.e., J > K), we recommend rotating the dose matrix to make it in the 

“landscape” orientation. As shown below, arranging the dose matrix in the “landscape” 

orientation leads to fewer subtrials, which simplifies the practical implementation of the 

waterfall design.

As illustrated in Figure 1, the waterfall design partitions the J × K dose matrix into J 
subtrials (or blocks), within which the doses are fully ordered. These subtrials are conducted 

sequentially from the top of the matrix to the bottom, which is why we refer to the design as 

the waterfall design. The waterfall design can be described as follows:

1. Divide the J × K dose matrix into J subtrials SJ, ···, S1, according to the 

dose level of drug A:

Note that subtrial SJ also includes lead-in doses A1B1, A2B1, ···, AJB1 (the 

first column of the dose matrix) to impose the practical consideration that 

the trial starts at the lowest dose. Within each subtrial, the doses are fully 

ordered with monotonically increasing toxicity.
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2. Conduct the subtrials sequentially using a one-dimensional (or single-

agent) dose-finding method as follows:

i. Conduct subtrial SJ, starting from the lowest dose 

combination A1B1, to find the MTD. We call the dose 

selected by the subtrial the “candidate MTD” to highlight 

that the dose selected by the individual subtrial may not be 

the “final” MTD that we will select at the end of the trial. 

The final MTD selection will be based on the data 

collected from all the subtrials. The objective of finding 

the candidate MTD is to determine which subtrial will be 

conducted next and the corresponding starting dose.

ii. Assuming that the current subtrial Sj, j = J, ···, 2, selects 

dose Aj*Bk* as the candidate MTD, next, conduct subtrial 

Sj*−1 with the starting dose Aj*−1Bk*+1. That is, the next 

subtrial to be conducted is the one with the dose of drug A 
that is one level lower than the candidate MTD found in 

the previous subtrial. After identifying the candidate MTD 

of subtrial Sj*−1, the same rule is used to determine the 

next subtrial and its starting dose. See Figure 1 for an 

example.

iii. Repeat step (ii) until subtrial S1 is completed.

3. Estimate the toxicity probability R(AjBk) based on the toxicity data 

collected from all the subtrials using matrix isotonic regression [16]. For 

each row of the dose matrix, select the MTD as the dose combination that 

has the estimate of toxicity probability closest to the target toxicity rate ϕT, 

unless all combinations in that row are overly toxic.

As described previously, the major challenge of finding the MTD contour is the conflict 

between the desire to use as few patients as possible to run phase I trials and the fact that, in 

order to find the MTD contour, we must adequately explore and learn the whole dose matrix, 

which requires a large sample size. The waterfall design tackles this challenge by borrowing 

information across subtrials to efficiently explore the two-dimensional dose space. 

Specifically, in step 2, the waterfall design utilizes the results of the current subtrial to 

inform the design of subsequent subtrials, e.g., the doses range and the starting dose. In step 

2(ii), the reason that subtrial Sj*−1 starts with dose Aj*−1Bk*+1 rather than the lowest dose in 

that subtrial (i.e., Aj*−1B2) is that Aj*−1Bk*+1 is the lowest dose that is potentially located at 

the MTD contour, and starting from that dose allows us to quickly reach the MTD for that 

subtrial. Using Figure 1 as an example, the first subtrial S3 identified the dose A3B2 as the 

MTD, and thus the second subtrial S2 starts from the dose A2B3. It is not desirable to start 

from the lowest dose, A2B2, because by monotonicity we know that A2B2 is below the 

MTD. Starting at the lowest dose in this example will waste patient resources and expose 

patients to low doses that may be subtherapeutic.
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We note that the “waterfall” sequencing is not the only possible sequence to construct the 

subtrials. We choose the “waterfall” sequencing because it has the following desirable 

properties: (1) the waterfall sequencing starts the trial from the lowest dose A1B1, which 

addresses the practical concern for the previous design by Yuan and Yin [14] that the trial 

does not start from the lowest dose; (2) the waterfall sequencing allows us to use the results 

of current subtrial to inform the design of subsequent subtrials (e.g., the doses range and the 

starting dose) in a simple and efficient way. Such information borrowing allows our design 

to explore the two-dimensional dose space efficiently using a limited sample size, and also 

decrease the chance of underdosing and overdosing patients. In addition, it is easy to show 

that the “waterfall” sequencing renders the design the consistency property as follows:

Theorem 1—The waterfall design is consistent for identifying the MTD contour if the 

method used for running the subtrial is consistent.

