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Abstract

Maturing omics technologies enable researchers to generate high dimension omics data (HDOD) 

routinely in translational clinical studies. In the field of oncology, The Cancer Genome Atlas 

(TCGA) provided funding support to researchers to generate different types of omics data on a 

common set of biospecimens with accompanying clinical data and to make the data available for 

the research community to mine. One important application, and the focus of this manuscript, is to 

build predictive models for prognostic outcomes based on HDOD. To complement prevailing 

regression-based approaches, we propose to use an object-oriented regression (OOR) methodology 

to identify exemplars specified by HDOD patterns and to assess their associations with prognostic 

outcome. Through computing patient’s similarities to these exemplars, the OOR-based predictive 

model produces a risk estimate using a patient’s HDOD. The primary advantages of OOR are 

twofold: reducing the penalty of high dimensionality and retaining the interpretability to clinical 

practitioners. To illustrate its utility, we apply OOR to gene expression data from non-small cell 

lung cancer patients in TCGA and build a predictive model for prognostic survivorship among 

stage I patients, i.e., we stratify these patients by their prognostic survival risks beyond histological 

classifications. Identification of these high-risk patients helps oncologists to develop effective 

treatment protocols and post-treatment disease management plans. Using the TCGA data, the total 

sample is divided into training and validation data sets. After building up a predictive model in the 

training set, we compute risk scores from the predictive model, and validate associations of risk 

scores with prognostic outcome in the validation data (p=0.015).
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1. Introduction

The advent of next generation sequencing technologies 1; 2 enables clinical researchers to 

routinely process hundreds of biospecimen samples collected from patients, assessing, e.g., 

genomewide expression levels 3, methylation levels4, or somatic mutations 5, referred to 

here as high dimensional omics data (HDOD). Despite the usually limited available sizes of 

clinical samples, the numbers of observed variables on each sample can be in the thousands 

or millions. The affordability of these technologies has moved the bottleneck of clinical 

research from sample acquisitions to data management and data analytics. While there are 

numerous analytic objectives contemplated by biomedical informatics researchers, one of 

them, the focus of this manuscript, is to build predictive models for specific clinical 

outcomes, utilizing HDOD along with other clinical variables.

Building predictive models has been a long-standing research interest shared by quantitative 

researchers in several disciplines. Computer scientists have been actively developing 

predictive models with large data sets from databases6; 7. Methods include support vector 

machines 8, genetic algorithms 9, and many other machine learning algorithms 10; 11. 

Additionally, taking full advantage of their intimate familiarity with database technologies 

and visualization tools, computer scientists have been effective in organizing HDOD, scaling 

up computing power to analyze HDOD, and presenting HDOD-derived results visually so 

that biomedical researchers can interact with HDOD and can intuitively comprehend results. 

Recent successes with these applications in biomedical research partially contribute to the 

growth of bioinformatics.

Building predictive models has been a long-standing interest for statisticians. A literature 

review is not attempted here. It suffices to note several major milestones in this area. Given 

the nature of predicting an outcome with multiple variables, regression-based predictive 

models are commonly built, and most are special cases within generalized linear models 

(GLM) 12. Relaxing the parametric assumption, Hastie and Tibshirani described a 

generalized additive model (GAM), synthesizing results from decades of research on 

nonparametric regression methods 13. In recent years, statisticians have been developing 

penalized likelihood techniques to automate the covariate selections from HDOD 14, 

including LASSO 15; 16, GBM 17, Elastic-Net 18, Ridge regression 19 and Radom Forests20. 

These methods are commonly used tools for analyzing HDOD in translational research.

While there is some crossbreeding of methods between computer sciences and statistics, one 

fundamental difference in our opinion is that computer scientists often explore patterns with 

multiple variables from a systemic perspective, while statisticians tend to identify a few 

covariates following the parsimony principle. A major challenge facing statisticians is how 

to control the overly inflated false positive error rate in selecting predictors from HDOD, so 

that discoveries are reproducible in independent samples. In contrast, computer scientists or 

bioinformaticians, with primary interest in patterns of HDOD, often desire to quantify 

observed patterns in a robust manner, in hope that discovered patterns are reproducible on 

independent data sets.
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To frame the “big picture”, consider what would be a clinician’s intuition in dealing with 

complex medical information. Clinicians typically gather multifaceted information from 

medical records, from physical examinations, and from diagnostic laboratory tests, a version 

of HDOD, and then make a clinical judgement based on the evidence plus their experiences 

of past cases. Mentally, an experienced clinician would compare the new patient with 

previously treated patients or those typical cases in textbooks or in literature, and would 

reduce the mental comparison to an intuitive clinical judgement with a sample size of one. In 

essence, the clinician’s assessment is holistic by comparing individual’s HDOD with those 

HDOD profiles of known subjects, like exemplars.

Being motivated by this clinician’s intuition, we propose a hybrid approach of integrating 

data pattern discovery and regression analytics, to retain desired features of both analytic 

approaches. This approach has two steps. At the first step, the goal is to identify a group of 

“exemplars” that are representative of subjects’ HDOD patterns, typically observed through 

clustering analysis of unsupervised learning 14; 21; 22. To have cluster patterns represented, 

one could choose centroids of clusters as exemplars. To represent those samples under-

represented by clusters, one could choose singletons to be exemplars. In essence, a HDOD 

pattern characterizes an exemplar. The number of exemplars (q) is generally smaller than the 

sample size (n), unless exemplars are derived externally (see discussion below). With 

reference to each exemplar, one can compute a similarity measurement with each subject, 

resulting in a matrix of similarity measurements with the dimension (n × q). Typically, p >> 

n > q. Effectively, this step transforms high dimension and sparse HDOD (n × p) into a 

“dense data matrix” (n × q). Then, at the second step, we use penalized likelihood methods 

to select those exemplars that are predictive of the outcome. Because of the substantially 

reduced dimensionality from p to q, the penalized likelihood can readily picks up 

informative exemplars, at much reduced penalty. The dual step procedure relies on 

exemplars from “unsupervised learning” and then selects informative exemplars with their 

associations with outcome via “supervised learning”. Because of regressing outcome on 

exemplar-specific similarities, this method is referred to as “object-oriented regression” or 

OOR for short. In contrast, most of regression-based methods mentioned above are known 

as covariate-specific regression methods (CSR).

