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Abstract

Longitudinal data allow direct comparison of the change in patient outcomes associated with 

treatment or exposure. Frequently, several longitudinal measures are collected that either reflect a 

common underlying health status, or characterize processes that are influenced in a similar way by 

covariates such as exposure or demographic characteristics. Statistical methods that can combine 

multivariate response variables into common measures of covariate effects have been proposed by 

Roy and Lin [1]; Proust-Lima, Letenneur and Jacqmin-Gadda [2]; and Gray and Brookmeyer [3] 

among others. Current methods for characterizing the relationship between covariates and the rate 

of change in multivariate outcomes are limited to select models. For example, Gray and 

Brookmeyer [3] introduce an “accelerated time” method which assumes that covariates rescale 

time in longitudinal models for disease progression. In this manuscript we detail an alternative 

multivariate model formulation that directly structures longitudinal rates of change, and that 

permits a common covariate effect across multiple outcomes. We detail maximum likelihood 

estimation for a multivariate longitudinal mixed model. We show via asymptotic calculations the 

potential gain in power that may be achieved with a common analysis of multiple outcomes. We 

apply the proposed methods to the analysis of a trivariate outcome for infant growth and compare 

rates of change for HIV infected and uninfected infants.
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1. Introduction

Longitudinal studies frequently collect measurements from multiple outcome domains, and 

changes in one response variable may be similar to changes in other outcomes. For example, 

in studies of interventions for low back pain serial measures of both disability and pain are 

routinely collected to assess improvement in health status. Factors such as pharmacologic 

treatment or surgery that influence change in pain are also expected to impact change in 

function. Also, pediatric studies of growth and development commonly collect multiple 

related measures of infant size such as height, weight, and head circumference. When 
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multiple longitudinal measures are separately analyzed there may be a loss of power as 

compared to a joint analysis that can focus inference on a common treatment effect. The 

goal of this manuscript is to detail new statistical methods that can provide a common effect 

estimate and associated test for the impact of an exposure or intervention on the rate of 

change across multiple outcome measures.

Two common approaches for modeling multivariate longitudinal data exist: linking 

outcomes through a longitudinal, latent variable; and estimating a common group parameter 

across separately specified outcome models. Methods that use latent variables to model 

multivariate longitudinal data have been proposed by Roy and Lin [1], and Proust-Lima, 

Letenneur and Jacqmin-Gadda [2]. Under the latent variable approach, each outcome 

characterizes the behavior of an unmeasured latent variable. For example, in autism 

research, several behavioral outcome measures exist that characterize the severity of 

repetitive behavior in children with autism. Roy and Lin [1] propose use of a hierarchical 

model for making inference on the latent variable that is assumed to drive the measured 

outcomes. A two part model is constructed where a longitudinal model structure is assumed 

for the latent variable representing the underlying “state”, and a second, measurement model 

structure is assumed for each outcome linked to the latent variable. Roy and Lin [1] outline 

the use of mixed effect models for both the longitudinal, latent variable structure and the 

multivariate outcome measurement structure when all outcomes are continuous. Let Yijk 

denote the observed measurement of the kth outcome for individual i at time tj, and let Uij 

denote the latent variable for the related outcomes. Given a fixed effect design matrix Xij and 

random effect design matrix Zij, Roy and Lin [1] express the latent variable model and the 

measured outcomes model as follows:

By combining the two mean structures together, the association between the covariates of 

interest and the latent variable can be estimated. Proust-Lima, Letenneur and Jacqmin-

Gadda [2] also propose methodology for a longitudinal latent variable model where the 

multivariate outcome consists of a mixture of continuous and categorical outcomes. When 

direct inference on the underlying latent variable is of interest, the latent variable approach 

will characterize each covariates effect. However, in many applications with multivariate 

longitudinal data, interest is in inference on the measured outcome even when an underlying 

latent variable may describe longitudinal and multivariate dependence. For example, clinical 

studies of patients recovering from back pain are focused on direct improvements in pain 

and function although both outcomes are dimensions of a patient's quality of life. When 

inference on each outcome is of primary interest, it is often beneficial to allow for separate 

structures for each outcome since a uniform longitudinal and multivariate structure may be 

difficult to justify. Further discussion comparing latent variable models to other multivariate 

longitudinal methods in a more general setting has been made by Verbeke et. al. [4].

A second approach to analysis of multivariate longitudinal data is to allow each outcome to 

be modeled separately, but to link each outcome model by a common parameter that 
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describes shared differences between groups defined by a covariate of interest [3, 5–7]. By 

generating a common, or global, estimate for this parameter across each outcome, a global 

test for group differences across the multivariate outcome can be constructed. We refer to 

such models as global shared parameter models which can generally be expressed as

(1)

where the global parameter is denoted by λ for a grouping variable Xi and is fixed across all 

outcomes, k = 1, ··· , K. A global test for multivariate longitudinal data based on a global 

shared parameter model was proposed by Gray and Brookmeyer [3,5] using accelerated time 

(AT) models. In AT models, the time scale of a longitudinal outcome is assumed to differ 

across groups. Coinciding with the notation in Equation (1), the mean structure for the AT 

model under a third degree polynomial time structure is given by the equation

The interpretation of shared parameter, λ, in this instance is that longitudinal progression of 

an outcome is accelerated or decelerated across groups of interest. The multivariate AT 

method introduced by Gray and Brookmeyer [3, 5] allows separate specification for the time 

structure of each outcome, but estimates a global group parameter that alters the time scale 

uniformly across outcomes. Travison and Brookmeyer [7] proposed a global test for a 

treatment across multivariate outcomes by linking the marginal distributions of treatment 

groups by a shared treatment parameter across outcomes. The treatment parameter is used to 

relate the marginal distribution for observations on treatment to the marginal distribution of 

control observations in a manner that allows the use of estimation from survival analysis 

methodology. Jia and Weiss [6] constructed a multivariate longitudinal model with common 

additive effects for covariates of interest. The linear combination of covariates for the 

additive model is multiplied by a unique parameter for each outcome that accounts for the 

scale of the outcome.

Existing global shared parameter approaches focus on different types of association between 

a multivariate outcome and covariate-defined groups: group differences in the time scale 

[3,5], group differences in the quantiles of the marginal distribution [7], and scaled mean 

level group differences [6]. In this paper, we propose a new global shared parameter model 

that estimates group differences in the rate of change of a multivariate longitudinal outcome. 

