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Robust Inference of Identity by Descent
from Exome-Sequencing Data

Wenqing Fu,1,* Sharon R. Browning,2 Brian L. Browning,3 and Joshua M. Akey1,*

Identifying and characterizing genomic regions that are shared identical by descent (IBD) among individuals can yield insight into pop-

ulation history, facilitate the identification of adaptively evolving loci, and be an important tool in disease gene mapping. Although

increasingly large collections of exome sequences have been generated, it is challenging to detect IBD segments in exomes, precluding

many potentially informative downstream analyses. Here, we describe an approach, ExIBD, to robustly detect IBD segments in exome-

sequencing data, rigorously evaluate its performance, and apply this method to high-coverage exomes from 6,515 European and African

Americans. Furthermore, we show how IBD networks, constructed from patterns of pairwise IBD between individuals, and principles

from graph theory provide insight into recent population history and reveal cryptic population structure in European Americans.

Our results enable IBD analyses to be performed on exome data, which will expand the scope of inferences that can be made from ex-

isting massively large exome-sequencing datasets.
Introduction

Two individuals share a haplotype segment identical by

descent (IBD) when the sequence is inherited without

recombination from a recent common ancestor.1 IBD data

are a powerful source of genetic information that has been

used in myriad ways including disease gene mapping,

haplotype phase inference, genotype imputation, and

detection of population structure.1 A number of methods

have been developed to detect IBD segments in population

samples, butmost of them are designed for SNP genotyping

array data. These array-based IBDdetectionmethods can be

broadly classified into probabilistic and non-probabilistic

approaches. Non-probabilistic methods, such as Beagle

fastIBD2 and GERMLINE,3 detect IBD segments based on

shared haplotype frequency or length and can be applied

to thousands of samples. Probabilistic methods, such as

Beagle IBD4 and IBDLD,5 use sophisticated statistical ma-

chinery, such as hidden Markov models (HMMs), for

IBD status and determine posterior probabilities of IBD.

Probabilistic methods are generally more accurate than

non-probabilistic approaches but are too computationally

intensive to be applied in large-scale data.

The development of technologies for coupling tar-

geted capture and massively parallel DNA sequencing has

enabled exome sequences to be collected in increasingly

large sets of individuals. For example, the Exome Aggrega-

tion Consortium (ExAC) recently described a carefully

curated dataset of exome sequences from more than

60,000 individuals.6 However, accurately detecting IBD

in exome data is challenging, and recent work suggests

that exomes are refractory to robust IBD inference.7 Moti-

vated by the potential broad utility that IBD inferences in

exome sequencing would allow, we developed and rigor-

ously characterized a method, ExIBD, to robustly detect
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IBD from exome data. Furthermore, we applied our

method to 6,515 high-coverage exome sequences and

leverage concepts from graph theory to show how IBD net-

works can facilitate inferences about fine-scale population

structure.
Material and Methods

Overview
We started by studying the feasibility of using the existing array-

based methods Beagle fastIBD and Beagle IBD to detect IBD

segments in exome-sequencing data. For Beagle fastIBD, pairs of

individuals whose fastIBD score for the shared haplotype is less

than a user-defined threshold (fastibdthreshold) will be reported

as an IBD segment.2 This parameter is a compromise between po-

wer and false-discovery rate. For Beagle IBD, IBD segments are

called by taking into account the genetic distance between neigh-

boring sites through two parameters, ibd2nonibd and nonibd2ibd,

which define the transition rate from IBD to nonIBD status and

from nonIBD to IBD status per cM for each sample, respectively.

Here, we compared the detection power and accuracy in exome

data under different parameter settings. For example, we ran

Beagle fastIBD by setting fastibdthreshold as 10�12, 10�10 (the sug-

gested value used in the array-based IBD detection), and 10�7.

We ran Beagle IBD by setting ibd2nonibd as 1 (the suggested

value used in the array-based IBD detection), 0.1, 0.01, and

0.001 and nonibd2ibd as 10�5, 0.0001 (the suggested value used

in the array-based IBD detection), and 0.001. As recommended

by the authors of Beagle,2,4 IBD segments were summarized based

on ten independent runs of Beagle fastIBD or five independent

runs of Beagle IBD.

Next, we proposed an exome-based IBD detectionmethod called

ExIBD to robustly detect IBD segments in exome-sequencing data.