In what follows, we discuss a method to run the subtrial, which has such a consistency 

property.

2.3. Conducting subtrials using the BOIN design

Although any reasonable single-agent dose-finding trial design can be used to conduct the 

subtrials, here, we focus on the BOIN design [17] because of its implementation simplicity 

and good performance. The BOIN design can be implemented in a simple way that is similar 

to that of the traditional algorithm-based designs, such as “3+3” design, but yields good 

operating characteristics that are comparable to those of the CRM [17]. Coupled with BOIN, 

the resulting waterfall design is simple to implement in practice. In addition, as the BOIN 

design is consistent [17], the resulting waterfall design is also consistent.

Specifically, using the BOIN design, a subtrial with L doses can be described as follows.

1. Patients in the first cohort are treated at the lowest dose level or at a 

prespecified intermediate dose.

2. At the current dose level ℓ, we assume that a total (or the cumulative 

number) of nℓ patients have been treated, and mℓ of them have experienced 

toxicity. Let p̂ℓ = mℓ/nℓ denote the observed toxicity rate at dose level ℓ. To 

assign a dose to the next cohort of patients,

• if p̂ℓ ≤ λ1, we escalate the dose level to ℓ + 1;

• if p̂ℓ ≥ λ2, we de-escalate the dose level to ℓ − 1;

• otherwise, i.e., λ1 < p̂ℓ < λ2, we retain the same dose level, 

ℓ.

where λ1 and λ2 are prespecified dose escalation and de-escalation 

boundaries.

3. This process continues until the maximum sample size is reached or the 

trial is terminated due to excessive toxicity, as described below.
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Table 1 provides the values of λ1 and λ2 for common target toxicity rates. For example, 

given the target DLT rate of 30%, the corresponding escalation threshold λ1=0.236 and the 

de-escalation threshold λ2=0.358. For ease of use, these thresholds can be converted to 

discrete decision boundaries as shown in Table 2. The theory and derivation of λ1 and λ2 

can be found in Liu and Yuan [17].

To protect patients from overly toxic doses, we impose the following dose elimination rule 

during trial conduct:

where pr(pℓ > ϕT|mℓ, nℓ) > 0.95 can be evaluated on the basis of a beta-binomial model, 

assuming that mℓ follows a binomial distribution (with size and probability parameters nℓ and 

pℓ) and pℓ follows a vague beta prior, e.g., pℓ ~ beta(1, 1). The eliminated doses cannot be 

used to treat patients and are not selected as the MTDs.

For the waterfall design, one key issue is to determine when to end the current subtrial and 

initiate the next one. We recommend the following stopping/starting rule for the subtrials:

At any time during the subtrial, if the total number of patients treated at the current 

dose reaches a certain prespecified number of patients, say nstop, we stop the 

subtrial, select the candidate MTD and initiate the next subtrial.

The rationale for the stopping rule is that when the patient allocation concentrates at a given 

dose, it indicates that the dose finding might have converged to the MTD, and thus we can 

stop the trial and claim the MTD. This stopping rule allows the sample size of the subtrials 

to be automatically adjusted according to the difficulty of the dose finding. Another 

attractive feature of the above approach is that it automatically ensures that a certain number 

of patients are treated at the MTD. Conventionally, we achieve this by adding cohort 

expansion after identifying the MTD. In practice, we recommend nstop > 9 to ensure 

reasonable operating characteristics.

An alternative stopping rule is based on the confidence interval (CI) of the estimate of 

toxicity probabilities. For example, stop the subtrial when the CI of a dose contains the 

target toxicity probability ϕT and its width is narrower than a certain value. Our numerical 

study shows that after appropriate calibration, these two approaches have virtually the same 

performance (results are not shown). This is somewhat expected because the width of the CI 

is essentially determined by the sample size (i.e., nstop). Thus, we recommend the stopping 

rule that is based on the number of patients treated because it is more transparent, in 

particular to clinicians, and is easy to implement.