The proposed methodology is an extension of the longitudinal rate regression (LRR) model 

developed by Bryan and Heagerty [8] for a univariate longitudinal outcome. The LRR 

method characterizes longitudinal change across groups through direct structuring of 

longitudinal rates of change. The LRR method links rates of change across groups by 

assuming a Proportional Rate (PR) assumption where rates differ across groups by a 

constant proportion over time. A mean model is then induced based on the rate assumptions 

coupled with a flexible specification for a reference time trend. Bryan and Heagerty [8] 

demonstrated potential advantages of a direct approach to modeling rates of change as 

compared to linear mixed effects model approach when the underlining time trend is non-
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linear. The LRR method is similar to the AT model developed by Gray and Brookmeyer 

[3,5] in that each approach estimates differences in rates of change across covariate-defined 

groups. However, the AT model assumes a fixed range or magnitude for the outcome, and 

focuses on potential accelerations and decelerations in the progression of an outcome along 

a common trajectory. In contrast, the LRR model directly links covariates to the magnitude 

of longitudinal change and does not assume a common, bounded trajectory.

Our proposed multivariate longitudinal data extension to the LRR model permits estimation 

of a global shared parameter representing the difference in the rate of change associated with 

covariate-defined groups. We maintain a separate specification for the reference time trend 

and adjustment for baseline covariates for each outcome. In Section 2, we detail 

methodology for the Multivariate Longitudinal Rate Regression (MLRR) model both for 

estimating separate rate differences for each outcome and a global rate difference across all 

outcomes, and discuss options for specifying a multivariate longitudinal covariance 

structure. In Section 3, the asymptotic power of the MLRR model using a global shared 

parameter is compared to the power for testing for differences in the rate of change for each 

outcome separately. We illustrate the MLRR method in Section 4 on a study of growth 

among infants exposed to HIV infection. Finally, in Section 5, we offer discussion and 

concluding remarks for studying differences in rates of change for multivariate longitudinal 

data.

2. Methods

2.1. Regression Models for Rates of Change

We use the notation Yijk to denote the kth outcome of individual i observed at time tijk for i 

= 1, . . . , N, j = 1, . . . , mik, and k = 1, . . . , K. Further denote , the total 

number of outcome measures for the ith individual. We use Xi = (Xi1, . . . , XiQ) to denote a 

vector of covariates. We are interested in detecting differences in the rate of change of Yijk 

across groups defined by Xi. Let

where gk(·) is a function dependent only on X and μxk(·) denotes some function of t for given 

values of X with the constraint that μx(0) = 0 for all values of X. The function gk(·) describes 

the mean level and all covariate-defined differences in the mean of Yijk at a time origin, or 

time zero. The function μxk(t) specifies the change in the expected value of the kth outcome 

over time from baseline for a given Xi = x. We generalize the Proportional Rate (PR) 

assumption proposed by Bryan and Heagerty [8] to the multivariate outcome setting which 

can be expressed as
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where μ0k(·) is the time function for the kth outcome for some preselected reference group, 

defined by Xi = 0. Thus, the MLRR method that jointly models correlated longitudinal 

outcomes assumes that the rate of change in the expected value for each outcome, Yijk, for 

given values of Xi = x, relative to the reference group (Xi = 0), is given by  for all 

times tijk. Thus, the difference in the rate of change for the kth outcome associated with 

changes in the covariates in Xi is captured by θk = (θ1k, . . . , θQk).

In order to borrow information across outcome for estimating an overall differences in the 

rate of change for the multivariate outcome Yij = (Yij1, . . . , YijK), we further modify the 

multivariate PR assumption to a Global Multivariate Proportional Rate (GMPR) assumption 

where we will assume that θk = θ for k = 1, . . . , K. Hence, the difference in the rate of 

change associated with a given covariate is assumed to be the same across all outcomes. We 

can interpret the rate parameters, θ, as the global difference in the rate of change in the mean 

of Yij associated with a unit difference in the covariates, Xi. That is, the parameter θq is 

interpreted as the percent increase (decrease) in the rate of change in the mean of Yij when 

Xiq = (x + 1) relative to when Xiq = x. Throughout this paper, we will refer to this modeling 

approach as the MLRR model with GMPR assumption or simply the global MLRR model. 

The remainder of the methods section will be framed under this modeling approach, but we 

will also use the MLRR model without the GMPR assumption as a comparison model in 

later sections which we refer to simply as the joint MLRR model. Both of these MLRR 

models may also be constructed using a non-proportional rate assumption. Doing so requires 

incorporating time varying covariates into the modeling framework in order to allow cut 

points in the time trajectory for which the rate structure is able to change for a given 

covariate. The necessary modifications to the methodology for including time varying 

covariates has been described in detail by Bryan and Heagerty [8] for the univariate case, 

and the same approach can be used for this multivariate setting. We emphasize that this non-

proportional model allows the effect of each covariate on the rate to vary across fixed time 

periods, but we still may assume that the difference in the rate of change within each of 

these time periods is the same for each outcome. For the remainder of this paper, we assume 

a proportional rate assumption is valid in order to focus evaluation on the additional 

assumption of a global rate parameter imposed by the GMPR assumption.

A full mean structure for the MLRR model with GMPR assumption can be constructed by 

integrating over a given time interval, [0, t]. For outcome Yijk, the full mean structure is 

specified as

(2)

For the model defined by Equation (2), we refer to the functions gk(·) and μ0k(·) respectively 

as the baseline function and the reference time function for the kth outcome. We emphasize 

that both the baseline function gk(·) and the reference time function μ0k(·) are allowed to 

differ across outcomes; only the rate parameters are assumed to be common across 

outcomes. Both parametric and non-parametric approaches can be considered when 

specifying the reference time structure for each outcome in the MLRR model. For either 
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approach, we can specify the reference time structure for the kth outcome as a linear 

combination of functions of times:  where Tijk is a vector of functions 

evaluated at tijk. The distinction between a parametric versus a non-parametric approach is 

whether a small time basis is used and maximum likelihood estimation is carried out or a 

large basis is used and a penalized likelihood estimation approach is adopted. See Bryan and 

Heagerty [8] for a detailed discussion of parametric versus non-parametric estimation of the 

reference time structure in the univariate case. An important consideration is that the non-

parametric estimation approach will add increased complexity in the multivariate case since 

multiple penalty terms will be included in the estimation, one for each outcome where the 

reference time trend is estimated non-parametrically. For this paper, the baseline function of 

covariates for each outcome will be specified as a linear combination of the covariates: 

 though other covariate structures can be considered.