The key insight of ExIBD is to identify and exclude genomic regions

that are refractory to IBD detection because of insufficient exon

density or diversity. To maximize computational feasibility and

improve accuracy, ExIBD searches for IBD segments in three steps
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Figure 1. Evaluation and Implementa-
tion of ExIBD
In the first step (identification), candidate
IBD segments are detected for the whole
genome using Beagle fastIBD with fastibd-
threshold ¼ 10�10. In the second step
(refinement), endpoints of candidate IBD
segments are refined with Beagle IBD
with ibd2nonibd ¼ 0.01 and nonibd2ibd ¼
0.0001. Finally, in the third step (filtering),
IBD segments from the call set that are
likely false positives using the locus-spe-
cific FDR are removed. The locus-specific
FDR is estimated from the locus-specific
power, false-positive rate, and the true
IBD rate in the population.
(Figure 1). The first step (identification) performs a genome-wide

scan using Beagle fastIBD with fastibdthreshold ¼ 10�10 for candi-

date IBD segments. Candidate IBD segments were summarized

based on ten independent runs of Beagle fastIBD. The second

step (refinement) uses Beagle IBD with ibd2nonibd ¼ 0.01 and

nonibd2ibd ¼ 0.0001 to refine the endpoints of the candidate IBD

segments identified in step 1. This parameter setting accounts for

the large gaps between exome-sequenced regions as well as for

allelic differences due to sequence errors or recent identity-disrupt-

ing mutations (see details in Results). Refined IBD segments were

summarized based on five independent runs of Beagle IBD. The

third step (filtering) controls the proportion of reported IBD seg-

ments that are false positives. Specifically, an IBDsegment is filtered

out if it spans a genomic regionwhere the corresponding locus-spe-

cific false discovery rate (FDR) exceeds a desired cutoff (i.e., FDR <

0.1 in default). In this study, we estimated the locus-specific FDRs

for three major continental populations (i.e., African, European,

and East Asian populations) separately along the human genome.

In ExIBD, we defined a reference population for a sample as one

from African, European, or East Asian population whose genetic

relationship is the closest to the sample’s ancestry. The FDRfiltering

for the intra-population IBD segment is based on the locus-specific

FDR estimated from the assigned reference population. The FDR

filtering for the inter-population IBD segment is based on a conser-

vative rule that the inter-population IBD segment is kept only if the

IBD segment spans a region where the corresponding FDRs esti-

mated from both the reference populations is no more than the

desired cutoff. In this study,we also rigorously evaluated theperfor-

mance of ExIBD and compared against GERMLINE the detection

power, accuracy, and false-positive rate.

Finally, we implemented ExIBD to detect IBD segments in

sequencing data from 6,515 exomes from NHBLI-sponsored

Exome Sequencing Project (ESP) and studied the pattern of IBD

sharing among individuals through the network analysis.

Samples and Data
We downloaded phased exome-sequencing data from 1000 Ge-

nomes Project phase 1.8 These individuals were grouped into three
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major continental populations, including

246 individuals with African ancestry

(i.e., Yoruba from Nigeria [YRI], Luhya

from Kenya [LWK], and African Americans

from Southwest USA [ASW]), 379 individ-

uals with European ancestry (i.e., Euro-
pean American from Utah, USA [CEU], Finnish from Finland

[FIN], British from England and Scotland [GBR], Iberian in Spain

[IBS], and Toscani in Italia [TSI]), and 286 individuals with East

Asian ancestry (i.e., Han Chinese in Beijing, China [CHB], Han

Chinese from South China [CHS], and Japanese in Toyko, Japan

[JPT]). We evaluated the exome-based IBD detection power, accu-

racy, and false-positive rate through simulations on this dataset

separately for the three continental populations.

We also downloaded phased genome-wide genotyping data

from HapMap phase 3,9 including 216 individuals with African

ancestry from YRI, LWK, and ASW, 201 individuals with Euro-

pean ancestry from CEU and TSI, and 255 individuals with East

Asian ancestry fromCHB, CHD, and JPT. This genotyping array da-

taset was used to estimate the true IBD rate separately for the three

continental populations by Beagle fastIBD.

We applied ExIBD into the high-coverage exomes from 4,298

European Americans and 2,217 African Americans generated in

the NHBLI-sponsored Exome Sequencing Project.10 ExIBD de-

tected IBD segments in these 6,515 exomes together, and the

FDR filtering was conducted by assigning African population as

the reference population for African Americans and European

population as the reference population for European Americans.

Most of the analyses in this studywere based on genetic distance

according to the combined-population fine-scale HapMap phase 2

genetic map.9 Although the same genetic map was used for all the

populations, we expect our results to be largely robust to minor

differences in recombination rate among populations. In addition,

we excluded singletons for all the datasets above to account for

haplotype-phase uncertainty during the IBD detection.

Construction of Artificial IBD to Estimate Locus-

Specific Power, Precision, and Recall
In order to estimate the IBD detection power (P), we constructed

artificial IBD segments by a sliding window simulation approach

on the phased exome-sequencing data from 1000 Genomes Proj-

ect phase 1 for each continental population (i.e., African, Euro-

pean, or East Asian population). We started by randomly selecting

an individual pair i and j. Fixing the center position, we copied a
99, 1106–1116, November 3, 2016 1107



haplotype from individual i into individual j to create artificial IBD

of given segment size (e.g., 1 cM, 2 cM,., 10 cM). However, if we

constructed the artificial IBD segment by exactly copying a haplo-

type between the individual pair as previously described,4 the ex-

isting sequence errors or recent identity-disrupting mutations in

the IBD segmentmay be destroyed. Instead, we kept the haplotype

in individual i unchanged. We assumed that 99% of the artificial

IBD haplotype in individual jwas copied from individual i. The re-

maining 1% was from the original haplotype sequence in individ-

ual j, which might be identity or non-identity with the haplotype

in individual i depending on allele frequency at these sites. Thus,

frequency-dependent sequence errors or identity-disruptingmuta-

tions can be retained in the artificial IBD segment shared by the in-

dividual pair i and j. Then we moved the center by 0.1 cM along

the genome and created another artificial IBD segment shared by

a randomly selected individual pair. This process was continued

until the center traversed the chromosome. Although we used

phased haplotype to create artificial IBD segments, the evaluation

was based on the input of unphased genotypes.