2. Methodology

2.1 Motivation

The Statement of Problem—Consider a sample of n subjects (i = 1, 2,…, n) in a clinical 

follow-up database. On each ith subject, we observe a set of high dimensional and sparse 

covariates, denoted as Xi = (xi1, xi2, ⋯, xip), where the number of covariates is typically 

much greater than the sample size(p >> n), typical of HDOD. Also observed on each ith 

subject is time-to-event outcome variable of interest Yi = (δi,ti), in which binary indicator δi 

is for, e.g., alive or death, at the observed time ti. The likelihood of all observed data may be 

written as

(1)
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where the summation is over n subjects, f(Yi ∣ Xi) the conditional density of Yi given 

covariates Xi, and f(Xi) is the multivariate distribution of covariates23. To capture association 

of the time-to-event outcome with covariates, it is a common practice to model a hazard 

function24, which may be written as

(2)

where λ0(t) is the baseline hazard function independent of covariates, and h(Xi, θ) is an 

arbitrary function indexed by a vector of unknown parameters θ to be estimated from a data 

set. Correspondingly, the distribution function f(Yi ∣ Xi) is specified by the hazard function 

via

(3)

The analytic objective is to establish the outcome (Yi) association with covariates (Xi) via 

modeling the arbitrary function h(Xi, θ).

The Representer Theorem—When the covariate function is unknown and is left 

unspecified, Kimeldorf and Wahba (1971) have shown that given the observed samples 

(X1,X2,…,Xn), the above arbitrary function h(Xi,θ) in the equation [2] can be generally 

represented by

(4)

where θk is a sample-specific and unknown parameter, and K(X,Xi) is known as the kernel 

function and needs to be semi-positive definite25. One class of kernel function is the 

similarity measure that quantifies the similarity of X with Xk. For an observation X identical 

to Xk, the corresponding term is θkK(X,Xk) = θk. If X is completely different from Xk, 

θkK(X, Xk) = 0. Further, if Xk and Xk' are identical or nearly identical, corresponding terms 

can be merged as θkK(X, Xk) + θk'K(X, Xk',) ≈ (θk + θk')K(X, Xk) = αkK(X, Xk). Lastly, 

one expects that the coefficient θk, quantifying outcome association with similarity measure 

K(X, Xk) with the kth individual, is likely to equal zero, if the covariate profile of the kth 

individual is not associated with the corresponding outcome. Zhu and Hastie used some of 

these observations to describe an import vector machine approach by grouping some K(X, 

Xk) terms26.

The Representer theorem, together with above observations, forms the theoretical foundation 

for us to propose OOR by modeling this arbitrary function via
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(5)

where sk(Xi) = K(Xi, Zk) is the similarity measurement of X with the kth unique HDOD Zk, 

and (α, βk) are unknown regression coefficients to be estimated. Formally, HDOD vector Zk 

represents a pattern of HDOD or HDOD profile, and is referred to as an exemplar. Use of the 

new notation Zk implies that the exemplar can be internally chosen from (X1,X2,…,Xn), or 

chosen externally from other sources. The regression coefficient βk, if it does not equal zero, 

implies that anyone whose HDOD profile is similar to Zk associates with the outcome via 

the above OOR [5].

Instead of regressing on HDOD as covariates, OOR regresses the outcome on the subject’s 

similarity with exemplars. As expected, the interpretation of regression coefficients is 

specific to similarity with exemplars. Naturally, such an interpretation is reminiscent of data 

queries used frequently by computer scientists. As expected, OOR provides a “holistic 

interpretation” of exemplar-specific associations, as opposed to covariate-specific 

associations.

2.2 An OOR Framework

Figure 1 provides a schematic illustration of the OOR process. The HDOD as the input data 

are a large covariate matrix, with individual continuous elements (Fig 1a). Note that it is 

important to filter out those covariates that are noisy or unlikely informative, a usual 

requirement for any meaningful cluster analysis27-29. Without outcome data, OOR first 

organizes HDOD to identify exemplars Zk via unsupervised cluster analysis (Figure 1b and 

c). The result from the unsupervised learning is an array of q exemplars (Z1,Z2,…,Zq). 

Based on a chosen similarity measurement K(Xi,Zk) (see Discussion below), one computes 

the similarity measurements for each ith subject with every kth exemplar (Figure 1d). By 

treating similarity measurements as covariates, one now has a dense covariate matrix (Figure 

1e). Under the proportional hazard model [2] and [5], one can then select informative 

exemplars to form a predictive model (Figure 1f). Using the predictive model, we compute 

predicted relative risks, and validate their associations with the survival outcome on an 

independent validation data set (Figure 1g). Besides building predictive models, OOR lends 

itself naturally to examine systemic association of the time-to-event outcome with HDOD 

profiles via their exemplar-specific association (Figure 1h). One may consider both 

univariate and multivariate association analysis. The following sections center on key 

components of OOR framework.

Without referring to outcome data, the aim of unsupervised learning process explores 

correlation structure of HDOD covariates across genes and across subjects. Purely from the 

statistical perspective, one utilizes the second portion of log likelihood function [1] without 

referring to the outcome, and hence the unsupervised learning exercise is inconsequential to 

the supervised learning later30. Conventionally, clustering analysis organizes genes and/or 

samples 27-29 by their correlations, and resulted clusters of samples allow one to identify 

Zhao and Bolouri Page 5

J Biomed Inform. Author manuscript; available in PMC 2016 November 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



centroids of interest. Centroids tend to have relatively high correlations (or similarities) with 

the group of samples within the cluster, and, as exemplars, represent multiple samples.

When dealing with HDOD, there are often many subjects with relatively unique HDOD 

profiles, distant from observed clusters. Operationally, we define these “unique subjects” as 

those whose HDOD profiles that are not represented by centroids or their combination. One 

may also want to include these unique subjects as exemplars. To identify these subjects, we 

use the following regression approach. Suppose that we have identified an initial set of t 
centroids as exemplars, denoted as [1],[2],…, and [t]. To start, we regress all subjects’ 

HDOD, other than those in clusters represented by HDOD, on the centroids’ covariates via

(6)

where ϑ’s are regression coefficients, and εi is a vector of residuals. One evaluates the sum 

of residual squares (SRS) from the above linear regression, for each individual, and 

computes the fraction of residual variations explained by those informants. Then, the ith 

individual may be added to the set of exemplars if it satisfies

(7)

where SRS0 is the SRS without exemplars, and f is a pre-selected threshold value (e.g., 0.5). 

Note that the analysis of selecting exemplars without referring to the outcome, does not 

affect any downstream supervised learning (below).

