Skip to main content
. Author manuscript; available in PMC: 2016 Nov 4.
Published in final edited form as: IEEE Trans Med Imaging. 2016 Jun 2;35(11):2413–2424. doi: 10.1109/TMI.2016.2576360
ALGORITHM II: MIND Demons

Input Input images (I0 and I1)
Number of pyramid levels (N)
Maximum numbers of iterations (Nk)
Gradient magnitude tolerance (γS)
Metric value convergence tolerance (γF)
Convergence window (W)
Registration parameters (σp, tp, , σU, and σD)

Output Diffeomorphism (ψ)

1 Initialize ϕ0(0.5) = ϕ1 (0.5) = Id and δ = 0
For level < N
2  If > 0, upsample ϕ0 and ϕ1
 For iteration k <Nk
3   Compute mI0ϕ0 and mI1ϕ1
4   Compute S, ∇0S, and ∇1S using (20) and (21)
5   Compute the maximum normalized gradient magnitude
   δ=maxxΩ{1C(0S(x)2+1S(x)2)}
  where C=xΩ(0S(x)2+1S(x)2)
6   If k > W, compute a gradient ∇F of a line fitted to S in (20) evaluated from kW to k.
7   If δ < γS or ∇F < γF, Stop.
8   Compute v0k and v1k using (9) and (10) where K is approximated by GσU
9   Estimate η0k and η1k using (12)
10   Regularize (ϕ0k)1 and (ϕ1k)1 based on (14) using GσD
11   Estimate ϕ0k and ϕ1k using Algorithm I
12 Compute ψ=ϕ0ϕ11

In this work, we use γS = 10, γF = 10−6, and W = 20 iterations.