We replicated the sliding window simulation 100 times and

grouped these artificial IBD segments according to its center posi-

tion every 0.1 cM. Thus, a total of 100 artificial IBD segments were

produced in each group. We summarized the locus-specific power

every 0.1 cM by calculating the proportion of the artificial IBD seg-

ments that were detected for every group. An IBD segment was

scored as detected if the same pair of individuals sharing the

segment was reported to be IBD anywhere overlapping with the

artificial IBD segment.

Further, we evaluated the detection accuracy in terms of preci-

sion and recall by comparing the endpoints between the detected

IBD segments and the artificial ones. If an IBD segment between

the individual pair i and j was scored as detected, we defined

IBDtrue(i,j), IBDexome(i,j), and Overlap(i,j) as the exact size of the arti-

ficial IBD segment, the IBD size detected in exome-sequencing

data, and the overlap segment size between the artificial and the

exome-detected one. IBDtrue(i,j), IBDexome(i,j), and Overlap(i,j) are

all measured in centiMorgan. Thus, precision measures the pro-

portion of exome-detected IBD segments that are consistent

with the artificial IBD segments, which can be calculated as:

Pr ecision ¼

P
ði;jÞ˛Data

Overlapði; jÞ
P

ði;jÞ˛Data

IBDexomeði; jÞ:

Recall measures the proportion of artificial IBD segments de-

tected by the exome data, which can be calculated as:

Re call ¼

P
ði;jÞ˛Data

Overlapði; jÞ
P

ði;jÞ˛Data

IBDtrueði; jÞ :

Precision and recall were also summarized every 0.1 cM along the

genome according to the center of the artificial IBD segments.

Generally, there is an inverse relationship between precision and

recall, where it is possible to increase one at the cost of reducing

the other. We used the F-score tomeasure the tradeoff between pre-

cision and recall, F � score ¼ 2 � precision � recall=ðprecisionþ recallÞ,
with the best value at 1 and worst at 0.

Construction of Composite Individuals to Estimate False-Positive Rate

In order to estimate false-positive rate (F), we created compos-

ite individuals whose sequence is composed of a series of

segments of 0.2 cM copied from different individuals as previ-

ously described.4 In detail, for each continental population, we
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randomly selected 180 individuals from phased 1000 Genomes

Project phase 1 exome-sequencing data. These 180 individuals

were evenly divided into 36 sets with 5 individuals (correspond-

ing to 10 haploid exomes) per set. In each set, the 10 haploid

exomes were indexed as haploid 1, haploid 2, ., haploid 10

and were used to create a composite haplotype as follows. First,

a random offset of c cM (0% c% 0.2) was selected for the compos-

ite haplotype. Then, sequence of the composite haplotype in the

interval of [0, c) cMwas copied from haploid 1, that in the interval

of [c, cþ0.2) cM was copied from haploid 2, ., and that in the in-

terval of [cþ1.6, cþ1.8) cM was copied from haploid 10. The copy

process was sequentially repeated among the 10 haploid exomes

for every 10 continuous 0.2 cM segments to create a composite

haplotype. Finally, a total of 36 composite haplotypes were

created and were randomly paired to 18 composite individuals

who will not share any IBD segments longer than 0.2 cM with

each other.

We evaluated the false-positive rate based on 100 replicates,

where any detected IBD sharing among the composite individuals

that is longer than 0.2 cM should be a false positive. The false-pos-

itive rate of a given segment size l was calculated as the mean pro-

portion of the genome per pair of composite individuals at which

IBD is detected in segments within the interval of (l 5 0.5) cM.

Estimation of Locus-Specific False-Discovery Rate

Let T be the true rate of IBD segments with size in the interval of

(l 5 0.5) cM in the population. Let D be the rate at which IBD

segments in the interval (l 5 0.5) cM are discovered by an IBD

detection method. All rates are the proportion of genome per in-

dividual pair. The rate of IBD discovery D can be viewed as the

sum of the rate of false discoveries (i.e., the rate of non-IBD

(1 � T) multiplied by the false-positive rate F) and the rate of

true discoveries (i.e., the rate of true IBD T multiplied by the po-

wer P), which can be expressed as D ¼ (1 � T)F þ TP. The false

discovery rate (FDR) defines the proportion of discovered IBD seg-

ments that are false positive, ð1� bT ÞbF=ð1� bT ÞbF þ bT bP . Here, we

calculated the locus-specific FDR every 0.1 cM for the three con-

tinental populations separately. The locus-specific power bP and

the false-positive rate bF were estimated as described above. The

true rate of IBD segments bT is an intrinsic feature for a popula-

tion. We estimated the value of bT based on HapMap phase 3

genotyping data by the array-based IBD detection method Beagle

fastIBD as described below.