Although the above stopping rule provides an automatic, reasonable way to determine the 

sample size for the trial, the resulting sample size is random. In practice, it is often desirable 

to put a cap on the maximum sample size of the subtrials. This can be done by adding an 

extra stopping rule as follows:
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As a rule of thumb, we recommend , for 

j = 1, ···, J. This means that given a J × K dose combinations, the maximum total sample size 

for the trial is 4 × J × K. For example, for a 3×5 combination, as shown in Figure 1, the first 

subtrial contains 7 doses, and the second and third subtrials contain 4 doses each. The 

recommended sample sizes are 28, 16 and 16 for three subtrials, respectively, resulting a 

total sample size of 60 patients. This may seems large, however given that there are a total of 

15 doses, 60 patients actually is not a very large sample size. To see this, considering a 

single-agent trial with 15 doses, the maximum sample size under the 3+3 design is 90 

patients. In practice, the recommended sample sizes nstop and  should be further 

calibrated using simulation until attaining desirable operating characteristics, which can be 

readily done using R package “BOIN” described later.

2.4. Extension to phase I/II trial

Doses on the MTD contour have similar toxicity, but may have rather different efficacy or 

synergistic treatment effects due to drug-drug interaction. Thus, it is of great practical 

interest to identify which MTD has the highest efficacy or synergistic effect. The waterfall 

design can be easily extended to achieve this goal using the (seamless) phase I/II trial design 

framework [18].

Our phase I/II waterfall design consists of a phase I part and a phase II part, which are 

seamlessly connected. Both toxicity and efficacy data are collected throughout the trial. The 

phase I part uses the waterfall design as described previously to find the MTD contour on 

the basis of only toxicity. Once the MTD contour is identified, these MTDs are seamlessly 

moved to phase II to evaluate efficacy. Suppose that R MTDs are identified in phase I and 

moved to phase II for evaluating efficacy. We equally randomize patients into the R MTDs. 

Let πr denote the response rate of the rth MTD, r = 1, ···, R, and y denote the binary 

response indicator. We model πr using a beta-binomial model

Assume that at an interim decision time, nr patients have been treated at the rth MTD, and sr 

patients experienced efficacy. Note that nr patients include those treated in phase I. Given 

interim data  = (nr, sr), the posterior distribution of πk is pr(πk|  ) = beta(0.05 + sk, 0.05 + 

nk − sk).

During phase II, we monitor efficacy and remove futile doses based on the following rule: 

drop the rth MTD if pr(πr < π|  ) > c, where π is the lower bound on efficacy and c is a 

probability cutoff (e.g., c = 0.9). Such monitoring can be done in a group sequential way 

(e.g., after 1/3 and 2/3 patients are enrolled) when efficacy takes a relatively long time to be 

scored, e.g., using RECIST criteria. Patient accrual may be paused during the interim 
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analysis. Alternatively, we can model efficacy as a time-to-event outcome [19] or 

unobserved efficacy outcomes as missing data [20, 21] to allow continuous monitoring of 

efficacy. Meanwhile, we also monitor toxicity based on the BOIN dose escalation/de-

escalation rule. An important feature of the proposed phase I/II design is that during phase 

II, in light of the accumulating data, we still allow for dose escalation and de-escalation 

based on the rule of the BOIN design. Dose escalation and de-escalation will be restricted to 

the subtrial in which that dose is originally assigned. For example, suppose that A2B3 was 

selected as a candidate MTD after phase I and moved forward to phase II to evaluate 

efficacy. Assume that the new toxicity data collected from phase II suggest that A2B3 is 

actually overly toxic. In this case, we de-escalate the dose to A2B2 and evaluate that new 

dose’s efficacy and toxicity. Such flexibility is important because it allows us to 

continuously refine our estimate of the MTDs. In addition, because it uses all cumulated data 

from both phases I and II, it provides more accurate evaluation of the toxicity and efficacy of 

the doses. These features make our phase I/II design different from the approach of simply 

attaching phase II to phase I. After the prespecified maximum sample size is reached, we 

stop the trial and select the dose with the highest posterior estimate of efficacy as the 

recommended dose. Yuan and Yin [22] proposed a different, model-based phase I/II drug-

combination designs, where the phase I part finds all safe doses, rather than the MTD 

contour, for evaluating efficacy in the phase II part.