By the nature of clustering analysis, a subjective element is the choice of cluster numbers, 

typically assigned by visualization. To minimize the impact of this choice, one can start the 

analysis by treating everyone as “unique subjects”. By the iterative procedure [5] described 

above, one can automate the selection of exemplars, with a pre-selected threshold value f. If 
so, one skips the clustering analysis. Besides deriving exemplars internally, one can certainly 

include exemplars that are derived from external sources and the choice can improve the 

interpretability. Note that one should treat threshold value f as a tuning parameter to seek an 

optimal determination for the specific problem on hand. Further, for translational studies 

with exceptionally large sample sizes (e.g., >2000), one may have to adjust this tuning 

parameter, so that the dimensionality of “dense covariate matrix” is manageable.

2.3 Supervised Learning

Following identification of exemplars, the next step is to assess if the similarity to these 

exemplars is in any way associated with the outcome of interest. As noted above, we use the 

proportional hazard model [2] and [5] to capture relationship between the HDOD and the 

clinical outcome. For variable selection, we propose to use the penalized likelihood methods 

to control the over-fitting problem, in particular, the least absolute shrinkage and selection 

operator (LASSO) to select informative exemplars 15; 16. Conceptually, LASSO is a version 
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of penalized likelihood estimation, and the estimated regression coefficients 

 in OOR model [5] maximize the following penalized likelihood function:

(8)

where the first summation is over all random samples as a usual log-likelihood function, the 

second summation is over all absolute values of q regression coefficients, and λ is a tuning 

parameter to determine the magnitude of penalty on those non-zero regression coefficients. 

Following convention, the tuning parameter λ is estimated to give a minimum prediction 

error based on cross-validation.

2.4 Similarity Measures

Choosing an appropriate metric to measure similarity is crucial for OOR, as it dictates how 

similarities are computed, how clusters are identified, how exemplars are identified, and the 

extent of similarity between subjects and exemplars. In general, this choice should depend 

on the nature of HDOD and interpretation of results. Here we consider several common 

similarity measures. Note that by convention, the similarity measure is an inverse of 

distance, i.e., similarity of 1 and 0 are equivalent to the zero and infinitive distances, 

respectively.

Euclidean distance function—Consider two subjects with HDOD covariate vectors (Xi, 

Xi' ), all elements in which are numerical. Their Euclidean distance can be written as

(9)

where ∥ • ∥ represents the square-root of sum of difference squares. When covariates are 

normalized by mean and standard deviation, the Euclidean distance has a monotonic 

relationship with the correlation coefficient, which is commonly used to measure similarity. 

Recently, Frey and Dueck have used a negative squared Euclidean distance, i.e., − ∥ Xi − Xi' 

∥2, as a similarity measure 31.

Radial basis kernel function—Another common conversion from the above distance to 

similarity measurement is via the following kernel function

(10)

where  is chosen to be a tuning parameter, depending on smoothness requirements, and 

may be chosen to be the standard deviation of all pairwise distances 27.

Cosine similarity function—In information theory 32, a common measure between two 

vectors (Xi, Xi') is the cosine similarity, which may be written as
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(11)

where ⊗ is the inner product of two vectors. Despite its seemingly different representation, 

this similarity measure is identical to correlation coefficient between two vectors, if different 

covariate observations are treated as “sample values”.

Besides the above commonly used metrics of distances or similarities, there are other 

measures that are domain-specific. In the context of genetics, geneticists have used “identity-

by-descent”, “identity-by-state” or kinship-coefficient as a measure of genetic similarity 33. 

When dealing with text, there are many measures for semantic similarity measures 34. There 

is enormous flexibility in choosing the similarity measure most suitable for a given 

application in OOR.

2.5 Comparison of OOR with CSR

As noted above, commonly-used methods from statistics are CSR, in the sense that these 

methods are to assess clinical associations with a vector of covariates (or features). These 

methods stem from reductionist perspective, reducing many covariates down to a few 

informative covariates. In contrast, OOR was rationalized to capture clinical associations 

with HDOD patterns via similarities of all subjects with those of exemplars, i.e., holistic 

associations. Given complementary perspectives, CSR and OOR have several fundamental 

differences in analytic objectives, application areas, result interpretations and analytic 

powers. In the following, we highlight several key differences between two regression 

approaches. It is important to realize that computer scientists have developed many 

methodologies, some of which are regression-based and are related to CSR methods 

mentioned above, but many others are heuristic methods customized for various domains of 

interest35. Some of these heuristic methods, with some modifications, could be applied to 

analyze HDOD from biomedical research as well, and should be pursued through close 

collaboration with computer scientists.

CSR is generally designed in such a way that one can assess the association of an outcome 

with one or more covariates 12; 36. The desirable feature of CSR is that one can isolate a 

covariate-specific association, after controlling other covariates in the regression. For this 

reason and others, CSR has been a “workhorse” for most statistical applications in last few 

decades. In the era of “big data” with many variables, Simon et al (2011) have described 

regularization paths to select covariates, in the context of the Cox proportional hazard 

model37, the procedure implemented as a “glmnet” function in R and is used frequently for 

selecting covariates. When applied to data with excessively high dimension, application of 

CSR encounters some challenges. First, in dealing with HDOD, a typical application of CSR 

is unable to analyze all covariates simultaneously, because of p>>n. Use of LASSO has been 

helpful, but still pays “statistical costs” that are proportional to number of covariates in 

analysis. Secondly, one intrinsic assumption, required by CSR, is that covariate effects are 

additive in the regression model. When multiple correlated covariates are included, this 

assumption allows CSR to extrapolate outcome association with covariates where there are 

Zhao and Bolouri Page 8

J Biomed Inform. Author manuscript; available in PMC 2016 November 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



few or even no observations. When the assumption holds, CSR gains power. Otherwise, 

CSR’s extrapolations could be misleading. Thirdly, CSR is suitable for analyzing numerical 

HDOD covariates, and its application to unstructured data, such as genomic sequences or 

text data, may be limited.

Overcoming these limitations is the major impetus for developing OOR. OOR transforms 

the covariate matrix (n*p) into the similarity score matrix (n*q), where the q is much smaller 

than the sample size n (Figure 1). This transformation allows OOR to process HDOD. 

Admittedly, OOR addresses a different association question from CSR, and its primary 

objective is not to identify which covariates are significantly associating with outcome but to 

identify which patient or alike are likely to associate with the outcome. Through using 

similarity measures, OOR is suitable for correlating outcomes with HDOD of any 

dimension.