The modeling assumptions assumed for the rate structure by the MLRR method are 

illustrated in Figure 1. The longitudinal trajectory of two outcomes for two exposure groups 

(e.g. binary treatment variable) are plotted both in terms of the mean and the rate of change 

(time derivative). The curves illustrate a basic proportional rate assumption as proposed by 

Bryan and Heagerty [8]. For example, although each outcome has a unique reference time 

profile the comparison of treatment groups is structured such that they have a common 

proportional difference in the the rate of change, both across all times and over both 

outcomes. This proportional difference can be observed in the lower two plots depicting the 

rate of change over time. For both plots, the value of the rate of change for the exposed 

group (solid red line) is three times the value of the rate of change for the unexposed group 

(solid blue line) at each time point. By focusing inference on the rate of change for each 

outcome, the relative comparison across groups can be evaluated in terms of percentage 

difference in rates of change which does not depend on the scale of the outcome. The basic 

proportional rates assumption assumes that for each outcome the group difference can be 

captured by a single parameter: θ1 for outcome 1; and θ2 for outcome 2 (see Figure 1). For 

the MLRR model, we may impose an additional assumption that the rate differences across 

treatment groups are the same for each outcome which yields the full GMPR assumption. In 

Figure 1, this assumption is equivalent to assuming that θ1 = θ2, which is true by 

construction for this example with θ1 = θ2 = 2. The common θj = 2 is equivalent to a 200% 

increase in the rate of change for the exposed group relative to the unexposed group for both 

outcomes. When appropriate to adopt the GMPR assumption, power can be gained to detect 

group differences in the rate of change associated with exposure.

A necessary secondary aspect to multivariate longitudinal modeling is the structuring of the 

covariance to account for correlation across time and across outcomes. When using a latent 

variable modeling structure, Roy and Lin [1] and Proust-Lima, Letenneur and Jacqmin-

Gadda [2] discuss an approach to modeling the covariance structure using hierarchical linear 

mixed effects. Part of the hierarchical covariance structure of the latent variable models 

includes random effects specified at the latent variable level. Since we focus on global 

shared parameter methods which do not incorporate latent variables, a hierarchical linear 

mixed effects model will not be directly applicable. Previous work [9] has structured a 

dynamic correlation for functional longitudinal data with multivariate outcomes. 

Bryan and Heagerty Page 6

Stat Med. Author manuscript; available in PMC 2017 December 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Alternatively, the covariance specification approach we consider apply to studies where the 

outcomes are measured discretely in time as is often done in designed clinical studies.

2.2. A Mixed Model for Rates of Change

For the MLRR approach with GMPR assumption, we model the covariance structure for 

multiple longitudinal outcomes by incorporating longitudinal random effects that are 

correlated across outcomes. The use of a mixed effects structure to specify a covariance 

structure is a common approach for modeling multivariate longitudinal data [10]. For a 

mixed effects structure, we specify the longitudinal structure of outcome k with individual 

intercepts and rates of change as follows:

(3)

(4)

where, for outcome k, the vector of random effects for individual i, bik = (b0ik, b1ik)′, is 

normally distributed with mean 0 and covariance Rkk and the vector of random errors for 

individual i, ϵik = (ϵi1k, . . . , ϵimikk), is normally distributed with mean 0 and covariance 

. The covariance is then connected across outcomes by assuming that Cov(bik, bik*) = 

Rkk* for k ≠ k*. Therefore, the mixed effects model for the MLRR method characterizes 

individual variation both in the mean level at baseline and in the rate of change, and this 

variation is correlated across outcomes. The multivariate longitudinal mixed effects 

modeling approach is analogous to the LRR mixed effects model proposed by Bryan and 

Heagerty [8] for the univariate longitudinal case. The mixed effects structure is illustrated in 

Figure 1 where individual mean and rate trajectories are depicted for a selection of 

individuals from the unexposed and exposed groups.

Using random effects to structure the multivariate longitudinal covariance structure provides 

an intuitive interpretation of the model at the individual level with each subject having their 

own baseline value and rate of change. The disadvantage of a mixed effects approach is that 

four additional variance parameters are introduced by the across outcome covariance matrix 

for each pair of outcomes modeled. More explicitly, given K outcomes, the mixed effects 

multivariate structure requires the estimation of  variance parameters for the 

random effects. If we instead model the outcomes separately in independent models using 

random effects, we would only estimate 3K parameters for the random effects. Thus, the 

general random effects modeling approach for the MLRR method requires the estimation of 

2K(K – 1) additional variance parameters compared to the collection of univariate models.

In contrast, the number of mean parameters estimated by the MLRR model, when the 

GMPR assumption is assumed, will be reduced relative to the univariate models. For an 

MLRR model with a single rate covariate, the number of rate parameters being estimated is 
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reduced by K – 1 compared to the univariate approach. Thus, taking into account both mean 

and variance components, the multivariate mixed effects modeling approach would estimate 

2K2 – 3K + 1 more parameters than when using a univariate model for each outcome when a 

single rate covariate has a globally estimated rate effect. More generally, for a MLRR model 

with Q rate covariates all of which have globally estimated rate effects, the total difference in 

the number of parameters compared to a univariate approach is given by the quantity 2K(K – 

1) – Q(K – 1). Hence, when the number of globally estimated rate covariates is double that 

of the number of outcomes, e.g. Q = 2K, the number of parameters estimated by the 

multivariate and univariate approaches is the same. The multivariate model will estimate 

fewer parameters when Q > 2K. This relationship between the parameter dimension of the 

multivariate and univariate model approach remains the same regardless of the specification 

of the baseline functions, gk(·), and the reference time functions, μk(·), for each outcomes 

since the number of parameters in these components are the same for each approach. 

Therefore, in addition to potential gains in power discussed in the next section, a global 

shared parameter approach to modeling multivariate longitudinal data can be a useful means 

for addressing the increasing dimensionality of the multivariate model.

The increase in model parameters is a common issue with modeling multivariate 

longitudinal outcomes, but can also be advantageous for maintaining flexibility for modeling 

the covariance structure. By specifying an unstructured cross outcome random effect 

covariance matrix, the mixed effects model can robustly model a correlation structure that 

differs across outcome. The challenges in using a random effects structure in a multivariate 

longitudinal context are discussed in detail by Fieuws and Verbeke [11] and Verbeke et. al. 

[4]. To reduce computational burden of the multivariate random effects model, Fieuws and 

Verbeke [11] propose an estimation approach where pairwise bivariate models are fit for 

each pair of outcomes and parameter estimates are averaged across the pairwise models in 

order to make inference on parameters in the multivariate model. An alternative for 

simplifying estimation is to reduce the complexity of the structure of the random effects 

matrix. One approach could be to assume that the cross-outcome covariance matrix is the 

same for all (k, k*) pairs, Rkk* = R (equivalent to an exchangeable assumption). A less 

extreme simplification that is similar in character to the overall MLRR model with GMPR 

assumption is to assume a common rate random effect for each individual across all 

outcomes, b1i, while maintaining separate random intercepts across outcomes, b0ik. 

Computational time is an issue of important consideration for multivariate longitudinal data, 

and modifications such as these may need to be employed in situation when the number of 

outcomes and/or sample size is large. Further exploration of these concerns is left for future 

work, and thus, all calculations and results presented in this paper were derived directly via a 

standard maximum likelihood approach using an unstructured random effects matrix.