3. Software

The waterfall design can be easily implemented using the R package “BOIN”, which is 

freely available from CRAN. A statistical tutorial and protocol template for using this 

package to design drug combination trials can be found in http://odin.mdacc.tmc.edu/

~yyuan/index_code.html. Here, we provide a brief overview of the related functions.

• get.boundary(···); This function is used to generate escalation and de-

escalation boundaries for conducting subtrials.

• next.subtrial(···); This function is used to obtain the starting dose for the 

next subtrial when the current subtrial is completed.

• select.mtd.comb(···); This function (with argument mtd.contour = TRUE) 

is used to select the MTD contour at the end of the trial based on 

isotonically transformed estimates.

• get.oc.comb(···); This function (with argument mtd.contour = TRUE) is 

used to generate the operating characteristics of the waterfall design for 

drug combination trials.

• get.oc.comb.phase12(···); This function is used to generate the operating 

characteristics of the phase I/II waterfall design for drug combination 

trials.

One important practical advantage of the proposed waterfall design is that it is simple and 

fast to implement. Simulating 1,000 trials using our R package took only about 1.5 minutes.
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4. Simulation Studies

4.1. Waterfall design

We investigated the operating characteristics of the proposed waterfall design using 

simulation studies. The target toxicity probability ϕT = 0.3. Patients were treated in cohort 

sizes of 3. To end the current subtrial and initiate the next one, we set nstop = 12 and 

. We simulated 1000 trials under each 

of 14 scenarios (see Table 3). We compared the waterfall design with the PIPE design [15] 

and matched the sample sizes for the two designs under each simulation scenario. The PIPE 

design was implemented using the software provided by Adrian et al. [15]. We noted 

problems with the way the PIPE software reports the selection percentage. Specifically, let 

ujk denote the number of times that AjBk is selected as the MTD across 1000 simulated 

trials. The PIPE software calculates the selection percentage for AjBk as

(1)

The issue is that qjk indicates that among the selected doses, how likely it is that AjBk. It 

does not reflect what we really care about in practice, which is, across 1000 trials, how 

likely it is that we select AjBk as the MTD, i.e.,

(2)

Actually, using qjk to measure the design performance can be misleading. We use scenario 1 

to illustrate this and assume that there are two designs. The first design has perfect 

performance. In each of the 1000 simulated trials, it always correctly selects A1B3 and A2B2 

as the MTDs. For the second design, in 500 simulated trials, it correctly selects A1B3 and 

A2B2 as the MTDs, but in the remaining 500 simulated trials, it incorrectly claims that there 

was no MTD and does not select any dose as the MTD. If we use qjk as the measure of MTD 

selection, we will conclude that these two designs have the same performance, with selection 

percentages of 100% for each of A1B3 and A2B2. Therefore, in our simulation study, we use 

(2) as the definition of the MTD selection percentage for drug combinations.

Table 4 shows the selection percentage for each dose combination based on 1000 simulated 

trials. The waterfall design outperformed the PIPE design. For example, in scenario 1, the 

MTD contour is A1B3 and A2B2. The selection percentage was above 59% for each of the 

two target doses under the waterfall design, whereas it was below 45% under the PIPE 

design. Note that the sum of the selection percentages across all dose combinations can be 

larger than 100% because the designs may select more than one combination as the MTD in 

a simulated trial. In scenarios 2 and 3, the MTD contours are at different locations (i.e., 

A1B2 and A2B1 in scenario 2, and A1B3 and A2B1 in scenario 3). The selection percentages 

for these doses under the waterfall design were above 53% for each of the target doses, 