Aside from these differences, CSR and OOR have another important difference that makes 

these approaches complementary to each other in HDOD analysis. As noted above, CSR 

aims to screen through all individual covariates, and to identify a small subset of covariates 

that are predictive for the outcome, that is, CSR achieves parsimony with respect to the 

number of predictive covariates. In contrast, OOR screens through all of exemplars for a 

small subset of informative exemplars for the outcome, i.e., OOR achieves parsimony with 

respect to the number of predictive exemplars, but each exemplar is still characterized by all 

elements of HDOD. In the traditional biomarker research framework, CSR is clearly 

advantageous, because the resulted predictive model uses only a small set of selected 

predictors. In the era of systems biology (or systems medicine), future precision medicine 

likely will obtain HDOD routinely for various clinical indications without depending on a 

pre-specified panel of biomarkers. In such an application, OOR may be preferred, because of 

its robustness.

3. An Application to TCGA Lung Cancer Study

Lung cancer accounts for more deaths than any other cancer in both men and women, about 

28 percent of all cancer deaths. The prognosis for lung cancer is poor, since many cases are 

diagnosed at advanced stages. The prognosis of early stage lung cancer is better, but the five-

year survival rate is approximately 60%. Even among Stage I patients, some patients still 

have relatively short survival. It is of interest to stratify all stage I patients, based on 

prognostic survival probabilities. For patients with poorer survival probability, oncologists 

may design more aggressive treatment plans to improve prognosis. In contrast, those patients 

with much better prognosis may be treated with options that are more conservative.

3.1 Data Source

To address this question, we downloaded clinical phenotype and RNA-seq data from Xena 

(http://xena.ucsc.edu/). The 2015-06-10 release includes data 1,299 samples. After linking 

the two files and conducting basic quality control and excluding samples with missing data, 

our study includes 1,124 lung cases (571 adenocarcinoma cases and 553 squamous cell 

carcinoma), where both clinical phenotype data and gene expression data are complete. We 

randomly assigned the entire data set into training and validation sets, and kept completely 
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separated for all downstream analyses, to retain the integrity of the validation results. Figure 

2 shows the distributions of age at diagnosis for all patients in training and validation data 

sets, suggesting that patients in both sets have comparable age distributions. Further 

examination of gender, tumor type and stage reveals that their frequencies are largely 

comparable between training and validation sets (Table 1). With respect to survivorship, 

estimated Kaplan-Meier (KM) curves associated with four covariates are also comparable 

between training and validation sets (Figure 3).

3.2 Prognostic Survivorship

In the current combined data set, including both adenocarcinoma and squamous cell 

carcinoma patients, it appears that the survivorship does not significantly associate with age 

(P-value=0.143), or with gender (P-value=0.605), or with tumor type (P-value=0.444). 

Instead, survivorship is significantly associated with tumor stage (P-value<0.001). Our 

primary goal is to create a predictive model that can predict prognostic survival probabilities 

for stage I patients. In the training set, there are 296 stage I patients. To maintain the sample 

size for building the predictive model, we will not stratify the training samples over tumor 

type, or gender, or age, since none of them is significantly associated with the survivorship.

3.3 RNA-seq Data

TCGA researchers used the Illumina HiSeq 2000 Sequencing platform to produce short 

reads from mRNAs and then integrated these into assessments of gene expression levels for 

20,531 genes (https://support.illumina.com/sequencing/sequencing_instruments/

hiseq_2000.html). For this illustrative exercise, we ordered gene expression values and 

replaced expression values with their corresponding ranks. While quantitative information in 

RNA-seq is lost, rank-based transformation eliminates sample-to-sample heterogeneity.

3.4 Gene Filtering

Prior to initiating OOR analysis, we filter out genes from the list of 20,531 genes in the 

training set. To retain the empirical nature of this exploration, we consider “stage” as a 

pivotal variable, since the stage clearly associates with the survivorship, and stage change 

from I to III represents a progression from early stage cancer to late stage cancer. As 

expected, many genes are up- or down-regulated as the cancer progresses. Presumably, 

progressions are occurring even among early stage cancers, except that their morphological 

features may not be observable yet. By correlating gene expression levels with stage I versus 

other stages, we computed Z-scores and associated p-values for every gene (Figure 4). 

Interestingly, there is a little peak right to the value 1, indicating that there may be possibly a 

mixture of two groups of genes: one group of genes associate with the outcome, while the 

majorities have no associations. Using the threshold value of p-value=0.01 (which is chosen 

to include any gene that would meet the traditional significance level if a single gene is 

considered), we selected 831 genes. After eliminating a few highly correlated genes among 

all stage I patients, we ended up with a final list of 789 genes as an input data for OOR 

analysis.

Zhao and Bolouri Page 10

J Biomed Inform. Author manuscript; available in PMC 2016 November 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://support.illumina.com/sequencing/sequencing_instruments/hiseq_2000.html
https://support.illumina.com/sequencing/sequencing_instruments/hiseq_2000.html


3.5 Patterns with Selected Genes

Using the Euclidean distance and complete linkage options in the heatmap.2 function of the 

R package ‘gplots’ (https://www.r-project.org/). we performed two-way clustering on the 

input data (Figure 5). The gene (columns) dendrogram indicates the presence of multiple 

groups of co-varying genes. Note that one vertical block (white lines) indicates a group of 

highly co-varying genes. Given the primary interest in identifying exemplars, the 

hierarchical clustering of samples (rows) implies the presence of multiple groups, among 

which seven large clusters are highlighted and separated by six yellow lines. The visual 

patterns give a strong qualitative impression that there are multiple groups of subjects with 

distinct gene expression profiles. While appreciating the visual impression of data, there are 

challenges to synthesizing data to generate reproducible results. First, perceptions of visual 

patterns vary from individual to individual. Second, presented visual patterns depend on 

choice of visualization parameters, such as color choices, color depths, etc.. Third, it is 

nearly impossible to separate systematic and random patterns visually. Indeed, we have 

performed “simulated experiments” in which we randomly choose 1000 genes and 

performed clustering analysis (not shown). In these experiments, one can occasionally see 

some patterns resulted from two way clustering. Largely, observed patterns are much less 

distinct from the pattern observed here (Figure 5).