The incorporation of random effects to model a multivariate longitudinal covariance 

structure is particularly challenging for the MLRR model from an implementation stand 

point. Due to the inclusion of a random rate effect into the model for each outcome, the 

mean and variance components are not orthogonal to each other. Thus, mean and variance 

parameters cannot be independently estimated for the MLRR model which is a common 

technique used in the estimation of generalized linear models. The mean-variance 

dependence is not unique to the multivariate setting. Bryan and Heagerty [8] provide 
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discussion of this issue as well as score and Hessian equations that can be used for 

estimation in the univariate longitudinal setting. We have provided extensions of these 

equations to the multivariate setting plus further details of the estimation procedure in an 

appendix to this paper. Such an estimation approach will provide full maximum likelihood 

estimates for the proposed model, but will likely increase computation time relative to other 

semi-parametric or pairwise estimating approaches particularly as the level of complexity 

and size of the dataset increases [4,11]. However, the ability to estimate the proposed model 

using a full maximum likelihood approach is a major advantage over other non-linear mixed 

modeling approach which require estimation via numerical integration since this estimation 

approach can scale to multiple outcomes much more easily than models that require 

numerical integration for each random effect. To illustrate the computational speed of the 

proposed algorithm, we note that for the global MLRR model described in Section 4 for 

three outcomes and three rate covariates on 616 individuals, estimation of model results was 

completed within 14 minutes on a standard desktop computer. By comparison, the joint 

MLRR model on the same dataset reached convergence in about 12 minutes, and the 

estimation time for the three univariate LRR models ranged between 7 and 30 seconds. 

Though the run time is largely related to the complexity and size of the data, it can also 

depend on the accuracy of the initial values provided for the Newton-Raphson algorithm 

described in the appendix. The estimation approach was implemented using R version 3.1.0.

3. Power Associated with Multivariate Analysis

As a general evaluation of the power obtained from a global multivariate outcome approach, 

we calculated and compared the power of MLRR model with GMPR assumption under 

various data generating scenarios. A primary goal of the global shared parameter model is to 

gain power to detect group differences by borrowing information across outcomes. For the 

MLRR model in particular, the global shared parameter of interest is the group difference in 

the rate of change. Specifically, we hope to gain power to detect group differences in the rate 

of change for a multivariate outcome compared to examining group differences for each 

outcome separately. To evaluate this potential gain in power, we compare the global test for 

group differences using the global MLRR model to two alternatives: a test for differences in 

the rate of change for one pre-selected outcome using the univariate LRR model; and testing 

for differences in the rate of change for each outcome in multivariate setting using the 

MLRR model with separate rate parameters for each outcome (e.g. the joint MLRR). The 

univariate LRR model approach represents an investigator selecting a single outcome for 

testing e.g. the outcome of greatest scientific interest or the outcome most anticipated to 

show a difference across groups. Alternatively, an investigator may decide to test all 

outcomes, but not assume the difference in the rate of change is the same for each outcome. 

In this case, the joint MLRR model would be appropriate although power to detect group 

differences may be sacrificed since each rate parameter tested results in additional degrees of 

freedom.

We compare the power of the three modeling approaches using three correlated, continuous 

outcome and a single binary covariate for comparing rates of change. The reference time 

trend is modeled using a cubic polynomial equation, and the covariance matrix was 
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structured using the mixed effects model approach outlined in Subsection 2.2. The three 

models for each comparison can generally be expressed as

where k = 1, 2, 3. Thus, the univariate LRR model will test the null hypothesis of θ1 = 0, the 

joint MLRR model will test the strong null that θk = 0 for k = 1, 2, 3, and the global MLRR 

model will test the global rate parameter θ = 0. Each test was carried out at the .05 

significance level. Except for the rate structure which changed across each set of 

calculations, the mean structure was assumed to be the same for each of the three outcomes 

up to a change in intercept. For each outcome, the main effect for the exposure variable x 
was 3 and the coefficients for the time function were 3, −0.3, and 0.01. The intercept values 

for each outcome were 40, 50, and 30 respectively. The measurement error for each outcome 

was assumed to have a variance of 0.1, and correlation structure for the random effects is 

given by the matrix:

Each subject was assumed to be observed 12 times for each outcome over the study period 

with measurements at time points denoted by the values 1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 

and 21. The similarities between the assumed structure for the three outcomes was used to 

simplify implementation of the following calculations. In practice, both multivariate models 

are amenable to using different time trend functions and baseline design matrices for each 

outcome in the model. However, the comparison of interest in these calculations is on the 

rate structure which we do assume is the same for each outcome in order for global 

multivariate model to be a valid approach. The relative comparison in power for the rate 

parameters is expected to be similar in cases where the time trend and baseline design matrix 

differ across outcomes.

We consider scenarios for the true data generating mechanism where the GMPR assumption 

is correct and where the assumption is incorrect. When the GMPR assumption is correct, the 

rate parameters for each outcome is the same, θk = θ for k = 1, 2, 3, and all three models are 

correctly specified. Hence, asymptotic power for the three models is based directly on the 

Hessian of the log-likelihood. When the GMPR assumption is incorrect, the rate parameters 

differ among the outcomes, θk ≠ θj for k ≠ j, and the global MLRR model is mis-specified. 

The univariate LRR model and the joint MLRR model are still correctly specified since we 

still assume that the rate of change for each outcome is proportional across groups. Power 

for the univariate LRR model and the joint MLRR model are again generated using the 

Hessian equations. To calculate the power for the global MLRR model, we use results for 
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the asymptotic behavior of longitudinal estimates under model mis-specification 

characterized by White [12] and Heagerty and Kurland [13]. The asymptotic global rate 

difference and its corresponding sandwich standard error under mis-specification were 

estimated using Monte Carlo methods consisting of 104 individuals as described by 

Heagerty and Kurland [13]. Based on 10 replicated samples of this size, we estimate that the 

Monte Carlo procedure produced a power curve that has maximum point-wise standard 

deviation of approximately 3%.