Zhang and Yuan Page 10

Stat Med. Author manuscript; available in PMC 2017 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



however they were below 43% under the PIPE design. Scenario 4 considers the case in 

which there is only one MTD (i.e., incomplete MTD contour). The selection percentage of 

the MTD (i.e., A1B1) under the waterfall design was 12% more than that under the PIPE 

(i.e., 56.5% versus 44.5%). Scenarios 5 to 8 consider the 4 × 4 combinations, and Scenarios 

9 to 14 consider the 3 × 5 combinations. The waterfall design again outperformed the PIPE 

design. For example, in scenario 7, the selection percentages of the two MTDs (A1B2 and 

A2B1) were 56.3% and 67.2%, respectively, under the waterfall design, while those under 

the PIPE design were respectively 31.3% and 30.4%.

Table 5 shows the percentage of correct selection (PCS) of the MTD contour. That is, the 

percentage of times the design correctly selected all MTDs simultaneously in 1000 

simulated trials. For example, in scenario 1, the PCS is the percentage of times that the 

design selected A1B3 and A2B2 simultaneously. In terms of selecting the MTD contour, the 

advantage of the waterfall design is more obvious. The PCS of the MTD contour was 

usually higher than 30% (12 out of 14 scenarios) under the waterfall design; whereas it was 

usually less than 16% (11 out of 14 scenarios) under the PIPE design. Across 14 scenarios, 

the average PCS under the waterfall design was 35.2%, which was 2 times greater than that 

of the PIPE design (i.e., 14.8%). Note that by the play of randomness, simultaneously 

identifying all MTDs in the dose matrix is a much more challenging task than identifying a 

single MTD, especially given the small sample size of phase I trials. For example, suppose 

that there are 3 MTDs, and for each of them the PCS is 70%. If the selection of each of the 

MTDs is independent, the probability of simultaneously selecting 3 MTDs is merely 0.73 = 

34.3%. Therefore, the PCS for the MTD contour is substantially lower than the PCS for each 

individual MTD.

Table 5 also reports the percentage of patients treated at doses above the MTD contour under 

the two designs, as a measure of design safety, and the percentage of patients treated at the 

MTD contour. We can see that, in general, the waterfall design was safer than the PIPE 

design because it assigned a lower percentage of patients to doses above the MTD contour. 

In addition, the waterfall design assigned higher percentages of patients to the MTDs than 

the PIPE. The sample sizes of two designs were matched and provided in Table 5. The 

patient allocation to each of the dose combinations can be found in Table S1 in the 

Appendix.

4.2. Phase I/II waterfall design

We also briefly evaluated the performance of the proposed phase I/II waterfall design via 

simulation studies. The toxicity upper limit ϕT was 0.30, and the efficacy lower limit π was 

0.2. The maximum sample size was 36 for phase I and 72 for the whole trial. The cohort size 

was 3. We considered 8 toxicity-efficacy scenarios (see Table 6). The target (or optimal) 

dose is defined as the most efficacious dose combination in the MTD contour. We simulated 

1000 trials under each scenario.

As shown in Table 6, scenarios 1–4 share the same MTD contour (i.e., A1B3 and A2B2), but 

have different optimal doses. Specifically, in scenario 1, A1B3 is the optimal dose. The PCS 

of A1B3 was 50.6%, and the design allocated the largest number of patients (i.e., 22.2) to 

that dose. In scenario 2, the optimal dose is A2B2, and the PCS of that dose was 42.0%. 
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Scenario 3 has two optimal doses (i.e., A1B3 and A2B2) due to the toxicity and efficacy 

equivalence contours. Both optimal doses had high PCS and more patients were assigned to 

those two doses than to the others. In scenario 4, all doses have efficacy that is below the 

lower limit of efficacy, thus there is no optimal target dose. In this case, our design stopped 

the trial early 92.5% of the time. Scenarios 5–7 show more cases with different toxicity and 

efficacy profiles. The results are similar; that is, the proposed design yielded high PCS and 

allocated a large percentage of patients to the target doses. In scenario 8, there is no optimal 

dose because the safe dose (i.e., A1B1) is not efficacious and the other doses are efficacious 

but not safe. In that scenario, our proposed design stopped the trial 88.9% of the time.