3.6 Pathway Analysis

Besides visual impression of patterns, one could expect that selected genes, based on the 

pivotal stage I indicator, should include biologically meaningful elements. Of course, it is 

expected that some genes are selected purely by random chance, because of the liberal 

choice of p-value at 0.01. To check on biological significance of these 789 selected genes, 

we perform a pathway analysis, using TargetMine, a web tool for pathway analysis (http://

targetmine.mizuguchilab.org/targetmine/begin.do). Ten pathways are found to include 

corresponding genes with the gene enrichment p-value less than 5% (Supplementary Table 

S1). The first panel of Table 2 lists these pathways, including cell cycle, mitotic cell cycle, 

M phase, and meiotic recombination, all of which are consistent with accelerated cellular 

growth of cancerous cells from stage I to higher stage. Even more interesting is that all 

involved tissues seem to connect with epithelial cells in airway, except for fallopian tube 

epithelium (Table 2). Gene lists in various tissues are shown in the supplementary table 

(Table S1).

3.7 Exploration of Exemplars

Gene expression pattern of 789 selected genes among 296 subjects clearly indicates the 

presence of clustered subjects who share expression profiles, and that there are not identical 

subjects with respect to these 789 genes. Given that the training set includes only 296 

subjects, we choose all of them as exemplars, without relying on the clustering analysis for 

this application. As an initial exploration of exemplar-specific association with prognostic 

survivorship, we perform marginal association of individual exemplars with the survival 

outcome, and retain those exemplars that have marginal associations, which is a commonly 

used strategy to screen variables. By the association p-value at 0.05, we select 22 exemplars 

that are subject to the further selection by LASSO. Table 3 lists estimated coefficients, 
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hazard ratios, standard errors, and p-values from the univariate association analysis of the 

clinical outcome with one exemplar a time. Subjects, who are similar to exemplar 1-16, 

appear to be at much elevated risks (>0) with their p-values less than 0.05. On the other 

hand, subjects who are similar to exemplar 17-22 appear to be at reduced risks (<0) with p-

value less 0.05.

Now given the selected 22 exemplars, we compute a similarity matrix of each subject with 

every exemplar, resulting in a “dense covariate matrix” illustrated in Figure 1e. Figure 6 

shows the similarity matrix with 296 rows by 22 columns. Grey, yellow and red correspond 

to weak, modest and strong similarity of a subject to exemplar, respectively. Clustering helps 

to organize the 296 subjects and 22 exemplars into distinct subsets. The 22 exemplars are 

clustered into two main clusters. The color bar for the column represents the marginal 

associations with each exemplar: red for protective associations and green for risk 

associations. Interestingly, two sub-clusters on the right branch appear to have risk (green) 

and protective (red) associations, respectively, even though their overall similarities to 

exemplars are comparable.

3.8 Building a Risk Score Calculator with Selected Exemplars

With carefully selected exemplars, we proceed to select informative exemplars from the 

“dense covariate matrix” by LASSO. The first step of LASSO is to estimate the penalty 

parameter by the cross-validation, leading to the estimate (λ = 0.021) (see Section 3.9 and 

3.10 on stability of estimation by cross-validation). With the fixed penalty parameter value, 

the second step of LASSO is to select informative exemplars and to estimate associated 

regression coefficients. Result is shown in the last column of Table 3, in which 11 

exemplars, with non-zero coefficients, are selected as informative exemplars for the 

prognostic outcome (shown in Figure 7). Estimated regression coefficients are listed. 

Interestingly, estimated regression coefficients in the 8th column tend to be smaller than their 

counterparts in the 3rd column from univariate regression analysis, probably reflecting that 

LASSO has distributed marginal associations to associations with multiple exemplars, while 

penalizing some unstable exemplars like the first exemplar (e.g., Ex 1: TCGA_22_4609_01).

With estimated regression coefficients, one can now proceed to construct a risk score 

calculator via

(12)

where  is the estimated coefficient for the kth informative exemplar. Based on the 

proportional hazard model, the risk score, calculated for the ith subject, is the relative risk of 

the current subject in comparison with a “reference subject” who has zero similarity to any 

selected exemplars. Together with the baseline hazard function, one can build a predictive 

model based on the proportional hazard model [2] and [3].

For clinical practitioners, we have simpler interpretation. The similarity function sk (Xi) 

measures the degree of similarity of the ith patient with the kth exemplar. Given the degree 
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of the similarity, the coefficient  dictates the weight contributing to the overall risk score. 

Collectively, cumulating weighted contributions lead to the overall risk score, and the 

exponential transformation puts the risk score onto the scale of relative risk, which is more 

familiar to many clinical investigators.

3.9 Validating the Risk Score Calculator

Using the validation data, we compute risk scores for every patients by the risk score 

calculator [11]. Figure 8a shows the distribution of risk scores, ranging from the minimum 

0.71 to the maximum 5.65. Clearly, large portion of subjects have relative risks around one, 

while the distribution is skewed to the right tail. To validate its association with the survival 

outcome, we regress the outcome on the risk score on log scale, and find that the association 

with the risk score is statistically significant (p-value of 0.015, in Table 4). Hence, it is 

concluded that the risk score is positively predictive of the survival outcome. For the result 

interpretation, Figure 8b shows four survival curves, computing four expected survival 

curves, given different risk scores of 1, 2, 3 and 4, respectively. For patients at stage I at the 

baseline, their prognostic survival declines from 1 to 0.62 over five years. However, for those 

with risk score of 4, the five-year survival declines from 1 to 0.41 in five years.

3.10 Monte Carlo Stability Analysis of the Penalty Parameter

When applying OOR, one has to estimate a penalty parameter (λ) required by LASSO, and 

the choice of this parameter has a profound impact on variable selection. In the absence of 

knowing true value, the common approach is to use the cross-validation method to estimate 

this penalty. Unfortunately, cross-validation produces a randomly estimated penalty 

parameter. In this study, we ran a cross-validation, resulting in an estimate of 0.021. The 

question is ‘how stable is the estimated penalty parameter?’ For this purpose, we performed 

a Monte Carlo simulation experiment with 1,000 replicates. In each replicate, we used the 

‘cv.glmnet’ function of the R ‘glmnet’ package (https://cran.r-project.org/web/packages/

glmnet/index.html) to estimate the penalty parameter with 10 fold cross-validation 19. Figure 

8 shows the empirical distribution of estimated penalty parameter values on a logarithmic 

scale. Interestingly, there are a total of 20 unique penalty values, ranging from 0.016 to 

0.091. The smaller the penalty the value, the more exemplars are selected. In the current 

application, the penalty value of 0.091 leads to a null model with no exemplars selected. 