Figure 2 displays three plots of power curves comparing the three modeling approaches. For 

all three plots, the value of the rate parameter for the outcome tested using the univariate 

LRR model is the same (that is, θ1 = 0.25 for all scenarios), and is greater than or equal to 

the rate effect for the outcomes that are not tested by the univariate LRR model. Therefore, 

the curve for the univariate LRR model is identical in each plot. In Figure 2(a), the curves 

were calculated where the true rate parameter was the same for all outcomes, θk = 0.25 for k 
= 1, 2, 3. When the GMPR assumption is true, the two MLRR models show a clear 

advantage over the univariate LRR model for detecting group difference. Estimating a global 

rate parameter is advantageous compared to estimating separate rate parameters which was 

expected since the global rate model is correct in this scenario. Figures 2(b) and 2(c) depict 

scenarios where the GMPR assumption is incorrect. The rate parameter for the first outcome 

is again assumed to be 0.25, but the second and third outcomes have a reduced rate of two-

thirds and one-third respectively relative to the effect for the first outcome (e.g. θ2 = 0.25 × 

2/3 and θ3 = 0.25/3) for the power curves depicted in Figure 2(b). Based on the Monte Carlo 

approach describe previously, the global rate parameter for the global MLRR model in this 

misspecified scenario was projected to have an asymptotically normal distribution with a 

mean of 0.17 and a standard deviation of 0.18. The MLRR models show a substantial 

reduction in power in Figure 2(b) relative to Figure 2(a). The joint MLRR model had 

roughly the same power to detect group differences as the univariate model. The global 

MLRR model still showed gains in power for detecting group differences relative to the 

competing models. In Figure 2(c), the rate parameter for each outcome was 0.25, 0.125, and 

0 respectively, equivalent to a 50% and a 100% reduction in the effects for the second and 

third outcomes relative to the effect for the first outcome. For this scenario, the asymptotic 

distribution for the global rate parameter was projected to have a mean of 0.13 and a 

standard deviation of 0.17. The power to detect group differences suffers for both MLRR 

models relative to the chosen univariate LRR model under this scenario. For the largest 

sample sizes, the global MLRR model tended to perform the worst of the three models.

The power curve results illustrate the potential gains in power of the global shared parameter 

MLRR model when the rate parameter is the same across outcomes and how these gains are 

negated as the difference between the rate parameters for each outcome is increased. The 

illustrated advantage of the global MLRR model over the univariate LRR model is likely 

conservative since in each scenario the univariate analysis always used the outcome with the 

largest effect size. We could instead introduce a probability distribution on which outcome 

was selected for the univariate LRR model where there was a non-zero probability of 

selecting the outcome with the small effect size. If this were the case, the power curve for 

the univariate LRR model would be reduced in the second and third scenarios. Therefore, 
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the global MLRR model is also advantageous over a univariate approach since it avoids the 

need for outcome selection.

The results of the calculated power curves are encouraging for showing that gains in 

efficiency can be obtained even when the rate parameters are not the same, but still similar in 

direction. Defining what sufficiently similar means for a given application will be dependent 

on rate parameter effect size and the values of the variance components. We examine and 

discuss the potential impact of changes in the covariance structure on the power of these 

multivariate models in supplementary materials available online. The example provided in 

the supplemental document illustrates how the global MLRR model may be less 

advantageous compared to univariate approach under violations of the GMPR assumption 

when correlation across the measured outcomes is high. In addition, the joint MLRR model 

exhibits positive performance in this setting which speaks to the complexity of assessing 

power under varying covariance structures in a multivariate setting. Such behavior has been 

observed previously in a simplified multivariate setting when using MANOVA [14]. The 

relationship between power and the covariance structure is particularly complex for models 

such as the MLRR model where the mean and variance components are non-orthogonal due 

to the assumed random effects structure. Thus, an area of future work will explore the 

interaction between power and the covariance structure in order to better understand the 

complexities of their relationship in a multivariate setting.

4. Application

The infant growth study is a secondary study from the HIVNET 012 clinical trial focusing 

on prevention of mother-to-child HIV transmission. Mothers were recruited during 

pregnancy and randomized to receive either zidovudine (AZT) or nevirapine (NEV). The 

first infant born of the pregnancy was then followed and tested for HIV infection. Details 

and results for the primary aim of the clinical trial are presented in Jackson et al. [15]. As a 

secondary aim, growth among the infants was measured longitudinally. Infants were 

followed for 5 years from birth and measured as many as 16 times for weight (Kg), crown-

heel length (cm), and head circumference (cm). We use the data from this study of growth to 

illustrate the MLRR method using all three growth outcomes. A global MLRR model was 

constructed to examine global differences in rates of change for growth outcomes among the 

616 infants with complete data across groups defined by sex (312 Females, 304 Males), 

treatment (302 AZT, 314 NEV), and whether HIV infection was detected. To avoid 

confounding of treatment and HIV infection and to use HIV status as a baseline covariate, 

we categorize infants as HIV positive if infection was detect pre- or peri-natally defined by 

detection within 6 weeks from birth. This definition of baseline HIV status resulted in 59 

cases of HIV for this sample.

Table 1 presents coefficient estimates and 95% confidence intervals for the global MLRR 

model for weight and crown-heel length. The three covariates were used to estimate both 

mean level and rate level differences. The reference time function was modeled using a 

natural cubic spline with knots at 150, 500, and 1100 days for each outcome. The same 

reference time function was used due to the similar shape of the growth trajectory of these 

three outcomes. In general, using the same time structure as well as the same design matrix 
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for the baseline covariates for each outcome is not required for the MLRR model. The mixed 

effects model described in subsection 2.2 was used to structure the covariance matrix. For 

the variance components, the global MLRR model estimated variance of the measurement 

error for each outcome to be 0.35, 2.18, and 0.51 respectively. The estimated covariance and 

correlation matrix of the random effects were

Separate estimates were produced for main effects and time trend coefficients associated 

with each outcome, and global estimates were produced for rate effects of the MLRR model. 

In Table 1, the main effect estimates for the global MLRR model showed large mean 

differences at birth due to sex and treatment. Males were estimated to be 0.34 Kg (95% CI = 

(0.24, 0.44)) heavier, 1.25 cm (95% CI = (0.93, 1.57)) taller, and increased head 

circumference of 0.78 cm (95% CI = (0.60, 0.96)) at birth on average compared to females. 

Infants whose mothers were assigned to nevirapine were estimated to have lower weight 

(Mean Diff. = −0.12 Kg, 95% CI = (−0.19, −0.06)), crown-heel length (Mean Diff. = −0.36 

cm, 95% CI = (−0.54, −0.18)), and head circumference (Mean Diff. = −0.32 cm, 95% CI 

(−0.50, 0.15)) at birth on average compared to those on zidovudine. There was little 

evidence that infants who tested HIV positive differed in weight (Mean Diff. = −0.04 Kg, 

95% CI = (−0.21, 0.14)), height (Mean Diff. = 0.44 cm, 95% CI = (−0.12, 1.00)), or head 

circumference (Mean Diff. = −0.01 Kg, 95% CI = (−0.31, 0.30)) at birth compared to infants 

who tested negative. The time trend for each outcome is illustrated in Figure 3 which 

presents fitted lines from the global MLRR model for the HIV negative and positive groups 

as well as the fitted line from the univariate LRR model for each outcome and the MLRR 

model without a global rate parameter assumption. The figure illustrates that the estimated 

time trend for the global MLRR model was fairly similar to that of the other models. Most of 

the differences shown in the figure are a result of differing estimates for the rate of growth of 

HIV positive children across the three models. The differences in the fitted lines between the 

three modeling approaches was most apparent for the HIV positive group since this group is 

substantially smaller (59 HIV positive infants) and thus more subject to change across 

various modeling approaches. The global rate effects estimated a small difference in the rate 

of change in the two growth outcomes due to sex and treatment with essentially no 

difference in growth between males and females, and a 1% faster rate of change for infants 

on nevirapine compared to zidovudine. There was strong evidence for a difference in the rate 

of change in growth outcomes due to HIV infection status with infants infected with HIV 

estimated to have 6% decrease in the rate of change (95% CI = (−9%, −4%)) compared to 

non-infected infants. Therefore, the model shows evidence that weight, crown-heel length, 

and head circumference differ across groups defined by sex and treatment at the mean level 

primarily where as HIV infection status primarily impacted the rate of change for these 

outcomes.
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The presented model results are based on a complete case analysis of the data. Missing 

values were present in the data for all three outcomes. In particular, there were fewer 

measurements of crown-heel length and head circumference since these were measured less 

consistently than weight and were not measured at the initial visit. The complete dataset for 

the univariate weight model alone consisted of 7,643 observation on a total of 622 infants. 