Evaluation of the Performance of IBD Detection in Genotyping

Array Data

The performance of IBD detection in HapMap genotyping array

data was evaluated by Beagle fastIBD in African, European, and

East Asian populations. All the evaluations were summarized

based on the combined results from ten independent fastIBD

runs. To investigate the power (P) to detect IBD segments by gen-

otyping data, we copied a haplotype from one individual into

another to create artificial IBD of given segment size (e.g., 1 cM,

2 cM,., 10 cM) in a randomly selected genomic region. The over-

all detection power and its accuracy (i.e., prevision and recall) were

estimated by repeating the above process 100 times in different

randomly selected individual pairs. To investigate the false-posi-

tive rate (F) to detect IBD segments by genotyping data, we created

composite individuals by destroying any IBD tracts of length

0.2 cM or greater as described above.

We further implemented Beagle fastIBD in the HapMap phase 3

genotyping data directly to estimate the rate of IBD discovery D,

including both false and true discoveries, for African, European,

and East Asian populations. Given estimates of F, P, and D from
mber 3, 2016



genotyping array data, the true rate of IBD segments T can be esti-

mated by bT ¼ ðbD � bFÞ=ðbP � bFÞ.
Comparing ExIBD to GERMLINE

We compared the detection power, accuracy, and false-positive

rate between our method (ExIBD) and GERMLINE v.1.5.1 through

simulations on phased exome-sequencing data in chromosome 1

from 1000 Genomes Project phase 1. GERMLINE can find small

slices of nearly exactly matching alleles between pairs of individ-

uals and extend them into full IBD segments. It was once extended

to detect IBD in exome-sequencing data but resulted in poor

concordance with the array-based detected IBD segments.7 In

this study, GERMLINE was run under various parameter settings,

such as the change of the size of slice (e.g., 256, 128, 64, 32, 16,

and 8 markers), the allowance of the maximum number of mis-

matching homozygous markers for a slice (e.g., 0/2), and the

turn-on or turn-off of the haplotype extension that allows exten-

sion through a slice if any of the four haplotype pair combinations

have nearly exact matching alleles.

IBD Analysis in 6,515 Exomes with European and African American

Ancestry

We implemented ExIBD to detect IBD segments in high-coverage

exomes from 4,298 European Americans and 2,217 African Amer-

icans from Exome Sequencing Project. In total, 17,469/48,487

(36%) detected IBD segments within European Americans passed

the criteria of FDR < 0.1 evaluated in European exomes; 72,582/

109,965 (66.0%) detected IBD segments within African Americans

passed the criteria of FDR < 0.1 evaluated in African exomes; and

3,402/10,026 (33.9%) detected IBD segments between European

and African Americans passed the criteria of FDR < 0.1 in both Eu-

ropean and African exomes. To account for the difference in sam-

ple size, pairs of European Americans share an average of 0.002

IBD segments (17,469 / [(4,298 3 4,297) / 2]), pairs of African

Americans share an average of 0.030 IBD segments (72,582 /

[(2,217 3 2,216) / 2]), and pairs between European Americans

and African Americans share an average of 0.0004 IBD segments

(3,402 / (4,298 3 2,217)).

We computed the IBD intensity (i.e., the number of hits of IBD

per individual pair in each site, and average it in a 100 kb window)

along the genome. Because the power to detect IBD segments by

exome-sequencing data is heterogeneous largely determined by

genetic diversity in exome, we evaluated the levels of IBD intensity

(yi) by adjusting for the exonic genetic diversity (xi) in the 100 kb

window through a linear regression, yi ¼ aþ bxi þ ε; ε � Nð0; s2Þ,
where a, b, and ε define the intercept, the slope, and the residual

(follows the normal distribution), respectively, of the linear

model. We fitted the linear model and performed the Z-test

Z ¼ ½yi � ðba þ bbxiÞ�=s for each pair of (yi, xi). The regions with

extremely high IBD intensity (Z-test, p < 10�8, corresponding to

Bonferroni correction p < 0.05) were further investigated.

Cytoscape-3.1.111 was used to visually demonstrate the relation-

ship of IBD segments within or between European and African

Americans as a network by a spring-embedded layout algo-

rithm.12 We also classified IBD segments into different size cate-

gories, i.e., [0.5, 1.5), [1.5, 2.5), [2.5, 3.5), [3.5, 4/5), and R 4.5

cM. A dynamic network was used to demonstrate the change of

IBD sharing patterns in different size categories, whichwas plotted

based on a Prefuse DynLayout algorithm implemented in a pack-

age named DynNetwork for Cytoscape-3.1.1.

