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Abstract

Feedback is highly contingent on behavior if it eventually becomes easy to predict, and weakly 

contingent on behavior if it remains difficult or impossible to predict even after learning is 

complete. Many studies have demonstrated that humans and nonhuman animals are highly 

sensitive to feedback contingency, but no known studies have examined how feedback contingency 

affects category learning, and current theories assign little or no importance to this variable. Two 

experiments examined the effects of contingency degradation on rule-based and information-

integration category learning. In rule-based tasks, optimal accuracy is possible with a simple 

explicit rule, whereas optimal accuracy in information-integration tasks requires integrating 

information from two or more incommensurable perceptual dimensions. In both experiments, 

participants each learned rule-based or information-integration categories under either high or low 

levels of feedback contingency. The exact same stimuli were used in all four conditions and 

optimal accuracy was identical in every condition. Learning was good in both high-contingency 

conditions, but most participants showed little or no evidence of learning in either low-

contingency condition. Possible causes of these effects are discussed, as well as their theoretical 

implications.

Introduction

Many studies have examined the role of feedback in category learning. This article describes 

the results of two experiments that examine one aspect of feedback that, to our knowledge, 

has never before been directly investigated – namely, the importance of the contingency of 

the feedback on the learner's behavior. Contingency is high if the valence of the feedback 

(i.e., whether it is positive or negative) eventually becomes predictable and low when it 

remains difficult or impossible to predict even after learning is complete. Although current 

theories assign little or no importance to this variable, our results suggest that a high level of 

feedback contingency is critical for category learning.

To make this discussion more concrete, consider Figure 1. The bottom two panels illustrate 

two different sets of overlapping categories. Each symbol denotes a different stimulus. The 

circles denote exemplars in category A and the plus signs denote exemplars in category B. 

Sample stimuli are shown in the top panel. Note that each stimulus is a circular, sine-wave 

grating and that the stimuli vary across trials on two stimulus dimensions – the width and 

orientation of the dark and light bars. The diagonal lines denote the optimal categorization 
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strategy. In particular, in both of the lower two panels, accuracy is maximized at 80% if the 

participant responds A to any stimulus with coordinates above the diagonal line and B to any 

stimulus with coordinates below the line.

The stimuli in the middle panel of Figure 1 were selected by randomly sampling from two 

bivariate normal distributions – one that defines each category (Ashby & Gott, 1988). Note 

that the density of the 20% of B stimuli that fall above the diagonal bound decreases with 

distance from this bound. In other words, within the A response region, there are many B 

stimuli near the category bound and few far from the bound. Accuracy is typically higher for 

stimuli far from the bound, as is response confidence. Thus, a participant using the optimal 

strategy is much more likely to receive positive feedback on trials when accuracy and 

response confidence are high than on trials when accuracy and confidence are low. As a 

result, despite the overlap, feedback contingency is high – as the participant's accuracy 

improves, so does his or her ability to predict whether the feedback will be positive or 

negative. We call this the high-contingency condition.

The stimuli in the bottom panel of Figure 1 were selected in a three-step procedure. Step 1 

was to generate the exact same stimuli as in the middle panel – that is, by using the same 

random sample from the same two bivariate normal distributions used in the middle panel. 

Step 2 was to assign all stimuli above and left of the diagonal bound to Category A and all 

stimuli below and right of the bound to Category B, regardless of their Step 1 category 

affiliation. Finally, in Step 3, 20% of the Category A stimuli were randomly selected and 

assigned to Category B, and 20% of the Category B stimuli were randomly selected and 

assigned to Category A. Thus, the critical point to note is that, in the bottom panel, the 

density of the 20% of B stimuli falling above the bound does not change with distance from 

the bound. As a result, in the bottom panel condition, a participant using the optimal strategy 

is just as likely to receive negative feedback when response confidence and accuracy are 

high as when response confidence and accuracy are low. In other words, even when accuracy 

is high, the valence of the feedback is difficult to predict. We call this the low-contingency 

condition.

In summary, the stimuli and optimal strategies in the low-and high-contingency conditions 

shown in Figure 1 are identical, and optimal accuracy is 80% correct in both conditions. One 

key difference however, is that response confidence (and accuracy) and the probability of 

receiving positive feedback are more highly correlated in the high-contingency condition 

than in the low-contingency condition. The critical question addressed in this article is 

whether (and how) this difference affects learning.

Feedback Contingency and Probabilistic Categorization

The study of feedback contingency has a long history – dating back at least to Skinner 

(1948) (for reviews see, e.g., Hammond, 1980; Beckers, De Houwer, & Matute, 2007). 

Many studies have conclusively demonstrated that humans and nonhuman animals are both 

extremely sensitive to feedback contingency (Alloy & Abramson, 1979; Chatlosh, Neunaber, 

& Wasserman, 1985; Rescorla, 1968). For example, in instrumental conditioning tasks, 

extinction can be induced simply by suddenly making the time of reward noncontingent on 
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the behavior (Balleine & Dickinson, 1998; Boakes, 1973; Nakajima, Urushihara, & Masaki, 

2002; Rescorla & Skucy, 1969; Woods & Bouton, 2007).

Almost all of this work used tasks with a single response option in which the participant had 

a choice to either respond or not respond at any time (e.g., by pressing a lever or a button; 

Alloy & Abramson, 1979; Dickinson & Mulatero, 1989; Corbit & Balleine, 2003; Dias-

Ferreira et al., 2009; Shanks & Dickinson, 1991). Feedback (or reward) contingency was 

typically manipulated in one of three ways. One method was to vary the probability that 

reward was delivered following each response (e.g., Rescorla, 1968; Alloy & Abramson, 

1979; Dickinson & Charnock, 1985). However, with a single response alternative, reducing 

this probability from one to a lower value is equivalent to changing from continuous 

reinforcement to partial reinforcement. Because of this equivalence, other methods for 

studying the effects of contingency degradation are also popular. A second method is to 

manipulate the temporal relationship between the behavior and reward (e.g., Elsner & 

Hommel, 2004; Wasserman, Chatlosh, & Neunaber, 1983). So for example, if the rewards 

are temporally noncontingent on the behavior, then rewards are still delivered, but the times 

when the rewards are given are uncorrelated with the times when the behaviors are emitted. 

In probabilistic categorization tasks like those shown in Figure 1, feedback contingency is 

degraded, relative to deterministic tasks, but the contingency is not temporal because 

feedback is delivered immediately after every response. The degraded contingency is 

between the state of the feedback and the participant's behavior. We refer to this as state-
feedback contingency to emphasize the difference between this manipulation and temporal-
feedback contingency. A third method is to degrade contingency by giving animals free 

access to the reward (e.g., Dickinson & Mulatero, 1989). Note though that free access to the 

reward reduces temporal feedback contingency, not state feedback contingency because the 

time of reward becomes dissociated from lever pressing, but the state of the reward stays the 

same.