Without any prior choice, our analysis selected penalty value (λ = 0.021) that is marked in 

the Figure 9. Retrospectively, this is a somewhat smaller penalty value compared to the 

model (λ = 0.030).

3.11 Stability of Selecting Exemplars by Bootstrap Analysis

In recognition of the range of penalty parameter values, we anticipate that selected 

exemplars can be variable. To assess the stability of selected exemplars, we conducted a 

bootstrap analysis with 1,000 replicates. In each bootstrap sample, we randomly sample, 

with replacement, observed gene expression values and corresponding survival outcome, to 

form an analytic data set with the same sample size as the training set. With 20 fixed penalty 

values, we selected exemplars by LASSO from the same analytic data set. Table 5 lists 

estimated concordances of selected exemplars with different choices of penalty parameter 
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values, via computing Kappa values 38; 39. Kappa values range from 0 (no concordance) to 1 

(perfect concordance). Given 1000 replicates, each element in the upper triangle represents 

the mean Kappa value, while the corresponding element in the lower triangle the standard 

deviations of estimated Kappa means. Clearly, concordances with adjacent penalty values 

are close to one. The concordance decreases as corresponding penalty values diverge. To 

gain insight into concordance at a quantitative level, we computed averaged estimates of 

coefficients associated with all 22 exemplars over 1,000 replicates. Then, we also visually 

examined pairwise concordances (not shown). Again, concordances are largely consistent 

between qualitative and quantitative assessments. Examining the XY plot for the upper right 

hand corner, i.e., with two extreme penalty values, we note that average coefficients of most 

exemplars remain concordant.

3.12 Comparison with Covariate-Specific Regression Analysis

As noted above, many CSR methods have been developed for building predictive models, 

and are commonly applied to HDOD arising from biomedical research. While it is not 

possible to compare OOR method with all of them, we chose five commonly used CSR 

methods, i.e., LASSO-based method by regularization paths37, Ridge regression designed 

for highly correlated data19, Elastic-Net to balance between LASSO and Ridge methods18, 

Random Forests from machine learning literature20 and Generalized Boosting Models 

optimized for building predictive models17. All five methods are applicable to censored 

outcome, and are available as R packages. We use recommended default values for building 

predictive models on the training data set. To ensure a fair comparison, we apply these five 

methods to the same set of 789 filtered genes, to produce predictive models on the training 

set, without any refinement. Then, we use their corresponding “predict” functions, to 

compute “predicted values” in the validation data. Because these methods are diverse and 

their predicted values are not on the same scale, we regress survival outcome on their 

predicted values, to examine if these predicted values associate with the outcome. Table 4 

lists estimated coefficient, its standard error, Z-score and p-value. It appears that the 

predicted values from GBM are significantly associated with the survival outcome in the 

validation data set (p=0.043). Predicted scores from four other methods appear not to reach 

their critical significance level. In fact, the result from Ridge regression falls on the null 

hypothesis entirely (p=0.827) with the coefficient of zero.

To gain further insights into potential values of these predicted scores, we convert predicted 

values into three categories: less than 25%, 25-50%, 50-75%, and greater than 75% of 

predicted values. For subjects within each category, we compute and draw KM curve in 

Figure 10. Figure 10a shows KM curves for risk scores in <25% (black), 25-50% (red), 

50-75% (green) and 75%- (blue). Additionally, we compute the p-value using the 

nonparametric log-rank statistic, to measure the significance of differences among three 

groups. For OOR, the differences among three groups are significant (p-value=0.023). For 

LASSO, Ridge regession, Elastic net, and Random forest, patterns of KM curves are mixed 

without clear and meaningful separation. For GBM, it is interesting to note that the group 

with the highest risk scores have clearly worse survival than three groups. Collectively, 

however, the log rank test fails to reach the significance level (p=0.192).
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4. Discussion

Increasing use of omics technologies in translational biomedical research presents an 

unprecedented challenge to data scientists, regardless of their academic roots in biomedical 

informatics, computer sciences, or biostatistics. A common and defining feature, shared by 

HDOD from translational research, is that the sample sizes are relatively small while the 

covariate dimension is very high. To address this challenge, we introduce OOR methodology 

as a hybrid of unsupervised and supervised learning methods. The key idea underlying OOR 

is to transform large and sparse HDOD matrix into a dense covariate matrix, through 

similarity measurement of subjects’ HDOD with exemplars’ HDOD, and then to assess their 

association with clinical outcome. This transformation is crucial, enabling one to assess 

systemic association of clinical outcome with HDOD profiles, and to reduce the curse of 

high dimensionality. The theoretical foundation in support for this transformation is the 

Representer theorem. As a result, OOR provides a rigorous statistical framework to assess 

systemic association of clinical outcome with HDOD useful for systems medicine, a spin off 

from system biology. More importantly, OOR methodology, the focus of this manuscript, 

provides a framework to build predictive models with HDOD for precision medicine 

practice.

To illustrate OOR, we applied it to a lung cancer study, with gene expression data obtained 

from TCGA. We built a predictive model for stratifying patients who have been diagnosed 

with stage I lung cancer (either adenocarcinoma or squamous cell carcinoma), and yet 

variable survival times. Through applying OOR, our analysis identified 11 exemplars from 

the training set. Similarity to nine exemplars appears to decrease the overall survival, while 

that with remainder two exemplars increase the overall survival. Applying the risk score [11] 

to the validation data, we assess its association with the prognostic survival, and find that the 

association is statistically significant (p=0.015). Upon stratifying all patients into four 

quarters, we use the non-parametric log rank statistic to evaluate differences of four survival 

curves, and conclude that computed risk scores are able to separate stage I patients into 

subgroups (p-value=0.023). Inspecting KM curves for four different strata, one notice that 

there are two groups of patients, separated by 50% percentile. Those patients with higher 

risk scores tend to have poorer survival over the five-year post-surgery. This result, if being 

further validated, may provide a rationale for providing these patients with adjuvant 

therapies, to improve their survival.

At this early stage of precision medicine, it is expected that clinical practitioners, with 

limited expertise in data science, are probably interested in understanding the rationale 

behind a risk score calculator [11]. First, we need to explain what are informative exemplars. 