Community structure (a subset of nodes with more and/or

stronger interactions among its members)13 appears to be com-

mon in many real-world networks. The detection of community

structure is widely used to provide insights into the organizational
The American Jou
principles in complex networks. Here, we used an information-

theoretic clustering method called conf-infomap14 to investigate

community structure in the IBD network, and we assessed the sig-

nificance of clusters based on bootstrapping. This method uses a

randomwalk as a proxy for information flow on a network and op-

timizes a map equation to find a cluster partition that generates

the most compressed description length of the random walks on

the network. In other words, a set of nodes for which the random

walker spends a considerable time traversing within them are

treated as a community.15 The significance evaluation of the clus-

tering is based on the proportion of bootstrap networks that

support the observation in the original network. The bootstrap

networks were generated by randomly resampling edges from

the original network as implemented in conf-infomap. To identify

the nodes that are significant associated with the assigned clusters,

conf-infomap uses simulated annealing to search for the largest

subset of nodes within each cluster of the original network that

are clustered together in at least 95% of all bootstrap networks.

To identify the clusters that are significantly distinct from all other

clusters, conf-infomap searches for clusters whose significant sub-

set is clustered with no other cluster’s significant subset in at least

95% of all bootstrap networks. Here, the IBD network was treated

as an unweighted and undirected network. The significance of

the community structure was evaluated based on 1,000 bootstrap

networks. For each network (i.e., the original and bootstrap net-

works), 10 attempts were tried to partition the network. In order

to compare with the community structure identified in the IBD

network, principal-components analysis was conducted based on

either common variants (with minor allele frequency, MAF >

0.1) or rare variants (with MAF% 0.005) as described in a previous

study.16 Community structure was also investigated in the IBD

networks with different segment size intervals.
Results

Evaluation of Methods to Detect IBD in Exome-

Sequencing Data

In contrast to SNP genotyping array data, where variants

are approximately evenly distributed across the genome,

exome sequencing captures only ~1%–2% of the genome,

and the distribution of exons and the density of protein-

coding single-nucleotide variants (SNVs) is heterogeneous

across the genome. Therefore, we hypothesized that the

power to detect IBD segments in exome-sequencing data

varies across the genome as a function of exon density

and locus-specific levels of genetic diversity. To test this

hypothesis, we simulated artificial IBD segments across

the exome (allowing for mutations and sequencing errors)

and evaluated the locus-specific detection power in Afri-

can, European, and East Asian populations. We examined

the locus-specific power to detect IBD segments ranging

in size from 1 cM to 10 cM and as expected, larger IBD seg-

ments are easier to detect than smaller ones (Figure S1).

Beagle IBD is usually more powerful than fastIBD in the

exome-based IBD detection, but the locus-specific power

between fastIBD and Beagle IBD is highly correlated (i.e.,

Pearson’s correlation test; p < 10�15; r2 varies from 0.76

to 0.93 in African exomes, from 0.77 to 0.89 in European

exomes, and from 0.82 to 0.89 in East Asian exomes for
rnal of Human Genetics 99, 1106–1116, November 3, 2016 1109
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Figure 2. Feasibility of Detecting IBD Segments in Exome-Sequencing Data
(A) The locus-specific detection power, evaluated by fastIBDwith fastibdthreshold of 10�10 (in red) and Beagle IBDwith ibd2nonibd¼ 0.01
and nonibd2ibd ¼ 0.0001 (in blue), is heterogeneous across the genome.
(B) Locus-specific power is significantly positively correlated with exon density (i.e., the proportion of sequence in the exons) and ge-
netic diversity (as measured by nucleotide diversity) in exome-sequencing data.
(C) The average locus-specific precision and recall (with 95% confidence interval) to detect IBD segments in exome-sequencing data by
fastIBD and Beagle IBD under different parameter settings.
All the evaluation results shown here were based on the detection of 2 cM IBD segments in chromosome 1.
IBD segments with different sizes). As expected, the power

to detect IBD in exome-sequencing data is substantially

heterogeneous across the genome for both fastIBD and

Beagle IBD (Figures 2A and S1). Regions where the locus-

specific power is high always correspond to regions with

higher exon density and genetic diversity, whereas regions

where the locus-specific power is low have either low exon

density or diversity (Figure 2A). Locus-specific power is

positively correlated with both exon density (Pearson’s

correlation test; p< 10�15; r2 varies from 0.28 to 0.75 given

different IBD segment sizes and populations) and genetic

diversity (Pearson’s correlation test; p < 10�15; r2 varies

from 0.46 to 0.91 given different IBD segment sizes and

populations) in the corresponding regions (Figures 2B

and S2). Detection power is always highest in Africans (Fig-

ures 2A and S1), which is a consequence of the higher

genetic diversity in African exomes. Thus, exon density

and, more precisely, levels of exonic diversity are the pri-

mary determinants of the locus-specific power to detect

IBD in exome-sequencing data.
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Precision and recall were used to evaluate the segment

overlap between the artificial and detected IBD segments.