The extensive literature on feedback contingency provides compelling justification for the 

present studies. Humans are highly sensitive to feedback contingency, so an obvious and 

important question to ask is how feedback contingency affects learning, not of the 

contingencies themselves, but of some other cognitive behavior in which performance 

improvements are feedback dependent. As mentioned, to our knowledge, this question has 

not been previously addressed. Furthermore, this research goal is sufficiently novel that it is 

difficult to make specific predictions about our experiments from the extensive literature on 

feedback contingency. This problem is exacerbated by the fact that the single-response-

option tasks used in previous studies of feedback contingency differ fundamentally from the 

categorization task used here. For example, error feedback is delivered in both Figure 1 

conditions, whereas negative feedback is never delivered in most single-response-option 

tasks (e.g., as when partial reinforcement is given in an operant-conditioning task).

Perhaps more relevant to the present research is the extensive literature on probabilistic 

categorization. During probabilistic category learning, some stimuli have probabilistic 

associations with the contrasting categories. A response that assigns a stimulus to category A 

might be rewarded with positive feedback on one trial and punished with negative feedback 

on another. Obviously, in such tasks, perfect performance is impossible. For example, in the 
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probabilistic tasks illustrated in Figure 1, optimal accuracy is 80%. While studies of 

deterministic category learning are more common, research on probabilistic category 

learning also has a long history (Ashby & Gott, 1988; Ashby & Maddox, 1990, 1992; Estes, 

Campbell, Hatsopoulos, & Hurwitz, 1989; Gluck & Bower, 1988; Kubovy & Healy, 1977; 

Medin & Schaffer, 1978; Estes, 1986; Gluck & Bower, 1988).

Almost all probabilistic category-learning experiments are of one of two types. One 

approach uses stimuli that vary on binary-valued dimensions (Estes, 1986; Estes et al., 1989; 

Gluck & Bower, 1988; Medin & Schaffer, 1978). A common example uses the weather 

prediction task (Knowlton, Squire, & Gluck, 1994), in which one, two, or three of four 

possible tarot cards are shown to the participant, whose task is to indicate whether the 

presented constellation signals rain or sun. Each card is labeled with a unique, and highly 

discriminable, geometric pattern. Fourteen of the 16 possible card combinations are used 

(the zero- and four-card combinations are excluded) and each combination is 

probabilistically associated with the two outcomes. In the original version of the task, the 

highest possible accuracy was 76% (Knowlton et al., 1994). A second popular approach uses 

stimuli that vary on continuous dimensions and defines a category as a bivariate normal 

distribution. Probabilistic category assignments are created by using categories defined by 

overlapping distributions (Ashby & Gott, 1988; Ashby & Maddox, 1990, 1992; Ell & 

Ashby, 2006), exactly as in the high-contingency condition of Figure 1.

Besides the use of binary- versus continuous-valued stimulus dimensions, there is another 

fundamental difference between these two types of probabilistic category-learning tasks. 

With overlapping normal distributions feedback contingency is high because a participant 

using the optimal strategy will receive frequent error feedback for stimuli near the boundary 

and almost never receive error feedback for stimuli far from the boundary. In contrast, with 

binary-valued dimensions there are few stimuli that are each presented many times. The 

probability that a participant using the optimal strategy receives positive feedback on each 

stimulus is identical on every trial. Thus, if the participant's response confidence varies at all 

across repeated stimulus presentations, then the probability of receiving positive feedback 

will be relatively uncorrelated with response confidence. Thus, feedback contingency should 

be lower with binary-valued stimulus dimensions than with overlapping normal 

distributions. So to study the effects of feedback contingency on category learning one might 

compare performance in probabilistic categorization tasks that used binary-valued stimulus 

dimensions with performance in tasks that used continuous-valued stimulus dimensions and 

categories defined as overlapping normal distributions. No such comparisons have been 

attempted for good reason. There are simply too many differences between such tasks to 

make any comparison meaningful. Of course, the stimuli must necessarily be different, but 

in addition, there is no obvious way to equate such important variables as category 

separation. As a result, it would be impossible to attribute any performance difference to a 

difference in feedback contingency rather than to some other variable that could affect task 

difficulty.

A study of how state-feedback contingency affects learning is theoretically important 

because standard models of reinforcement learning seem to predict that degrading feedback 

contingency should either facilitate learning or at least have no detrimental effects – which 
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sharply contradicts the results reported below. This is because standard reinforcement 

learning models assume that the amount of learning that occurs on each trial is proportional 

to the reward prediction error (RPE; Sutton & Barto, 1998), which is defined as the value of 

the obtained reward minus the value of the predicted reward. The idea is that when RPE = 0, 

the outcome was exactly as predicted, in which case there is nothing more to learn. However, 

an RPE that deviates from zero is a signal that an unexpected outcome occurred, and 

therefore that more learning is required.

When state-feedback contingency is high, positive and negative feedback are easy to predict, 

so extreme values of RPE will be rare. In contrast, when state-feedback contingency is low, 

positive and negative feedback become more difficult to predict, so the fluctuations in RPE 

will increase. There will be more unexpected errors, but also more unexpected correct 

feedbacks. For example, a B stimulus in the A response region will generate a larger RPE in 

the low-contingency condition of Figure 1 and therefore cause more unlearning of the 

correct A response on that trial. But these discrepant stimuli occur on only 20% of the trials. 

On the other 80% of trials, the stimuli are not discrepant. So for example, an A stimulus in 

the A response region will also generate a larger RPE in the low-contingency condition and 

therefore cause more (or better) learning of the correct A response on that trial1. By 

definition, predicted reward is computed before stimulus presentation, so any RPE model 

that predicts larger RPEs to discrepant stimuli in our low-contingency condition must 

necessarily also predict larger RPEs to nondiscrepant stimuli. Since nondiscrepant stimuli 

outnumber discrepant stimuli in the Figure 1 tasks by 4-to-1, RPE models predict that for an 

ideal observer, on 4 out of 5 trials there will be more strengthening of the correct 

associations in the low-contingency condition, whereas on 1 out of 5 trials there will be 

more strengthening of the incorrect associations. All else being equal, this should cause 

better learning in the low-contingency condition. Even so, it might be possible to build an 

RPE model in which the detrimental effects of the 20% of discrepant stimuli outweighs the 

beneficial effects of the 80% of nondiscrepant stimuli2. Unfortunately, investigating this 

possibility is well beyond the scope of the present article.

Rule-Based Versus Information-Integration Category-Learning Tasks

There is now abundant evidence that declarative and procedural memory both contribute to 

perceptual category learning (e.g., Ashby & Maddox, 2005, 2010; Eichenbaum & Cohen, 

2001; Poldrack et al., 2001; Poldrack & Packard, 2003; Squire, 2004). Furthermore, many 

studies have reported evidence that the role of feedback is very different during declarative-

memory mediated category learning than during procedural-memory mediated category 

learning (Ashby & O'Brien, 2007; Dunn, Newell, & Kalish, 2012; Filoteo, Lauritzen, & 

Maddox, 2010; Maddox, Ashby, & Bohil, 2003; Maddox, Ashby, Ing, & Pickering, 2004; 

Maddox & Ing, 2005; Maddox, Love, Glass, & Filoteo, 2008; Smith et al., 2014; 

Zeithamova & Maddox, 2007). These results call into question whether these differences 

1The standard model of this is that dopamine release is proportional to RPE (Schultz, 2002), and that synaptic plasticity increases with 
the amount by which dopamine levels deviate from baseline.
2One challenge for such models is to account for initial learning in the high-contingency condition. At the beginning of the session, 
error feedback occurs on half the trials (because accuracy is initially at chance). If the effect of each error feedback is more than four 
times greater than the effect of each correct feedback then it is not clear how the correct synpatic weights will ever grow enough to 
permit learning.
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might also extend to feedback contingency. As a result, the experiments described below 

examine the effects of degrading state-feedback contingency separately for tasks that recruit 

declarative versus procedural memory.