Visually, we would like to show patterns of gene expression values associated with each 

informative exemplar (Figure 11), with a list of selected genes. For example, Ex 2 has some 

expression levels below average (green), while others are above average (red). Together with 

gene annotations for these 789 genes, one may gain an insight into what genes in concert 

tend to associate with poor survival. Indeed, Ex 18 and Ex 22 appear to have distinct patterns 

from those of the other nine exemplars, and associate positively with survival outcome. 

Finally, assigning appropriately calibrated weights to similarity with each exemplar, one can 

evaluate the overall risk score.
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While appreciating the attractions of OOR, it is equally important to recognize one potential 

weakness: the choice of metric in measuring similarity is somewhat arbitrary. In the 

literature of clustering analysis or unsupervised learning, multiple similarity metrics are in 

use, and they have their pros and cons, depending on the application context. From this 

perspective, OOR provides a level of flexibility in choosing similarity metrics that is 

appropriate for the application on hand.

OOR conceptually is connected with other analytic approaches. One class of approaches is 

the k-nearest neighbor methods (kNN), which are widely used in data mining literature of 

the computer sciences 40; 41. The key idea is that objects in a relatively “close 

neighborhoods” defined by certain characteristics, tend to have similar outcomes. The kNN 

can be used to make predictive models, without making any modeling assumption, and are 

thus known sometimes as nonparametric predictive models. However, kNN does not take 

into account the fact that many neighborhoods have equivalent outcome associations (under 

either the null or alternative hypothesis). In this regard, OOR may be thought of as an 

extension to kNN or the nearest neighbor regression functional estimates 42. Direct 

comparison is not amenable with current version of kNN, since it is developed for binary 

classification problem.

Another closely related method is the grade of membership analysis, abbreviated as 

GoM 43-45. Conceptually, GoM models the joint distribution of outcome and covariates 

through introducing a set of latent membership variables, under which a sensible 

distributional assumption is justifiable and, the likelihood, after integrating over all GoM 

latent membership variables, is computable. One can interpret GoM parameters as properties 

associated with individuals, rather than specific marginal interpretations of individual 

covariates. While GoM and OOR share the same conceptual goal, extracting information 

about an individual’s or object’s properties, OOR focuses on empirical observations of 

observed outcomes and covariates, without invoking any latent random variables.

The third closely related method is the principle component regression (PCR) 46; 47. The key 

idea of PCA, shared with OOR, is to reduce the dimensionality of the covariate matrix 

through principal component analysis. After synthesizing a matrix of highly correlated 

covariates into a matrix of principal components, PCR correlates individual principle 

components with the outcome of interest. PCR is readily applicable to HDOD when p<n. In 

the event that p>n, one can still apply PCR, given that one applies the generalized inverse to 

perform single value decomposition48. Resulted principle components, unfortunately, are not 

reproducible, depending on arbitrary order of covariates in HDOD. Hence, PCR is not 

recommended, unless the reproducibility of principal components is not important. In 

contrast, OOR seeks to identify a few exemplars that are representative of covariate matrix, 

and to correlate the outcome of interest with similarities to these exemplars.

The idea of using similarity measures by OOR is also connected with multiple methods 

developed and used in statistical genetics 49; 50. While tracing these connections is not 

intended here, it suffices to note that classical and modern genetics aim to discover outcome-

associated susceptibility genes that often cause similarity among related individuals who 

share more genetic variants than unrelated individuals. In the early days of genetics, 
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segregation and linkage methods were used to characterize and discover genes through 

familial aggregations. In modern genetics, several research groups have proposed to assess 

the similarity of genetic markers and use similarity regression as a way to discover disease 

genes 51. While sharing similar scientific objectives, OOR uses similarity scores as a proxy 

to discover what exemplars have higher risk for disease, rather than discovering which SNPs 

associate with the disease.

OOR has another intrinsic connection with a recently popular method, known as the 

Sequence Kernel Association Test (SKAT)52; 53, because OOR and SKAT share the 

representer’s theorem as their theoretical foundation. In brief, SKAT uses the representer’s 

theorem to represent the penetrance of all SNPs in combinations or their interactions, makes 

a sensible multivariate assumption about all regression coefficients, and tests their departure 

under the null hypotheses. Recently, Pan (2011) showed that the SKAT test is intrinsically 

equivalent to the similarity regression tests mentioned above 54. OOR takes a further step 

beyond SKAT, regressing outcomes on similarity scores, rather than assuming them as 

random variables.

In conclusion, we have introduced a new analytic framework for analyzing HDOD. Beyond 

technical derivations and various connections with existing methods, what OOR brings to us 

is an introduction of an analytic framework for exploring the “systemic relationship” of 

HDOD with a clinical outcome, paving a way for serving systems medicine in the future. 

This approach is complementary to the usual covariate-specific exploration that has served 

the “reductionist perspective” well for decades. In the era of big data and systems biology 

and systems medicine, having a systemic framework should facilitate systematic 

investigations of HDOD and generate “reproducible patterns” of HDOD with omics data. 

Before leaving this section, it is important to recognize that OOR shares analytic objectives 

with many existing data analytics from both computational statistics and computer sciences. 

Systematic comparisons, by both theoretical explorations and numerical simulations, are 

necessary to identify situations where either existing methods or OOR are preferred and 

where they are complementary.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A schematic flow of object-oriented regression, a) A omics data as a covariate matrix, b) 

organizing omics data via an unsupervised learning method, c) Clustered omics, resulted 

from two-way clustering analysis, leading to identification of exemplars, d) Computing 

similarity measurements with every exemplars and treating them as covariates, e) Dense 

covariate matrix of similarity measurements, useful for building a predictive model, f) Under 

the model, one can use penalized likelihood to select informative exemplars to build 

predictive models, g) One can perform validation analysis by assessing associations of 

predicted risk scores with clinical outcome, and h) Under a proposal hazard model for time-

to-death, one can perform systemic association with individual exemplars
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Figure 2. 
Distributions of age at diagnosis for all patients in training and validation data sets
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Figure 3. 
Kaplan-Meier curves, with Log-Rank test, are used to explore marginal associations of age, 

gender, tumor type and stage with prognostic survival over five years, in the training set (top 

panels) and the validation set (lower panels).
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Figure 4. 
Estimated distribution of logarithmic p-values that measures associations of gene 

expressions that associate with indicator of stage I
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Figure 5. 
High dimensional omics data (HDOD) with 789 genes observed among 296 subjects in the 

training set are organized by two-way hierarchical clustering analysis. Graded green and red 

colors, respectively, correspond to below and above zero for gene-specific normalized 