Beagle fastIBD and Beagle IBD were evaluated under

various parameter settings. We observed high recall and

low precision for all fastibdthreshold values (10�12, 10�10,

and 10�7) considered in fastIBD (Figures 2C and S3A), indi-

cating that most of the real IBD segments can be fully

captured by fastIBD in exome data, but the segment sizes

are always overestimated. In contrast, when using the

default parameters ibd2nonibd ¼ 1 and nonibd2ibd ¼
0.0001 in Beagle IBD as suggested in the array-based IBD

detection, a relatively high precision and low recall was

observed (Figures 2C and S3B), indicating that the IBD

segment size tends to be underestimated by Beagle IBD un-

der this setting. In contrast, a balance of precision and

recall can be achieved when decreasing ibd2nonibd to

smaller values (such as 0.1, 0.01, and 0.001) (Figures 2C

and S3B), which remains robust when nonibd2ibd is varied

between 10�5 and 0.001 (Figures 2C and S3C). The differ-

ence in the suggested ibd2nonibd between our evaluation
mber 3, 2016
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Figure 3. Performance of the Exome-
Based IBD Detection Method ExIBD
(A) The average locus-specific power (with
95% confidence interval) to detect IBD seg-
ments with size of 2 cM, 5 cM, and 10 cM
after the first (identification) and second
(refinement) steps.
(B) The average locus-specific F-score
measuring the tradeoff between precision
and recall (with 95% confidence interval)
after the first (identification) and second
(refinement) steps.
(C) The false-positive rate to detect IBD
segments with different size intervals
(e.g., 1.5–2.5 cM, 4.5–5.5 cM, and 9.5–
10.5 cM) after the first (identification)
and the second (refinement) steps.
See Figure S4 for more results.
and previous work suggests that this parameter is sensitive

to the different characteristics of sequencing and SNP gen-

otyping array data.

Evaluation of ExIBD Designed to Detect IBD in Exome

Sequencing

The results described above suggest that IBD segments

can be detected in exome-sequencing data by identifying

and excluding genomic regions that are refractory to anal-

ysis because of insufficient exon density or diversity. To

maximize computational feasibility and improve accu-

racy, our method ExIBD, designed for exome-sequencing

data, thus searches for IBD segments in three steps (as

described in Material and Methods; Figure 1). According

to the above evaluation, we set fastibdthreshold to 10�10

for the initial genome-wide scan by Beagle fastIBD and

set ibd2nonibd ¼ 0.01 and nonibd2ibd ¼ 0.0001 for the

refinement of IBD endpoints by Beagle IBD. Note, we

expect that the detection accuracy should be robust by

changing ibd2nonibd between 0.001 to 0.1. We rigorously

evaluated the performance of our method in exome-

sequencing data for African, European, and East Asian

populations separately and calculated the locus-specific

FDR for further use.

We first evaluated the locus-specific power to detect arti-

ficial IBD segments with different sizes. On average, more

than 93% of the detection power can be retained by intro-

ducing the second step (refinement) compared to using

just the first step (identification) (Figures 3A and S4A);

whereas the tradeoff between precision and recall was

considerably improved as measured by the F-score, espe-

cially for smaller IBD segments (Figures 3B and S4B). We

further estimated the false-positive rate by abrogating

IBD segments of length 0.2 cM or greater in exome-

sequencing data as described previously.4 We found

33.3%–94.8% of false-positive IBD calls can be removed
The American Journal of Human Genetics
by introducing the second step

(refinement) compared to using just

the first step (identification) alone

(Figures 3C and S4C). Although the
false-positive rate is small, it is in fact very important.

Given the fact that the rate of true IBD segments in an

outbred population (such as East Asians) is also extremely

small (Table S1), the false-positive rate has a large impact

on FDR. Here, the rate of true IBD segments with different

size intervals was estimated based onHapMap phase 3 gen-

otyping data9 from African, European, and East Asian

populations.

Using estimates of the locus-specific power, the false-

positive rate, and the true IBD rate estimated in HapMap

genotyping data, we estimated the locus-specific FDR every

0.1 cM for African, European, and East Asian populations.

Although only 1%–2% of the genome is covered by the

exome, we found that a substantial fraction of genomic

regions can be used to detect IBD segments in exome-

sequencing data with a FDR < 0.1. Specifically, 34.7%,

12.6%, and 9.6% of human genome in African, European,

and East Asian populations, respectively, can be used to

detect IBD segments with the size of 2 cM in exome-

sequencing data. In contrast, 74.5% of African genome

and 15.6% of European genome can be used to detect large

IBD segments, like 10 cM in size (Figure 4 and Table S2).