Much of the evidence that declarative and procedural memory both contribute to category 

learning comes from rule-based (RB) and information-integration (II) category-learning 

tasks. In RB tasks, the categories can be learned via some explicit reasoning process (Ashby, 

Alfonso-Reese, Turken, & Waldron, 1998). In the most common applications, only one 

stimulus dimension is relevant, and the participant's task is to discover this relevant 

dimension and then to map the different dimensional values to the relevant categories. A 

variety of evidence suggests that success in RB tasks depends on declarative memory and 

especially on working memory and executive attention (Ashby et al., 1998; Maddox et al., 

2004; Waldron & Ashby, 2001; Zeithamova & Maddox, 2006). In II category-learning tasks, 

accuracy is maximized only if information from two or more incommensurable stimulus 

components is integrated at some predecisional stage (Ashby & Gott, 1988; Ashby et al., 

1998). Evidence suggests that success in II tasks depends on procedural memory that 

depends on striatal-mediated reinforcement learning (Ashby & Ennis, 2006; Filoteo, 

Maddox, Salmon, & Song, 2005; Knowlton, Mangels, & Squire, 1996; Nomura et al., 2007).

Figure 1 shows examples of II category-learning tasks because bar width and orientation 

both carry useful but insufficient category information, and the optimal strategy requires 

integrating information from both dimensions in a way that is impossible to describe 

verbally. To create RB category-learning tasks, we simply rotated the II stimulus space in 

each condition 45° counterclockwise (and therefore all of the stimulus coordinates were also 

rotated). Note that this rotation converts the diagonal category bound to a vertical bound. 

Thus, following the rotation, the optimal categorization strategy is to use the explicit verbal 

rule “Respond A if the bars are narrow and B if the bars are wide.”

In summary, this article reports the results of what to our knowledge are the first 

experiments that examine the importance of feedback contingency on human category 

learning. As we will see, the results are striking. Degrading state-feedback contingency 

appears to abolish learning in most participants in two qualitatively different kinds of 

category-learning tasks.

Experiment 1

Experiment 1 directly examines the effects of feedback contingency on category learning. 

Four conditions are included: RB high contingency, RB low contingency, II high 

contingency, and II low contingency. The II conditions were exactly as shown in Figure 1. 

As mentioned, to create the RB conditions, we simply rotated the stimulus space from the 

two II conditions by 45° counterclockwise. Note that using this method, the RB and II 

categories are equivalent on all category separation statistics (e.g., optimal accuracy is 80% 

correct in all four conditions).

To our knowledge, no current theory makes a strong prediction about whether contingency 

degradation should have greater effects on RB or II learning. Even so, there are several 
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reasons to expect a larger effect in our RB conditions. First, probabilistic category learning is 

thought to defeat the explicit learning strategies that succeed in deterministic RB tasks and 

instead to favor striatal-mediated procedural learning (Knowlton et al., 1996). This 

hypothesis seems to predict that the greater randomness of the feedback in the low-

contingency conditions will disrupt RB learning more than II learning3. Second, II learning 

is thought to depend on a form of reinforcement learning (within the striatum), and since 

reducing feedback contingency increases RPEs, reinforcement learning models seem to 

predict better learning, or at least no disruption of learning in our II low-contingency 

condition than in our II high-contingency condition.

Methods

Participants and Design—Eighty participants were recruited from the University of 

California, Santa Barbara student community. There were a total of four experimental 

conditions: RB high contingency, RB low contingency, II high contingency and II low 

contingency. Twenty people each participated in only one of the four conditions, and they 

each received course credit for their participation. A priori power calculations using 

G*Power 3.1.9 (Faul, Erdfelder, Lang, & Buchner, 2007) suggest that with this sample size, 

power is greater than 0.8 for a moderate effect size (f = 0.25) with α = 0.05 and a between-

measure correlation of 0.25. Each session was approximately 45 minutes in duration and 

included 6 blocks of 100 trials each.

Stimuli and Apparatus—The stimuli were circular sine-wave gratings presented on 21-

inch monitors (1280 × 1024 resolution). All stimuli had the same size, shape and contrast, 

and differed only in bar width (as measured by cycles per degree of visual angle or cpd) and 

bar orientation (measured in degrees counterclockwise rotation from horizontal). The stimuli 

from the II high-contingency condition were generated first. The stimuli defining the A and 

B categories in this condition were generated as follows: 1) 300 random samples were drawn 

from the bivariate normal distribution that defined the category [means were (40, 60) and 

(60, 40) for categories A and B, respectively; all standard deviations were 17, and both 

covariances were 0]; 2) the samples were linearly transformed so that the sample statistics 

(means, variances, covariances) exactly matched the population parameters that defined the 

distributions; 3) each resulting sample value, denoted by the ordered pair (x1, x2), was used 

to generate a stimulus with bar width equal to  cpd and bar orientation equal to 

 degrees counterclockwise rotation from horizontal.

The procedure for creating the II low-contingency stimuli was exactly as described in the 

Introduction. Specifically, the same stimuli were used as in the II high-contingency 

condition. Next, all stimuli in both categories above and to the left of the optimal decision 

bound (x2 = x1) were assigned to category A and all stimuli below and to the right of the 

3If people resort to procedural strategies in RB tasks when contingency is degraded, then we would expect similar performance in the 
RB and II low-contingency conditions. Even so, many studies have shown that learning in II tasks is much slower than in one-
dimensional RB tasks (e.g., Ashby & Maddox, 2005), so similar performance in the RB and II low-contingency conditions would be 
evidence of a greater RB impairment – that is, the contingency degradation would cause performance to drop more in the RB 
conditions than in the II conditions.
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optimal bound were assigned to category B. Finally, 20% of the stimuli in each category 

were selected randomly (all with the same probability) and re-assigned to the contrasting 

category.

The stimuli for the RB high-contingency condition were created by rotating the II high-

contingency (x1, x2) stimulus space (and therefore all of the stimulus coordinates) 45° 

counterclockwise. The stimuli for the RB low-contingency condition were created by 

rotating the II low-contingency stimulus space 45° counterclockwise. Thus, the optimal 

strategy in both RB conditions was to respond A if the disk had thin bars and B if the disk 

had thick bars.

The stimuli were generated and presented using the Psychophysics Toolbox (Brainard, 1997) 

in the MATLAB software environment, and subtended an approximate visual angle of 5°. 

The order in which the stimuli were presented was randomized across participants and 

sessions.

Procedure—Participants were told that there were two equally likely categories, that on 

each trial they would see a single stimulus, and that they were to use the feedback to learn 

the correct category assignment for each of the presented stimuli. Within each condition, all 

participants saw the same 600 stimuli, but the presentation order was randomized across 

participants.