expression values, i.e., lower and higher than averaged expression values, respectively.
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Figure 6. 
Selected 22 exemplars (based on 789 genes) among 296 patients of stage I in the training 

data set with the grey, yellow and red representing, respectively, weak, modest and high 

similarities of each subject with 22 exemplars. The column-specific color-coded bar 

indicates directionalities of exemplar-specific associations (red for protective association, 

green for risk association). The row-specific color-coded bar indicates the status of one year 

survival status (red for alive, black for censored, and green for death).
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Figure 7. 
Selected 11 exemplars with high dimensional omics data (HDOD) of 789 genes in the 

training data set. Graded grey, yellow and red colors represent, respectively, weak, modest 

and high similarities of each subject with 11 informative exemplars. The column-specific 

color-coded bar indicates directionalities of exemplar-specific associations (red for 

protective association, green for risk association). The row-specific color-coded bar indicates 

the status of one year survival status (red for alive, black for censored, and green for death).
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Figure 8. 
Evaluation of risk scores computed by the risk score calculator: a) Distribution of predicted 

risk scores in the validation set , and b) Estimated survivorships with risk score of 1 

(reference), 2, 3 and 4 in the validation set.
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Figure 9. 
Distribution of estimated penalty parameter values from 1,000 Monte Carlo simulations. 

Selected penalty value (lambda=0.021) is marked.
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Figure 10. 
Computed Kaplan-Meier curves, with the p-value from log rank test, for patients whose 

predicted values are less than 15%, 25-50%, 50-75%, and greater than 75% percentile, 

where predicted values are produced by predictive models constructed by six different 

methods, in the validation data set.
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Figure 11. 
Patterns of 11 informative exemplars characterized by 789 selected genes. Graded green and 

red colors, respectively, correspond to gene expression values that below and above averaged 

values for every gene.
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Table 1

Distribution of gender, stage and tumor type in training and validation set (data set is obtained from TCGA)

Training Validating P-value

Gender Female 238 208 0.10

Male 318 343

Missing 6 11

Stage Stage I 296 277 0.15

Stage II 144 160

Stage III 102 87

Stage IV 13 23

Missing 7 15

Tumor Adenocarcinoma 286 285 1.00

Squamous Carcinoma 276 277

Total 562 562
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Table 2

Identified pathways and tissues from a set of 789 genes that have been selected from association analysis of 

genes with stage (I versus other higher stages)

ID Pathway Identified P-values

1 M Phase 1.094E-03

2 Cell Cycle 1.480E-03

3 Cell Cycle, Mitotic 1.999E-03

4 Chromosome Maintenance 4.139E-03

5 Systemic lupus erythematosus 4.391E-03

6 RHO GTPase Effectors 5.645E-03

7 Deposition of new CENPA-containing nucleosomes at the centromere 7.092E-03

8 Nucleosome assembly 7.092E-03

9 HDACs deacetylate histones 2.345E-02

10 Meiotic recombination 4.142E-02

ID Tissue Involved

1 airway epithelial cells 1.341E-06

2 bronchial epithelial cells 7.214E-06

3 endobronchial epithelial lining fluid 6.094E-05

4 sinus mucosa 3.307E-04

5 trachea 7.683E-04

6 fallopian tube epithelium 1.280E-02
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Table 3

Estimated regression coefficients associated with each exemplar in the univariate OOR analysis by Cox 

regression model (estimated coefficient, hazard ratio, standard error, Z-score and P-value) and in the LASSO-

based multivariate OOR analysis with Cox regression model (estimated coefficient only)

ID Exemplars Univariate OOR OOR

Coef HR SE Z P-value

1 TCGA_22_4609_01 2.91 18.29 0.76 3.81 1.399E-04 0.00

2 TCGA_56_5897_01 4.06 57.82 1.08 3.74 1.837E-04 1.17

3 TCGA_77_8131_01 2.61 13.53 0.78 3.32 8.865E-04 1.34

4 TCGA_22_1016_01 2.18 8.89 0.69 3.19 1.428E-03 1.33

5 TCGA_77_7338_01 2.75 15.72 1.00 2.76 5.719E-03 0.98

6 TCGA_18_3407_01 2.44 11.48 0.94 2.60 9.408E-03 0.28

7 TCGA_60_2707_01 1.89 6.64 0.74 2.55 1.083E-02 0.00

8 TCGA_77_8138_01 2.07 7.90 0.81 2.55 1.089E-02 0.61

9 TCGA_44_2668_11 1.73 5.62 0.72 2.41 1.584E-02 1.72

10 TCGA_56_6545_01 2.39 10.90 0.99 2.41 1.594E-02 0.00

11 TCGA_55_8299_01 1.92 6.84 0.85 2.26 2.396E-02 0.00

12 TCGA_85_8048_01 2.34 10.40 1.10 2.13 3.348E-02 0.00

13 TCGA_52_7622_01 1.66 5.26 0.79 2.10 3.576E-02 0.00

14 TCGA_56_8626_01 2.03 7.59 0.98 2.06 3.944E-02 0.66

15 TCGA_66_2773_01 2.12 8.29 1.05 2.02 4.375E-02 0.97

16 TCGA_66_2777_01 1.84 6.32 0.94 1.97 4.904E-02 0.00

17 TCGA_55_A492_01 −1.90 0.15 0.93 −2.03 4.215E-02 0.00

18 TCGA_78_7163_01 −1.81 0.16 0.86 −2.11 3.473E-02 −0.72

19 TCGA_78_7153_01 −2.99 0.05 1.41 −2.12 3.399E-02 0.00

20 TCGA_95_7948_01 −3.00 0.05 1.36 −2.20 2.781E-02 0.00

21 TCGA_71_6725_01 −3.04 0.05 1.36 −2.24 2.516E-02 0.00

22 TCGA_64_5778_01 −3.47 0.03 1.37 −2.52 1.162E-02 −0.25
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Table 4

Estimated coefficient, standard error, Z-score and P-value from applying the Cox regression model to 

estimated predicted risk scores in the validation set obtained by OOR, LASSO, Ridge regression, Elastic net, 

Random forest, and generalized boosting models.

Method Coef SE Z-score p-value

Object-Oriented Regression 0.584 0.24 2.435 0.015

LASSO 0.712 0.716 0.995 0.320

Ridge Regression 0.000 0.001 0.218 0.827

Elastic Net 0.166 0.128 1.295 0.195

Random Forest 0.011 0.018 0.629 0.529

Generalized Boosting 0.676 0.334 2.026 0.043
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