Thus, the additional missing data for crown-heel length and head circumference resulted in 6 

fewer infants with a total of 6,964 observations. In addition, much of the missing outcome 

values were result of drop out from the study which was primarily a result of infant mortality 

[15]. Since death is likely associated with HIV status, the missing data mechanism likely 

does not conform to a missing completely at random assumption. However, the advantage of 

the random effects estimation approach employed in this application is that such approaches 

have been shown to consistently estimate model parameters under a missing at random 

assumption (see Chapter 13 of Diggle et. al. [16] and Chapters 15 and 16 of Verbeke and 

Molenberghs [17]). Such an analysis targets estimation of the longitudinal profiles toward 

what would have been observed in the absence of death which is a hypothetical construct 

[18]. In addition, though no covariate values were missing in this dataset, the MLRR model 

is amenable to accounting for missing covariate values under flexible missing data 

assumptions via conventional approaches such as multiple imputation.

We illustrate the impact of the GMPR assumption on model estimates in Figure 4 by 

comparing the confidence intervals for the global MLRR model presented in Table 1 to the 

confidence intervals from the equivalent univariate LRR models and joint MLRR models 

which does not assume GMPR. Confidence intervals for the main effect estimates are 

provided for each outcome in Figure 4(a), (b), and (c). The level of precision for the main 

effect estimates was relatively similar between the three models and only mild to moderate 

differences were present between each estimate across the models. There were also some 

mild differences between estimates and confidence intervals for the intercept (not shown). 

The global rate effect for each covariate exhibited modest gains in precision compared to the 

separate estimates from the univariate LRR model and joint MLRR model (see Figure 4(d)). 

The largest difference in the rate estimates across outcomes were observed for HIV status 

with the rate of change for weight being most impacted followed by crown-heel length and 

head circumference. The rate estimates for HIV in the global MLRR model were 

intermediate to the rate estimates for crown-heel length and head circumference provided by 

the univariate LRR and joint MLRR models with closer proximity to the estimates for head 

circumference. The global estimate were likely dominated by crown-heel length and head 

circumference since the standard error for the rate estimates were smaller for these outcomes 

compared to the standard error for weight. Also, the variation in the random effects and 

measurement error for the global MLRR model was smallest for head circumference which 

could account for the global estimates being more similar to the separate effect of head 

circumference compared to crown-heel length. Though this property may be unfavorable in 

some instances such as this where the global effect may be dominated by outcomes with 

smaller rate differences that have smallest standard error for these differences, in general, 

such a characteristic is desirable that the global estimate should tend toward the individual 

estimates where the difference in the rate of change between groups was the most consistent 

across the sample. Similar properties are achieved for other metrics used to combine 
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estimates such as weighted means. In fact, a simple weighted mean of the rate effects from 

the joint MLRR model results in a value of −0.09 which is similarly intermediate to the 

separate rate effects for crown-heel length and head circumference. The global effect is 

much closer to the separate effect for head circumference compared to the weighted mean, 

but there are other possible explanations for this occurring. One such explanation is that the 

global model is combining effects across three covariates (sex, treatment, and HIV status) 

and the interplay between these three covariates may account for the additional differences 

between the global effect and the weighted mean.

Diagnostic plots and testing procedures for validating the PR assumption for the LRR model 

have been proposed by Bryan and Heagerty [8]. These procedures may also be used to 

evaluate the proportionality of rates for the MLRR model. Figure 5 depicts residual plots 

which may be used to evaluate the proportional rate assumption across each rate covariate 

for the global MLRR model. The residuals for the model have been plotted over time 

separately within each covariate group. Any violations in the proportional rate assumption 

over time across a given covariate would be depicted as deviations from 0 in the over all 

trend in the residuals over time within covariate groups. Lowess smooth lines have been 

included within each plot to illustrate the time trend within each subgroup. These plots show 

little deviation from 0 over time which implies there is little evidence of concern for the 

proportional rate assumption. The spread of the residuals over time within each plot 

indicates a slight increase in variation over time. Such behavior in the residuals is anticipated 

since heteroskadasticity is common to observe when measuring growth outcomes in 

children. The heteroskadastic behavior in the data is likely accounted for by the random 

effects structure, specifically the random slope for each outcome, but the plotted residuals 

have not removed the individual variability explained by the random effects. Residuals can 

be calculated that remove this individual variation to evaluate how well the non-constant 

variation has been captured. Such residuals could also be used to evaluate the proportional 

rate assumption, but would likely result in the same conclusion as from the plots presented 

in Figure 5. Additionally, we can also evaluate the global rate parameter assumption for the 

global MLRR model using diagnostic tests. One way to test the global parameter assumption 

for the infant growth data is based on the joint MLRR model estimates where the point 

estimates and covariance matrix for the rate effect for each covariate across the three 

outcomes can be combined into a Wald statistic in order to test for equivalence. This Wald 

test approach suggested a significant difference in the rate effects across growth outcomes 

for sex (P-value < 0.001) and HIV (P-value < 0.001). There was no evidence for a difference 

in the rate effects associated with treatment (P-value = 0.20). These test support violations of 

the global shared parameter assumption and suggest that the MLRR model with separate rate 

effect estimates may be more appropriate for this application. Alternative testing metrics 

could be considered such as using a score test which would avoid the need for running both 

the joint and the global MLRR models. However, even when the global MLRR model is the 

primary result of interest, most studies would likely construct the joint MLRR model as well 

in order to fully characterize the relationship between the outcomes and the rate covariates. 

Thus, the Wald testing approach described here would be easily applicable in most settings.
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5. Discussion

Methodology for multivariate longitudinal data has received limited attention in the 

statistical literature. Since the routine collection of detailed longitudinal data is becoming 

more common in the scientific community, more applications where multivariate 

longitudinal methods are potentially advantageous will likely arise. The methodology 

presented here has focused on utilizing multivariate longitudinal data to model group 

differences. Comparing longitudinal changes across groups is a common scientific aim, and 

established methodology has separately shown the utility of longitudinal data and 

multivariate data for making inference. Using both data types presents challenges, but also 

provides gains in power and precision that counter the added model complexity.