Stimulus presentation, feedback, response recording and RT measurement were acquired 

and controlled using MATLAB on a Macintosh computer. Responses were given on a 

standard QWERTY keyboard; the “d” and “k” keys had large “A” and “B” labels placed on 

them, respectively. Auditory feedback was given for correct and incorrect responses made 

within a 5-second time limit. Correct responses were followed by a brief (1-sec) high-

pitched (500 Hz) tone, and incorrect responses were followed by a brief (1-sec) low-pitched 

(200 Hz) tone. If a key was pressed that was not one of the marked response keys, a distinct 

tone played and the screen displayed the words “wrong key.” If the response was made 

outside of the time limit, the words “too slow” appeared on the screen. In both the wrong 

key and the too slow cases, the trial was terminated with no category-related feedback, and 

these trials were excluded from analysis.

Results

Accuracy-based Analyses—Figure 2 shows the proportion of correct responses in each 

30-trial block for the RB conditions, and Figure 3 shows the same thing for the II conditions. 

Visual inspection suggests that average accuracy improved over the course of the experiment 

for both high-contingency conditions, but hovered slightly above chance (50%) with no 

improvement over the course of the experiment for both low-contingency conditions.

To test these conclusions more rigorously and to examine whether there were any 

differences in how well participants learned the category structures in each condition, a two-

factors repeated measures ANOVA (high contingency versus low contingency × block) was 

performed separately for the RB and II conditions. For the RB conditions, there was a 

significant effect of condition, [F(1, 38) = 31.43, p < 0.001, η2 = .326], a significant effect of 
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block [F(19, 722) = 2.45, p < 0.001, η2 = .040], but no significant interaction between 

condition and block [F(19, 722) = 1.17, p = 0.276, η2 = .019]. This indicates that there was a 

significant difference in performance between RB high-contingency and RB low-

contingency conditions. In the II conditions, there was a significant effect of condition, [F(1, 

38) = 13.56, p < 0.001, η2 = .126], no significant effect of block [F(19, 722) = 1.170, p = .

277, η2 = .025], and a small significant interaction between condition and block [F(19, 722) 

= 1.619, p = 0.046, η2 = .035]. Similar to the RB results, this also indicates that there was a 

significant difference in performance between II high-contingency and II low-contingency 

conditions.

As another test of learning, post hoc repeated measures t-tests were performed to compare 

accuracy in the last block to accuracy in the first block. The results showed a significant 

increase in accuracy in both high-contingency conditions [RB: t(19) = 4.286, p < 0.001; II: 

t(19) = 3.823, p = .001], but not in either low-contingency condition [RB: t(19) = 0.1915, p 
= 0.85; t(19) = .434, p = 0.67]. This indicates that there was significant learning in both 

high-contingency conditions, but not in either of the low-contingency conditions.

Model-based Analyses—Statistical analyses of the accuracy data suggested that 

participants performed significantly better in both of the high-contingency conditions 

compared to the low-contingency conditions. However, before interpreting these results it is 

important to determine the decision strategies that participants adopted, and especially 

whether participants in the high-contingency conditions were using strategies of the optimal 

type.

To answer these questions, we fit decision bound models to the last 100 responses of each 

participant in the experiment. Decision bound models assume that participants partition the 

perceptual space into response regions (Maddox & Ashby, 1993). On every trial, the 

participant determines which region the percept is in and then gives the associated response. 

Three different types of models were fit to each participant's responses: models assuming an 

explicit rule-learning strategy, models assuming a procedural strategy, and models that 

assume random guessing. The rule-learning models assumed a one-dimensional rule and 

included two free parameters (a decision criterion on the single relevant dimension and 

perceptual noise variance). Although the optimal rule in the RB conditions was on bar width, 

we fit separate rule-learning models that assumed a rule on bar width or on bar orientation in 

every condition. The procedural-learning models, which assumed a decision bound of 

arbitrary slope and intercept, had three free parameters (slope and intercept of the decision 

bound and perceptual noise variance). Two different guessing models were fit – one that 

assumed the probability of responding A equaled  on every trial (zero free parameters) and 

one that assumed the probability of responding A equaled p on every trial (where p was a 

free parameter). This latter model was included to detect participants who just responded A 

(or B) on almost every trial.

All parameters were estimated using the method of maximum likelihood and the statistic 

used for model selection was the Bayesian Information Criterion (BIC; Schwarz, 1978), 

which is defined as

Ashby and Vucovich Page 9

J Exp Psychol Learn Mem Cogn. Author manuscript; available in PMC 2016 November 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(1)

where r is the number of free parameters, N is the sample size, and L is the likelihood of the 

data given the model. The BIC statistic penalizes models for extra free parameters. To 

determine the best-fitting model within a group of competing models, the BIC statistic is 

computed for each model, and the model with the smallest BIC value is the winning model.

Each participant was classified according to whether his or her responses were best fit by a 

model that assumed a decision strategy of the optimal type – hereafter referred to as ‘optimal 

type’ participants – or whether those responses were best fit by a model that assumed a 

suboptimal decision strategy – hereafter referred to as ‘suboptimal type’ participants. Note 

that participants whose responses were best fit by a guessing model were classified as 

suboptimal types in all conditions. The results are shown in Figure 4. Note that in both high-

contingency conditions, most participants were optimal types. These results are consistent 

with similar previous experiments (e.g., Ell & Ashby, 2006). In contrast, in both low-

contingency conditions, fewer participants were optimal types and more participants 

resorted to guessing in both the RB and II conditions.

Figure 5 shows the best-fitting decision bounds for each participant in every condition, 

except for those participants whose responses were best accounted for by a guessing strategy 

(in these cases, there is no decision bound to plot). This figure clearly shows that degrading 

feedback contingency increased the number of participants who adopted suboptimal bounds 

that are associated with lower overall accuracy. In both the RB and II conditions, more 

participants had a best-fitting decision bound near the optimal bound when feedback 

contingency was high than when it was low. In fact, the figure underestimates this effect 

because it does not show participants who responded as if they were guessing. Whereas only 

one participant in each high-contingency condition was classified as a guesser, there were at 

least 7 guessers in each low-contingency condition.

So far our analyses indicate that a model assuming a decision strategy of the optimal type 

provides the best account of the responses of more participants in the high-contingency 

conditions than in the low-contingency conditions. But these analyses do not indicate how 

well or how consistently participants use that strategy. In other words, for each participant, 

we have goodness-of-fit values (i.e., BIC scores) for every candidate model. If the best fit 

(i.e., lowest BIC value) is by a model that assumes an optimal-type strategy then we know 

that that model provides a better account of the participant's responses than any other model, 

but from this fact alone we do not know whether the fit was good or bad. It is possible that 

all models provided poor fits and the optimal-type model just happened to provide the least 
poor fit. Unfortunately, the numerical value of the raw BIC score does not help with this 

problem because BIC scores increase with sample size, regardless of the quality of fit (see 

Eq. 1).