But note, large IBD segments (R6 cM) in East Asian are

hard to be accurately detected in exome-sequencing data

with a FDR < 0.1. Although the performance (i.e., the lo-

cus-specific power and false-positive rate) in East Asian is

equivalent to that in European, the much lower true IBD

rate in East Asian (Table S1) results in high FDR to detect

larger IBD segments in East Asian. Our study further found

that almost all of the genomic regions that can be used to

detect IBD segments in non-African populations can also

be used in African populations (Table S2). As expected,

genomic regions that can be used to detect IBD in exome

data exhibit significantly higher genetic diversity in exome

than those that cannot (Mann-Whitney test; p < 10�15;

Figure S4D).
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Figure 4. Genomic Regions Can Be Used to Detect IBD Seg-
ments in Exome-Sequencing Data
Proportion of genomic regions that can be used to detect IBD
segments with different size intervals (e.g., 0.5–1.5 cM, 1.5–
2.5 cM, ., 9.5–10.5 cM, and R10.5 cM) with a FDR < 0.1 for
the three major continental populations (i.e., African, European,
and East Asian populations).
Comparison of ExIBD and GERMLINE in Exome

Sequencing

We compared false-positive rate and power between ExIBD

and GEMLINE through simulations on exome-sequencing

data from 1000 Genomes Project phase 1. We found

the size of slice used to detect IBD segments in exome-

sequencing data is the major factor that influences the per-

formance of GERMLINE (Figures 5, S5, and S6). The other

parameters, such as the maximum number of mismatch-

ing homozygous markers for a slice (e.g., 0 or 2) and the

turn-on or turn-off of haplotype extension, have more

modest consequences (Figures S5 and S6). The false-posi-

tive rate of GERMLINE is at the same order of magnitude

of that in ExIBD, when a large slice size (e.g., >128

markers) is used in GERMLINE (Figure 5A). However,

the corresponding power of GERMLINE is usually smaller

than that of ExIBD, especially for large IBD segments

(Figure 5B). When decreasing the slice size used in

GERMLINE (e.g., %64 markers), the detection power is

improved and can even reach 100%, whereas the false-pos-

itive rate is inflated by ten to hundred times. As a result,

even if we assumed the detection power is as high as

100%, the false-positive rate of GERMLINE with smaller

slice size is always too high to control FDR < 0.1 for

all of the three major continental populations (Figures 5,

S5, and S6).

Application to High-Coverage Exome Sequences in US

Populations

We applied our method to detect IBD segments in high-

coverage exome sequences from 4,298 European Ameri-

cans and 2,217 African Americans. From the total set of

168,478 exome-detected IBD segments, 93,453 IBD seg-

ments (17,469 within European Americans, 72,582 within

African Americans, and 3,402 between European and

African Americans) remained after FDR filtering (FDR <

0.1). On average, each pair of European Americans shares

0.002 IBD segments (see Material and Methods) with a

median segment size of 2.5 cM; each pair of African Amer-

icans shares 0.030 IBD segments with a median segment
1112 The American Journal of Human Genetics 99, 1106–1116, Nove
size of 1.8 cM; and each pair between European Ameri-

cans and African Americans shares 0.0004 IBD segments

with a median segment size of 2.25 cM. The majority of

pairs sharing some IBD shared only a single block of

IBD (i.e., 96.9% for pairs within European Americans,

98.1% for pairs within African Americans, and 99.8% for

pairs between European Americans and African Ameri-

cans). Some pairs shared IBD segments with a consider-

able length. For example, the maximum IBD segment

size shared by European Americans is 21.1 cM, corre-

sponding to a recent common ancestor 7.5 generations

ago as estimated based on the Out-of-Africa model with

recent accelerated population growth.17 In addition,

there are 53 individual pairs, all with African American

ancestry, that are inferred to be second to fifth cousins,

who shared IBD segments with a maximum size ranging

from 25.8 cM to 50.7 cM. Considering that not all of

the large IBD segments can be detected by exome-

sequencing data, the US populations, especially European

Americans, are likely to be more related than what we

observed here.

The physical distribution of IBD sharing was investi-

gated within and between populations. There are a num-

ber of regions with a much higher amount of IBD sharing

than expected (Z-test; p < 10�8 after accounting for ge-

netic diversity in exome through the linear regression;

Figure S7). The HLA region on chromosome 6 and the

olfactory receptor region on 11p15.4 show unusually

high degree of IBD sharing, consistent with previous

studies,18–20 and have abundant evidence in favor of nat-

ural selection. Moreover, an excess of IBD sharing in re-

gions such as 16p13.3, 16q12.2–q13, 17q21.2–21.31, and

17q25.3 overlap inversion polymorphisms, likely caused

by ancient common ancestry with limited recombination

between haplotypes.