We proposed an extension to the LRR model that was introduced by Bryan and Heagerty 

[8]. The LRR method directly and parsimoniously models differences in rates of change for 

longitudinal data. The model allows for a flexible time structure and a simple interpretation 

for the difference in the rate of change which makes the LRR method advantageous when 

the underlying time trend is non-linear. The extended MLRR model allows separate 

specifications for baseline covariate adjustment and reference time trend for each outcome. 

The mean of each outcome is linked by a global parameter for the difference in the rate of 

change for the multivariate outcome. Group differences can then be interpreted as global or 

overall difference in the rate of change of the multivariate outcome associated with the 

group. Though our approach is similar to other global shared parameter model [3, 5–7], we 

did not make any direct comparisons with these approaches since each was designed for 

very different applications. The MLRR will be most appropriate for application interested in 

differences in rates of change or rates of growth for a collection of outcomes. Among the 

other global shared parameter models, only that proposed by Gray and Brookmeyer [3, 5] is 

concerned with differences in rates, but in contrast to the MLRR model, this model focuses 

on rate differences characterized by an acceleration of the time trend. Thus, Gray and 

Brookmeyer's approach will be best suited for applications where the progression of the 

outcomes are the primary concern.

We compared the power to detect group differences using the global shared parameter 

MLRR approach versus testing using only a single outcome, or using multiple outcomes 

with a separate rate parameter for each outcome. A global testing approach will be more 

powerful when it is reasonable to assume that the rate effect is the same for each outcome. 

Furthermore, when correlation between outcomes is low, gains in power may still be 

obtained using MLRR when the true difference in the rate of change varies across outcomes 

but maintains a common direction. Using a multivariate comparison of rates of change will 

lose power relative to an optimally chosen univariate comparison when major differences 

exist between the rate effects for each outcome. In particular, if some covariates increase the 

rate of change for certain outcomes and decrease the rate of change for other outcomes, a 

global shared parameter model would not be appropriate. Therefore, for applications where 

group differences in the rate of change is expected to be similar across mildly correlated 

outcomes a global shared parameter MLRR model will be beneficial for increasing power 

and precision of the group comparison. We also explored testing options when the 

multivariate outcomes have high correlation and find that the global shared parameter will 

Bryan and Heagerty Page 16

Stat Med. Author manuscript; available in PMC 2017 December 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



not be advantageous when the covariate (group) effects in the rate of change are strongly 

heterogeneous across outcomes. When outcomes are strongly correlated, the benefits of a 

global multivariate testing approach are less clear, and likely depend on the nature of the 

correlation between the outcomes. Our evaluation shows that a multivariate (non-shared) 

model may yield the highest power when covariate effects are not constant and outcome 

correlation is strong. The impact of covariance structure on power in a multivariate setting is 

known to be quite complex [14] particularly when covariate effects are not similar across 

highly correlated outcomes.

The application of the MLRR method to the growth study for infants exposed to HIV also 

illustrates the potential power gains of a multivariate approach. The width of the confidence 

interval for the globally estimated rate effect was noticeably smaller than the confidence 

intervals based on univariate estimates. Examining differences in infant growth was a natural 

application for this method since there are multiple measures that can be considered to 

quantify growth. In addition, the rate of change is a useful scale for comparison since it is 

invariant to scale. The non-linear nature of infant growth data make the flexible time 

structure of the LRR method appealing. There are other application where the multivariate 

rate regression approach would be useful for the comparison of groups such as longitudinal 

studies of aging and treatment trials with multiple end points of interest. A global shared 

parameter MLRR approach is also potentially applicable in areas where effect sizes are 

commonly small such as in studies of environmental exposures.

The utility of the MLRR method is dependent on the non-linearity of the outcomes over 

time. If all outcomes change linearly or approximately linearly over time, then a linear 

mixed model approach will be more suitable for comparing groups. Whether the MLRR 

approach is advantageous when some outcomes behave linearly and others are non-linear is 

worthy of further research. The GMPR assumption is also a limitation of the MLRR method 

when the difference in the rate of change is not proportional over time or is not the same 

across outcome. Diagnostic approaches for assessing the proportional rate assumption for a 

univariate LRR model are discussed by Bryan and Heagerty [8] and were implemented in 

this paper for the study of infant growth in a multivariate context. Relaxing the proportional 

rate assumption in regard to time is discussed further by Bryan and Heagerty [8]. The 

assumption of a global rate parameter can also be tested based on multivariate models with 

separate rate parameter estimates. When the global rate assumption is violated, both the 

univariate LRR and the MLRR approaches with separate rate parameters for each outcome 

could be considered.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

We describe in further detail the implementation process for the global MLRR model using 

Maximum Likelihood Estimation via the Newton-Raphson algorithm. For simplicity of 

notation, we assume a setting where a study has measured K correlated outcomes measured 

at J time points on N subjects with Q additional covariates measured at baseline. However, 

the described implementation is compatible with the situation where the number of time 

points and measurement times differ across outcome and across individuals. We let the 

observed outcomes for the ith individual, for i = 1, . . . , N, be denoted by the vector Yi of 

length JK, measurement times be denoted by the vector Ti of length JK, and baseline 

covariates by the vector Xi of length Q. Our goal is to estimate the global effect of the 

covariates in Xi on the rate of change of the collection of outcomes Yi over time. Each 

outcome will also have a corresponding vector Wik of length pk for k = 1, . . . , K for all 

baseline covariates to be adjusted for mean level differences in outcome k. The baseline 

covariates included in Wik may vary across outcome with the exception that the Xi must be a 

subset.

To appropriately account for non-linearity for each outcome over time, we can define a basis 

of functions of time for each outcome and evaluate these bases at the observed times for 

each outcome across individuals. We allow the number of functions in each basis for each 

outcome to vary across outcome and denote the length be lk for k = 1, . . . , K. The design 

matrix Bik will denote the J × lk matrix whose entries correspond to the basis functions for 

outcome k evaluated for the ith individual at each observation time.