Any model that assumes either a rule or procedural decision strategy will provide a poor fit 

to randomly generated data. With random data, the guessing model will provide the best fit. 
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So one way to assess how well a decision bound model (DBM; either rule or procedural) fits 

the data is to compare its fit to the fit of the guessing model. Bayesian statistics allows a 

method to make such comparisons (via the so-called Bayes factor). If the prior probability 

that the DBM model MDBM is correct is equal to the prior probability that the guessing 

model MG is correct, then under certain technical conditions (e.g., Raftery, 1995), it can be 

shown that

(2)

where P(MDBM|Data) is the probability that the DBM model is correct, assuming that either 

the DBM or guessing model is correct. Thus, for example, if the DBM model is favored over 

the guessing model by a BIC difference of 2, the probability that the DBM model is correct 

is approximately .73. In other words, even though the DBM fits better than the guessing 

model, the fit is not very good because there is better than 1 chance in 4 that the data were 

just generated by random coin tossing. In contrast, if the BIC difference is 10, then the 

probability that the DBM model is correct is approximately .99, which means that we can be 

very confident that this participant was consistently using a single decision strategy that is 

well described by our DBM. In this case, the DBM provides an excellent fit to the data.

Following this logic, we computed the Eq. 2 probabilities for every participant in 

Experiment 1, where BICDBM was the BIC score of the best-fitting DBM. In the RB 

conditions, the mean value of P(MDBM|Data) (i.e., across participants) was .951 in the high-

contingency condition and .632 in the low-contingency condition [t(38) = 2.73, p < .01]. So 

the DBMs are fitting the data well when contingency is high and poorly when contingency is 

low. In the II conditions, the means were .952 in the high-contingency condition and .700 in 

the low-contingency condition [t(38) = 2.51, p < .01]. Again, the DBMs fit much better 

when contingency is high than when it is low.

In summary, the modeling analysis reinforces the results of the more traditional statistical 

analyses. Degrading feedback contingency dramatically reduced the ability of participants to 

learn the category structures, and this reduction was approximately equally large with RB 

and II category structures. Furthermore, degrading feedback contingency not only 

significantly reduced accuracy, but it also impaired the ability of participants to discover a 

decision strategy of the optimal type.

Discussion

The results of this experiment were striking. Although exactly the same stimuli were used in 

the high- and low-contingency conditions, and the same optimal accuracy was possible, 

learning was good when feedback contingency was high and we saw little or no evidence for 

any learning when feedback contingency was low. This result was equally true for both RB 

and II categories. In fact, note that the effects of contingency degradation were so strong that 

they caused a violation of the ubiquitous result that human performance is far better in one-

dimensional RB tasks than in II tasks (e.g., Ashby & Maddox, 2005) – specifically, Figures 
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2 and 3 show that performance in the high-contingency II condition was considerably better 

than in the low-contingency RB condition.

One somewhat puzzling aspect of Experiment 1, which occurred in both the RB and II 

conditions, is that although there was no evidence for any improvement in accuracy across 

blocks in the low-contingency conditions, accuracy was nevertheless above chance. 

Specifically, mean accuracy during the last 100 trials was .573 in the RB low-contingency 

condition and .580 in the II low-contingency condition, both of which are significantly 

above chance [RB: t(19) = 3.05, p < .05; II: t(19) = 3.81, p < .05]. A closer examination of 

the individual participant data somewhat clarifies this apparent paradox.

In the RB condition, 4 of the 20 low-contingency participants achieved an accuracy of better 

than 70% correct during their last 100 trials. This is in contrast to 13 of 20 who met this 

criterion in the high-contingency condition. If these 4 more accurate participants are 

removed from the analysis, then the mean accuracy of the remaining 16 low-contingency 

participants is not significantly above chance [mean proportion correct = .533, t(15) = 1.718, 

p > .05]. So the fact that accuracy in the RB low-contingency condition was significantly 

above chance was completely driven by these 4 participants. The modeling analysis 

suggested that 3 of these 4 participants used a one-dimensional rule and one used a 

procedural strategy. Figure 4 shows that 12 of the 20 RB low-contingency participants 

appeared to be using a one-dimensional rule of the optimal type (as opposed to 19 of 20 in 

the high-contingency condition). However, the rule users in the RB low-contingency 

condition were significantly less accurate than the rule-users in the RB high-contingency 

condition (high-contingency = 72.5% correct; low-contingency = 60.5% correct; t(29) = 

3.99, p < .05) and the low-contingency participants used those rules significantly less 

reliably (mean Eq. 2 values: high-contingency = 1.0; low-contingency = .967; t(29) = 2.26, p 
< .05).

In the II low-contingency condition, only one participant achieved an accuracy of 70% 

correct or higher during the last 100 trials (in contrast to 10 of 20 participants in the high-

contingency condition), but this participant's responses were best accounted for by a one-

dimensional rule. In fact, 8 of the 20 II low-contingency participants appeared to be using a 

one-dimensional rule (see Figure 4), and these 8 participants averaged 63% correct during 

the last 100 trials, in contrast to an average of 54.6% for the other 12 participants. Of these 

12 non-rule users, 8 appeared to be guessing (with a mean accuracy of 50.1% correct) and 4 

appeared to be using a procedural strategy. The accuracy of these latter 4 participants over 

the last 100 trials averaged 63.8%, so 4 of our 20 participants showed evidence of weak 

procedural learning. Even so, these 4 procedural-strategy users were significantly less 

accurate than the 12 procedural-strategy users in the II high-contingency condition (high-

contingency = 70.6% correct; low-contingency = 63.8% correct; t(14) = 2.136, p < .05).

In summary, in the RB and II high-contingency conditions, most participants successfully 

learned the categories, in the sense that their last-block accuracy was significantly above 

chance [RB: mean proportion correct = .733, t(19) = 13.511, p < .000; II: mean proportion 

correct = .681, t(19) = 8.678, p < .001] and they appeared to use a strategy of the optimal 

type. In contrast, most participants in both low-contingency conditions showed no evidence 
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of learning. A few participants in both low-contingency conditions did appear to learn. 

However, even these ‘successful’ participants performed more poorly than their counterparts 

in the high-contingency conditions. Thus, degrading feedback contingency appeared to have 

a catastrophic effect on learning – in both RB and II conditions. To our knowledge, this is 

the first demonstration that state-feedback contingency plays such a critical role in category 

learning.

Experiment 2

In all conditions of Experiment 1, an ideal observer would respond incorrectly to 20% of the 

stimuli. We refer to these as the discrepant stimuli. One possible confound with Experiment 

1 is that the high-contingency conditions included more discrepant stimuli near the optimal 

decision bound than the low-contingency conditions. Because of this, an ideal observer 

operating in the presence of perceptual noise will perform better in the high-contingency 

conditions than in the low-contingency conditions. This is because noise is more likely to 

move a discrepant stimulus to the opposite side of the decision bound in the high-

contingency condition (since more discrepant stimuli are near the bound). Thus, the ideal 

observer would respond correctly to more discrepant stimuli in the high-contingency 

conditions than in the low-contingency conditions. This effect is not large4. Without noise, 

an ideal observer responds identically in the high- and low-contingency conditions. As noise 

levels increase, the ideal observer begins to show an accuracy advantage in the high-

contingency conditions, and this advantage increases to a maximum value of about 4.4% at 

an unrealistically large noise level (i.e., when the perceptual noise is about equal to the 

variability within each category on the relevant dimension). As noise levels increase even 

higher, the accuracy advantage of the high-contingency conditions slowly decreases to 0 (at 

infinite noise levels).