We note that in scenarios 6 and 7, the proposed design had 42.6% and 47.7% of chance of 

not choosing any dose as the optimal dose. This seems high, but actually is a reasonable 

behavior when we examine the PCS of the optimal dose in phases I and II. Specifically, in 

scenarios 6 and 7, at the end of phase I, the PCS of moving the optimal dose (i.e., A2B1) to 

phase II was 59.8% and 57.8%, respectively; and in phase II, the PCS of the optimal dose 

was 86.8% and 78.9%, respectively. These PCS are pretty reasonable for phase I and II 

trials, leading to the overall phase I/II PCS of 59.8% × 86.8% = 51.9% and 57.8% × 78.9% 

= 45.6%, respectively, for scenarios 6 and 7. In the case that we missed the optimal dose, the 

most appropriate action is not to select any dose, which results in high percentages of no 

selection in these scenarios.

5. Discussion

We have proposed a new design, the waterfall design, to find the MTD contour for drug 

combination trials. Taking the divide and conquer strategy, the waterfall design divides the 

problem of finding the MTD contour into a series of subtrials that are easy to implement. 

The subtrials are conducted sequentially in a certain order, such that the results of each 

subtrial will be used to inform the design of subsequent subtrials. Such information 

borrowing allows the waterfall design to explore the two-dimensional dose space efficiently 

using a limited sample size, and decreases the chance of overdosing and underdosing 

patients. As the doses in the MTD contour may have different efficacy due to drug-drug 

interaction, we extended the waterfall design to phase I/II combination trials, aiming to find 

the MTD that has the highest efficacy.

One important advantage of the waterfall design is that it is very easy to implement and 

meanwhile yields excellent operating characteristics. The dose escalation/deescalation rule 

of the waterfall design is laid out before the onset of the trial. During the trial conduct, there 

is no complicated model fitting and statistical computing. The trial can be carried out in a 

simple fashion similar to the 3+3 design. More importantly, such simplicity does not come at 

the cost of the design performance. Simulation studies show that the waterfall design 

substantially outperforms some existing, more complicated dose-finding designs. The freely 

available R package “BOIN” and detailed documentations coming with the package further 

facilitate the use of the design in practice.

We should note that in general, finding the MTD contour is much more difficult than finding 

a single MTD. In order to find all MTDs (i.e., the MTD contour), we must explore the whole 
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J × K dose matrix; otherwise, we risk missing some MTDs. In contrast, to find a single 

MTD, experimenting at a local region that contains a MTD is often adequate. As a result, 

finding the MTD contour requires a larger sample size than combination trials that aim to 

find a single MTD. In the waterfall design, the results of current subtrial are used to inform 

the starting dose and dose range of subsequent subtrials to allow the design to quickly reach 

the MTDs and thus decrease the required samples size. Even though, the required sample 

size for finding the MTD contour is still larger than typical single-agent phase I trials. As a 

rule of thumb, in order to obtain robust performance, we recommend a sample size of 4 × J 
× K or more for a J × K combination trial, as described previously.

One limitation of the waterfall design is that it assumes that toxicity is binary and can be 

assessed quickly. Extending the waterfall design to handle late-onset toxicity is of great 

practical interest. One possible approach is to use Bayesian data augmentation [20, 21] or 

the expectation-maximization algorithm [23] to predict the unobserved late-onset toxicity 

data, so that adaptive decisions can be made in real time without observing all toxicity 

outcomes.
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Figure 1. 
Illustration of the waterfall design for a 3 × 5 combination trial. The doses in the rectangle 

form a subtrial, and the asterisk denotes the candidate MTD. As shown in panel (a), the trial 

started by conducting the first subtrial with the starting dose A1B1. After the first subtrial 

identified A3B2 as the candidate MTD, we conducted the second subtrial with the starting 

dose A2B3 (see panel (b)). After the second subtrial identified A2B4 as the candidate MTD, 

we conducted the third subtrial with the starting dose A1B5 (see panel (c)). After all the 

subtrials were completed, we selected the MTD contour based on the data from all the 

subtrials, as shown in panel (d).
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