The general framework of the log-likelihood equation for the multivariate longitudinal 

outcome Yi will correspond to a multivariate normal random variable which can be 

expressed as

where μi and Vi denote the vector of mean values and the covariance matrix for Yi. Bryan 

and Heagerty [8] note that for situations like the current model where the likelihood equation 

contains parameters for which both μi and Vi depend on, the score and hessian equations can 

generally be expressed in terms of parameters η, ν, and ϕ where μi depends on the 

parameters η and ϕ, and Vi depends on the parameters ν and ϕ. The score and hessian 

equations are then given by the equations
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The generally expressed score and hessian equations can be applied to the specific structure 

of the MLRR model evaluating these expression for the mean and variance structure 

equations given by

where the coefficients for baseline differences due to covariates for outcome k are denoted 

by the vector αk, the coefficients for basis functions of time for outcome k are denoted βk, 

the global rate parameters associated with the rate covariates are denoted by θ, the random 

effects structure is given by the matrix R, the random effects design matrix for the ith 

individual is defined by Zi, and Σ denotes the variance of the measurement error. For the 

random effects structure described in subsection 2.2, the random effect design matrix Zi 

would be a JK × 2K matrix where the (2k – 1)th column takes a value of 1 for rows 

corresponding to outcome k and zero otherwise, and the (2k)th column takes on values of 

the vector Bikβk for the rows corresponding to outcome k and zero otherwise. Finally, be 

decomposing the random effects matrix into an LDL Cholesky Decomposition [19], the 

derivatives of the mean function and variance function can be derived based on the above 

parameter specification. The component parts can then be incorporated into a standard 

Newton-Raphson algorithm to perform Maximum Likelihood Estimation.
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Figure 1. 
An illustration of the mean and rate structure assumed by a basic proportional rate 

assumption for an example of two longitudinally measured outcomes and a single binary 

exposure. The solid blue line represents the mean and rate longitudinal trajectory of the 

unexposed group for each outcome. Mean and rate trajectory for the exposed group is 

captured by the solid red line. The dashed blue line and dotted red line represent the 

individual curves for select unexposed and exposed individuals respectively as would be 

captured by a random effects variance structure. The rate plots include a grey line to 

represent the ratio between the two rate curves (the exposed curve divided by the unexposed 

curve) which is assumed to be equal to a single proportion under the basic proportional rate 

assumption (1+ θk; for k = 1, 2). The MLRR model with GMPR assumption further assumes 

the rate difference due to exposure is the same across outcomes, i.e. θ1 = θ2, which was 

constrained to be true in this illustration.
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Figure 2. 
Power curves for testing group differences in the rate of change for three outcomes between 

two groups for the univariate LRR model (solid red), the MLRR model with separate rate 

parameters for each outcome (dashed green), and the MLRR model with a global rate 

parameter (dotted blue). (a) The true data was generated from a model where the rate 

parameter for each outcome was the same and the GMPR assumption was correct. The 

global rate effect size is 25%. (b) The true data was generated from a model where the rate 

parameters for the second and third outcomes respectively were two-thirds and one-third the 

size of the rate parameter for the first outcome. The rate effect sizes for the each outcome 

was 25%, 16.7%, and 8.3%. (c) The true rate parameter for the second and third outcomes 

respectively were reduced by half and to zero relative to the rate parameter of the first 
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outcome. The rate effect sizes for each outcome was 25%, 12.5%, and 0%. The power curve 

for the univariate LRR model was generated from testing the first outcome whose rate effect 

was 25% in each scenario.
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Figure 3. 
Plots of fitted lines for the models of rate differences in the trivariate outcome of weight, 

crown-heel length, and head circumference across groups defined by sex, treatment, and 

HIV status. Separate plots have been generated for each outcome with the mean fitted line 

for HIV negative (red) and HIV positive (blue) infants for three longitudinal rate regression 

models. Fitted lines were plotted for the univariate LRR model (solid line) for each outcome, 

the MLRR model with separate rate effects for each outcome (dashed line), and the MLRR 

model with GMPR assumption (dotted line)
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Figure 4. 
Parameter estimates and 95% confidence intervals are plotted for the longitudinal rate 

regression models for estimating group differences in growth outcomes for infants exposed 

to HIV infection. Each model regressed the growth outcome(s) against sex, treatment, and 

HIV infection status. Results are provided for univariate LRR models for weight, crown-heel 

length, and head circumference; a MLRR model with separate rate estimates for each 

outcome; and a MLRR model with GMPR assumption. (a) Main effect estimates and 

confidence intervals for group differences in weight (Kg). (b) Main effect estimates and 

confidence intervals for group differences in crown-heel length (cm). (c) Main effect 

estimates and confidence intervals for group differences in head circumference (cm). (d) 
Rate effect estimates and confidence intervals for the three growth outcomes. Each estimate 

and interval is indicated for whether they correspond to weight, crown-heel length, head 

circumference, or all three in the case of the global rate parameter.
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Figure 5. 
Plots of residuals over time for the MLRR model with GMPR assumption for modeling rate 

differences in weight, crown-heel length, and head circumference across sex, treatment, and 

HIV status. Residuals capture the difference between the population mean and the observed 

value and do not account for individual variation explained by the random effects structure. 

Separate plots are include for each covariate group with a lowess curve to characterize the 

trend over time.
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Table 1

Group differences in the rate of change for growth outcomes among infants exposed to HIV infection based on 

a MLRR model with GMPR assumption. Covariates were included for mean level and rate level differences. A 

natural cubic spline with knots at 150,500, and 1100 days was used as a reference time trend for all outcomes. 

The covariance structure was specified using a mixed effects model. Main effect estimates and time trend 

coefficient estimates are provided for each outcome. A global rate effect was estimated for each covariate.

Weight (Kg) Crown-Heel Length (cm) Head Circumference (cm)

Estimate 95% CI Estimate 95% CI Estimate 95% CI

Main Effects

    Intercept 3.51 (3.41, 3.60) 49.90 (49.61, 50.20) 36.04 (35.87, 36.20)

    Sex
a 0.34 (0.24, 0.44) 1.25 (0.93, 1.57) 0.78 (0.60, 0.96)

    Treatment
b −0.14 (−0.24, −0.03) −0.38 (−0.71, −0.06) −0.32 (−0.50, −0.15)

    HIV Status
c −0.03 (−0.21, 0.14) 0.44 (−0.12, 1.00) −0.01 (−0.31, 0.30)

Time Trend

    Basis 1 5.5 (5.4, 5.7) 25.1 (24.7, 25.5) 10.4 (10.2, 10.6)

    Basis 2 8.8 (8.6, 8.9) 36.4 (35.9, 36.9) 10.7 (10.6, 10.9)

    Basis 3 16.0 (15.7, 16.3) 64.7 (63.8, 65.6) 21.9 (21.6, 22.2)

    Basis 4 10.3 (10.1, 10.4) 43.2 (42.6, 43.8) 9.2 (9.1, 9.4)

Rate Effects Estimate 95% CI

    Sex
a −0.00 (−0.01, −0.01)

    Treatment
b 0.01 (−0.01, 0.02)

    HIV Status
c −0.06 (−0.09, −0.04)

a
Parameter estimates for males relative to females.

b
Parameter estimates for infants exposed to nevirapine relative to those exposed to zidovudine.

c
Parameter estimates for HIV positive infants relative to HIV negative infants.
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