The human observer always operates in the presence of perceptual noise (Ashby & Lee, 

1993), although human perceptual noise will be much less than the variability level at which 

the ideal observer shows a maximum accuracy advantage in the high-contingency conditions 

of Experiment 1. So at human-like levels of perceptual noise, an ideal observer will perform 

less than 4% better in the high-contingency conditions than in the low-contingency 

conditions. Humans are not ideal observers, so we expect the high-contingency advantage of 

the best human to be less than this and Figures 2 and 3 show that the observed human high-

contingency advantage is much larger than 4%. Therefore, this factor alone does not account 

for our results. Even so, because the ideal observer shows a small accuracy advantage in the 

high-contingency conditions, it is difficult to determine how much of the observed high-

contingency accuracy advantage is due to a contingency difference, rather than to this 

difference in ideal observer performance.

Experiment 2 was designed to address this issue. Our solution was simple. Basically, we 

replicated all four conditions of Experiment 1, except we created a no-stimulus zone on 

either side of the optimal decision bound simply by moving (i.e., translating) the coordinates 

4We investigated this issue via computer simulation. For each of 41 different noise levels, we created separate high- and low-
contingency A and B categories that each contained 500,000 exemplars. We then computed the accuracy of the ideal observer on these 
1,000,000 trials.
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of all stimuli away from the bound by a fixed distance. This distance was chosen to be about 

equal to the perceptual variability exhibited by the Experiment 1 participants – that is, to the 

mean standard deviation of perceptual noise from the best-fitting decision bound models in 

Experiment 1. Figure 6 shows the resulting stimuli for the II conditions. The stimuli in the 

RB conditions were just 45° rotations of the II categories (as in Experiment 1). Because of 

the no-stimulus zone on either side of the optimal bound, an ideal observer displaying the 

same amount of perceptual noise as the Experiment 1 participants would perform 

identically5 in the high- and low-contingency conditions of Experiment 2.

Methods

Participants and Design—Experiment 2 included 101 participants recruited from the 

University of California, Santa Barbara student community divided as follows among the 

same four experimental conditions as in Experiment 1 as follows: RB high contingency: 25 

participants, RB low contingency: 30 participants, II high contingency: 22 participants, and 

II low contingency: 24 participants. A priori power calculations using G*Power 3.1.9 (Faul 

et al., 2007) suggest that with this sample size, power is again greater than 0.8 for a 

moderate effect size (f = 0.25) with α = 0.05 and a between-measure correlation of 0.25.

Stimuli and Apparatus—The stimuli were generated in a two-step procedure. First, the 

stimuli from all conditions were generated exactly as in Experiment 1. Second, in each 

condition, a no-stimulus region was created on both sides of the optimal decision bound by 

translating the coordinates of every stimulus away from the bound 3.5 units in the direction 

orthogonal to the bound. The resulting coordinates of every stimulus were then used to 

created a stimulus disk following the same procedures as in Experiment 1.

Procedures—All procedures were identical to Experiment 1.

Results

Accuracy-based Analyses—Figure 7 shows the proportion of correct responses in each 

30-trial block for the RB and II conditions. Visual inspection suggests that average accuracy 

improved over the course of the experiment for the RB high-contingency condition, 

improved slightly for the II high-contingency condition, but hovered slightly above chance 

(50%) with no improvement over the course of the experiment for both low-contingency 

conditions.

To test these conclusions more rigorously and to examine whether there were any 

differences in how well participants learned the category structures in each condition, a two-

factors repeated measures ANOVA (high contingency versus low contingency by block) was 

performed separately for the RB and II conditions. For the RB conditions, there was a 

significant effect of condition, [F(1, 53) = 28.53, p < .001, η2 = .321], a significant effect of 

5The no-stimulus zone also greatly reduces the high-contingency advantage of the ideal observer that occurs when perceptual noise is 
much larger than we expect in human observers. Simulations identical to those described in footnote 4 showed that the maximum 
accuracy advantage (percent correct in the high-contingency condition minus percent correct in the low-contingency condition) of the 
ideal observer in Experiment 2 was 1.6%, and this occurred when the standard deviation of perceptual noise was even greater than the 
standard deviation of the stimulus coordinates within each category on the relevant dimension
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block, [F(19, 1007) = 2.442, p < .001, η2 = .029], and no significant interaction between 

block and condition [F(19, 1007) = 1.301, p = .173, η2 = .016]. This indicates that there was 

a significant difference in performance between RB high-contingency and RB low-

contingency conditions. In the II conditions, there was a significant effect of condition, [F(1, 

44) = 20.67, p < .001, η2 = .140], no significant effect of block, [F(19, 836) = 0.785, p = 

0.727, η2 = .014], and a significant interaction between block and condition [F(19, 836) = 

1.945, p < .01, η2 = .036]. Similar to the RB results, this also indicates that there was a 

signiificant difference in performance between the II high-contingency and II low-

contingency conditions.

As another test of learning, post hoc repeated measures t-tests were performed to compare 

accuracy in the last block to accuracy in the first block. The results showed a significant 

increase in the RB high-contingency condition [t(24) = 2.846, p < .01], but not in the other 

three conditions [RB: t(29) = .310, p = .759; II high contingency: t(21) = .816, p = .424; II 

low contingency: t(23) = −.175, p = .863].

Model-based Analyses—Statistical analyses of the accuracy data suggested that 

participants performed significantly better in both high-contingency conditions than in either 

corresponding low-contingency condition. Furthermore, we found no evidence of learning in 

either low-contingency condition. However, before interpreting these results further, it is 

important to determine the decision strategies that participants adopted, and especially 

whether participants in the high-contingency conditions were using strategies of the optimal 

type. To answer these questions, we fit decision bound models to the last 100 responses of 

each participant in the experiment. Just as in Experiment 1, three different types of models 

were fit to each participant's responses: models assuming an explicit rule-learning strategy, 

models assuming a procedural strategy, and models that assume random guessing.

The results are shown in Figure 8. Note that in both high-contingency conditions, most 

participants used a strategy of the optimal type. In contrast, in the low-contingency 

conditions, 40% of the RB participants and half of the II participants resorted to guessing. 

Figure 9 shows the best-fitting decision bounds for each participant in every condition, 

except for those participants whose responses were best accounted for by a guessing strategy 

(in these cases, there is no decision bound to plot). This figure clearly shows that degrading 

feedback contingency increased the number of participants who adopted suboptimal bounds. 

In both the RB and II conditions, the decision strategies of more participants in the high-

contingency condition were closer to the optimal strategy than in the low-contingency 

condition. As in Experiment 1, the figure underestimates this effect because it does not show 

participants who responded as if they were guessing. Whereas, there were no guessers in the 

RB high-contingency condition and only 3 guessers in the II high-contingency condition, 

there were 12 guessers in each low-contingency condition.

As in Experiment 1, we also computed the Eq. 2 probabilities for every participant to assess 

the quality of the DBM fits. For both RB and II categories, the quality of the DBM fit 

(relative to guessing) is significantly better when contingency is high than when it is low 

[RB Eq. 2 means: high-contingency = .998, low-contingency = .644, t(53) = 3.785, p < .01; 

II Eq. 2 means: high-contingency = .853, low-contingency = .516, t(44) = 2.793, p < .01].
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Discussion

The Experiment 2 results closely matched the results of Experiment 1. Learning was good in 

both high-contingency conditions, whereas the learning curves were essentially flat in both 

low-contingency conditions with a mean accuracy during each of the last three blocks of 

training below 60% correct. Even so, for both RB and II categories, mean accuracy over the 

last 100 trials was significantly above chance in the low-contingency conditions [RB: 

percent correct = .574, t(29) = 2.877, p < .05; II: percent correct = .581, t(23) = 4.802, p < .

01]. To understand why, we need to look more closely at the data of each individual 

participant.

In the case of RB categories, 5 of the 30 low-contingency participants learned well. Their 

mean accuracy was 76.6% correct, they all used the appropriate one-dimensional rule, and 

they all used this rule reliably (Eq. 2 mean = 1). When these 5 participants are removed from 

the low-contingency analysis, the mean accuracy of the remaining 25 participants is 53.6% 

correct, which is not significantly different from chance [t(24) = 1.47, p = .077]. So the story 

for the RB low-contingency condition is fairly simple – 5 participants learned well and 25 

participants showed no (statistical) evidence of any learning. In contrast, in the RB high-

contingency condition, 22 of 25 participants had an accuracy of 70% correct or better (and 

the accuracies of the other three were all above 60%), and the mean accuracy of all 

participants during the last block was significantly greater than chance [mean proportion 

correct = .720, t(25) = 12.547, p < .001].

In the II conditions, only 1 of 24 participants exceeded 70% correct during the last 100 trials 

in the low-contingency condition, and this single participant only achieved an accuracy of 

72% correct. In contrast, 8 of the 22 high-contingency participants exceeded 70% correct 

and the mean accuracy of all high-contingency participants during the last block was 

significantly greater than chance [mean proportion correct = .679, t(22) = 9.626, p < .001]. 

Furthermore, the responses of 6 of the 24 low-contingency participants were best fit by a 

procedural strategy model, in contrast to 12 of the 22 high-contingency participants. The 

accuracy of the low-contingency procedural strategy participants was 67.2% correct, which 

is considerably higher than the accuracy of the low-contingency rule users (58.9%) or 

guessers (53.2%). So it appears that the most important reason that the low-contingency 

accuracy was above chance is because 6 of the 24 participants exhibited some procedural 

learning. Even so, it is important to note that the accuracy of the low-contingency procedural 

strategy participants was marginally lower than the accuracy of the high-contingency 

procedural strategy participants [high-contingency = 70.1% correct, low-contingency = 

67.2%, t(16) = 1.357, p = .097].

In summary, the results of Experiment 2 closely matched the results of Experiment 1. 

Learning was good in both high-contingency conditions, whereas most participants in both 

low-contingency conditions showed no evidence of any learning. On the other hand, a few 

participants did appear to learn in both low-contingency conditions, and in general these few 

learners seemed to perform better than the few learners found in Experiment 1. Much more 

important however, is that the results of Experiment 2 provide strong evidence that the poor 

performance of the Experiment 1 low-contingency participants was not because the high-

contingency categories in Experiment 1 included more discrepant stimuli near the category 
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bound than the low-contingency categories. Instead, the two experiments together strongly 

support the hypothesis that contingency degradation greatly impairs both RB and II learning.

General Discussion

The present article describes the first known investigation of the effects of feedback 

contingency on human category learning. The results were dramatic. In two different 

experiments, and in both RB and II tasks, learning was good when state-feedback 

contingency was high, but degrading feedback contingency seemed to abolish all learning in 

most participants, even though our high- and low-contingency conditions used exactly the 

same stimuli, had exactly the same optimal strategies, and exactly the same optimal 

accuracies.

Whereas most low-contingency participants showed no evidence of any learning, a small 

group (between 10% and 20%) of participants did show evidence of learning in every low-

contingency condition. In most cases, the participants who did show evidence of learning in 

the low-contingency conditions performed worse than their high-contingency counterparts, 

so even in this group contingency degradation seemed to impair learning. The exception was 

in the RB low-contingency condition of Experiment 2. Five of the 30 participants in that 

condition performed as well as the 25 participants in the Experiment 2 RB high-contingency 

condition. Thus, at least with the levels of contingency degradation studied here, it appears 

that normal RB learning is possible in at least some participants.

The results of Experiments 1 and 2 are incompatible with almost all current theories of 

learning. For example, as mentioned earlier, standard reinforcement learning models 

generally predict either better learning in the low-contingency conditions, or at worst, no 

difference between the low- and high-contingency conditions. By definition, noncontingent 

rewards are unpredictable. As such, they generate large reward prediction errors (RPEs) – in 

fact, for any given positive feedback rate, noncontingent rewards induce the largest possible 

RPEs. Reinforcement learning models predict that the amount of learning that occurs on 

each trial increases with the RPE, and because the feedback reinforces the optimal response 

on 80% of the trials in all conditions, the standard reinforcement learning model should 

predict better learning in our low-contingency conditions – a prediction that is strongly 

incompatible with our results.

Crossley, Ashby, and Maddox (2013) proposed a modification to the standard reinforcement 

learning model that does correctly predict our II results. Specifically, they proposed that II 

category learning is impaired when feedback contingency is degraded because the amount of 

dopamine release that occurs to an unexpected reward is modulated by feedback 

contingency. Working within the framework of the COVIS theory of category learning 

(Ashby et al., 1998), they proposed that when rewards are contingent on behavior, dopamine 

fluctuations with RPE are large, whereas if rewards are noncontingent on behavior, then 

dopamine fluctuations will be low (regardless of the RPE). This hypothesis is supported by 

functional magnetic resonance imaging studies in humans that have identified activity in the 

dorsal striatum that is correlated with RPE when feedback is contingent on behavior, but not 

when feedback is independent of behavior (Haruno & Kawato, 2006; O'Doherty et al., 
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2004). In addition, Crossley et al. (2013) also presented behavioral data that indirectly 

supported this hypothesis. An adaptive justification for this assumption is that when rewards 

are not contingent on behavior, then changing behavior cannot increase the amount or 

probability of reward. As a result, there is nothing of benefit to learn. If dopamine fluctuates 

under such conditions, then reinforcement learning models predict that learning will occur, 

but it will be of behaviors that have no adaptive value. Thus, this hypothesis predicts that the 

dopamine fluctuations that occur to feedback in the low-contingency II condition will be 

smaller than the fluctuations that occur in the high-contingency II condition, and as a result, 

learning will be better with highly contingent feedback. Our results support this prediction 

of the Crossley et al. (2013) hypothesis.

One interesting result that was observed both in Experiments 1 and 2 was that the effects of 

degrading contingency were similar in the RB and II conditions. This might be considered 

somewhat of a surprise because, as mentioned earlier, probabilistic category learning is 

thought to defeat the explicit learning strategies that succeed in deterministic RB tasks and 

instead to favor striatal-mediated procedural learning (Knowlton et al., 1996). Furthermore, 

our low-contingency conditions are more like the probabilistic tasks that motivated this 

hypothesis (which used binary-valued stimulus dimensions) than our high-contingency 

conditions. For this reason, one might have expected better performance in the II low-

contingency condition than in the RB low-contingency condition.

Given that the RB and II results were so similar, one might naturally ask whether the 

mechanism responsible for the failure of participants to learn in the low-contingency 

conditions is the same in the RB and II tasks. As described earlier, there are so many 

qualitative differences in the role of feedback during RB and II learning and performance 

that a common mechanism can not be assumed. Unfortunately, none of our results speak to 

this question. Even so, there is theoretical reason to expect that the failures are due to 

different underlying causes.

The COVIS theory of category learning assumes separate explicit reasoning and procedural-

learning categorization systems that compete for access to response production (Ashby et al., 

1998; Ashby, Paul, & Maddox, 2011). The explicit system uses executive attention and 

working memory to select and test simple verbalizable hypotheses about category 

membership. The procedural system uses dopamine-mediated reinforcement learning to 

gradually associate categorization responses with regions of perceptual space. COVIS 

assumes that the explicit system dominates in RB tasks and the procedural system dominates 

in II tasks.

COVIS suggests that the impaired RB and II learning we saw when contingency was 

degraded was likely due to different causes. As mentioned earlier, the Crossley et al. (2013) 

generalization of the COVIS procedural system predicts that learning was poor in the low-

contingency II condition because low state-feedback contingency dampens the dopamine 

response to feedback. The COVIS explicit system learns by constructing and testing explicit 

hypotheses about category membership. If feedback indicates that the current hypothesis is 

incorrect, then a new rule or hypothesis is selected and attention is switched from the old 

rejected rule to the newly selected rule. In the high-contingency condition, a participant 
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using the correct rule will receive negative feedback only for stimuli for which response 

confidence is low. The correct rule in our RB task, was “Respond A if the bars are thin and 

B if the bars are thick.” In the high-contingency condition, a participant using this rule 

would receive negative feedback only (or almost only) when the presented stimulus had bars 

of nearly equivocal width. A participant receiving such negative feedback is likely to 

attribute the error to misperceived bar width or the use of an inaccurate response criterion, 

and is unlikely to conclude that the rule was wrong. In the low-contingency condition 

however, negative feedback would sometimes be received when the stimulus had bars of an 

extreme width. In this case, the error is unlikely to be due to misperception or a faulty 

criterion, so an obvious inference is that the rule was wrong. For these reasons, participants 

who generate and test explicit rules seem more likely to switch away from the correct rule in 

the low-contingency condition than in the high-contingency condition, leading to impaired 

learning when contingency is degraded. The original version of COVIS switched rules with 

equal probability on all error trials. Thus, that model predicts no difference between our RB 

low- and high-contingency conditions. But an obvious modification, which would seemingly 

account for our results, is that following negative feedback, the probability of switching 

from the current rule to a new rule is inversely related to response confidence. An important 

goal of future research should be to determine why learning is so poor in RB and II tasks 

when feedback contingency is degraded.

Another important question raised by our results is why have so many articles reported what 

appears to be good learning in probabilistic categorization tasks that used stimuli that varied 

on binary-valued dimensions (e.g., Estes, 1986; Estes et al., 1989; Gluck & Bower, 1988; 

Knowlton et al., 1994; Medin & Schaffer, 1978)? Given that the use of binary-valued stimuli 

should, in general, cause state-feedback contingency to be lower than in our high-

contingency conditions, then an extrapolation of our results might lead one to expect poor 

learning of probabilistic categories when the stimuli vary on binary-valued dimensions. Our 

experiments were not designed to answer this question. Nevertheless, some interesting 

hypotheses come to mind. First, with binary-valued dimensions there are only a few stimuli, 

so explicit memorization strategies could succeed, whereas such strategies are useless in our 

experiments since participants never saw the same stimulus twice. Second, with binary-

valued dimensions, all stimuli are typically the same distance from the optimal 

categorization boundary, which means that all stimuli are typically equally difficult to 

categorize. State-feedback contingency is essentially a correlation – between response 

confidence (i.e., the predictor) and feedback valence (i.e., the outcome). A correlation can 

only be computed when there are multiple values of the predictor. Perceptual noise could 

cause participants to assume there are multiple predictors in experiments with binary-valued 

stimuli, in which case a low value of feedback contingency would be computed. But it also 

seems possible that participants in such experiments might realize that there are only two 

values on each stimulus dimension, in which case state-feedback contingency is impossible 

to compute. So another possibility could be that with binary-valued stimulus dimensions, 

people are poor at estimating state-feedback contingency. Obviously, more research on this 

interesting issue is needed.

In summary, our results suggest that feedback contingency is a critically important variable 

during category learning. This novel finding has both important practical and theoretical 
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implications. On the practical side, our results suggest that in any real-world feedback-based 

training, conditions should always be arranged so that feedback contingency is maximized. 

Theoretically, the Crossley et al. (2013) proposal that reducing contingency reduces the gain 

on dopamine fluctuations should be tested, and more theoretical proposals are needed about 

other possible ways in which feedback contingency can affect learning.
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Figure 1. 
Stimuli and two sets of overlapping categories. The top panel shows six sample stimuli from 

the categories shown in the bottom two panels. The middle panel shows category structures 

in which feedback contingency is high and the bottom panel shows category structures in 

which feedback contingency is low. In both cases, optimal accuracy is 80% correct.

Ashby and Vucovich Page 23

J Exp Psychol Learn Mem Cogn. Author manuscript; available in PMC 2016 November 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Accuracy for each block of trials in the RB conditions of Experiment 1.
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Figure 3. 
Accuracy for each block of trials in the II conditions of Experiment 1.
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Figure 4. 
Number of participants whose responses were best fit by a model that assumed a rule-

learning, procedural-learning, or guessing strategy in each of the four experimental 

conditions.
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Figure 5. 
Best-fitting decision bounds for each participant in every condition. The broken lines denote 

the optimal boundaries. Note that participants whose responses were best accounted for by a 

guessing strategy are not represented in this figure.
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Figure 6. 
The high- and low-contingency II categories used in Experiment 2.
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Figure 7. 
Accuracy for each block of trials in the RB (top panel) and II (bottom panel) conditions of 

Experiment 2.

Ashby and Vucovich Page 29

J Exp Psychol Learn Mem Cogn. Author manuscript; available in PMC 2016 November 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. 
Number of participants whose responses were best fit by a model that assumed a rule-

learning, procedural-learning, or guessing strategy in each of the four experimental 

conditions of Experiment 2.

Ashby and Vucovich Page 30

J Exp Psychol Learn Mem Cogn. Author manuscript; available in PMC 2016 November 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 9. 
Best-fitting decision bounds for each participant in every condition of Experiment 2. The 

broken lines denote the optimal boundaries. Note that participants whose responses were 

best accounted for by a guessing strategy are not represented in this figure.
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