IBD Networks Reveal Cryptic Population Structure

The relationship of IBD sharing among individuals can be

demonstrated in the form of a network with 6,497 nodes

and 91,362 edges, where each node represents an individ-

ual and edges connect two nodes when individuals share

IBD segments (Figure 6A). We further used the community

detection method conf-infomap14 to uncover the struc-

ture of the IBD network, and we assessed its significance

of clusters based on bootstrap sampling. In total, 367

non-overlapping clusters were identified in the IBD

network, with 10 clusters significantly distinct from the

others (p < 0.05 based on 1,000 bootstraps). Although

most of the clusters were small (ranging in size between

3 and 23 individuals), two were particularly large (2,229

and 283 individuals) and exhibited interesting characteris-

tics (Figure S8). Specifically, when sorting clusters by its

flow volume (defined as the fraction of time a random

walker spends within the cluster), 79.7% and 6.2% of all

flow is captured by these two clusters, which is 621 and

47 times higher than that of the third largest cluster

(Figure S8B).
mber 3, 2016
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Figure 5. Performance of GERMLINE under Different Parameter Settings
(A) The false-positive rate to detect IBD segments with different size intervals (e.g., 1.5–2.5 cM, 4.5–5.5 cM, and 9.5–10.5 cM).
(B) The average locus-specific power (with 95% confidence interval) to detect IBD segments with size of 2 cM, 5 cM, and 10 cM.
GERMLINE ran by setting the size of slice as 256, 128, 64, and 8, the maximum number of mismatching homozygous markers for a slice
as 2, and turn-off of haplotype extension. See Figures S5 and S6 for more results. For comparison, the performance of ExIBD under the
default setting (fastibdthreshold ¼ 10�10, ibd2nonibd ¼ 0.01, and nonibd2ibd ¼ 0.0001) was shown in red line. A critical line, any false-
positive rates above which can not control FDR < 0.1 even assuming the detection power is as high as 100%, was shown in black line.
Cluster 1 consisted of 2,217 African Americans and 12

European Americans. Among them, 2,195 nodes were

significantly clustered together in at least 95% of all boot-

strap networks, all of which were with African American

ancestry (Figure 6A). Cluster 2 is comprised of 283 Euro-

pean Americans, among which 228 nodes were always

clustered together in at least 95% of bootstrap networks

(Figure 6A). Individuals from the significant subset of clus-

ter 2 were more highly related with each other than

other European Americans. Under the same FDR filtering

criteria, each pair from the significant subset of cluster 2

shares 0.210 IBD segments with a median segment size

of 2.97 cM, much more and longer than the 0.0014 IBD

segments with a median segment size of 2.29 cM shared

by each pair of other European Americans (Mann-Whitney

test; p < 10�15).

We compared the community structure identified in

the IBD network with principal-components analysis

(PCA).16 We found cluster 1, especially the significant

subset, was composed primarily of African Americans.

For both common and rare variants, individuals in cluster

1 were dispersed along PC1 according to their level of Afri-

can/European ancestry (Figure 6B). Cluster 2 represents

cryptic population structure in European Americans. Indi-

viduals in cluster 2 were not distinguished from other Eu-

ropean Americans in the PCA based on common variants,

but were dispersed along PC2 in the PCA based on rare var-

iants (Figure 6B). These results are consistent with previ-

ously analyses of the ESP data that found rare variants

revealed individuals in the significant subset of cluster 2

have Ashkenazi Jewish ancestry.16 The recent severe bottle-

neck event in the demographic history of Ashkenazi Jew-

ish individuals21,22 can explain the higher andmore recent
The American Jou
relatedness among individuals from the significant subset

of cluster 2 observed in this study.

IBD segment size is approximately exponentially distrib-

uted,23 and individuals with a more recent common

ancestry tend to share longer IBD segments. Thus, IBD

segment size can be used to track the dynamic changes

in population structure through patterns of IBD sharing

with different size intervals. Here, we classified IBD seg-

ments into five size categories of [0.5, 1.5), [1.5, 2.5),

[2.5, 3.5), [3.5, 4.5), and R4.5 cM. We used a dynamic

IBD network to study the changes in patterns of IBD

sharing among US individuals and detected the commu-

nity structure in the IBD networks with different size cate-

gories by conf-infomap14 (Figure 6C and Movie S1). In the

IBD network with [0.5, 1.5) cM segments, African Ameri-

cans were significantly distinguished from others and

formed a large cluster (p< 0.05 based on 1,000 bootstraps),

while individuals with putative Ashkenazi Jewish ancestry

were mixed with other European Americans. In IBD net-

works with segment sizes of [1.5, 2.5) cM or larger, individ-

uals of Ashkenazi Jewish ancestry were formed into a

significant cluster (p < 0.05 based on 1,000 bootstraps),

and African Americans were split into many small clusters.

This change was consistent with demographic events, such

as the split of African and non-African populations and

the origin of Ashkenazi Jews, in chronological order.21

More interestingly, in the IBD networks with larger size,

we observe a small number of individuals with Ashkenazi

Jewish ancestry were again clustered with other European

Americans (Figure 6C). These patterns may represent

individuals with a higher admixture contribution from

Europeans. Consistent with this interpretation, these indi-

viduals are located between the majority of Ashkenazi Jews
rnal of Human Genetics 99, 1106–1116, November 3, 2016 1113
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Figure 6. Delineating Fine-Scale Population Structure in 6,515 US Individuals
(A) The relationship of IBD sharing among individuals summarized as a network, where each node represents an individual with the size
proportional to the number of IBD segments shared between this individual and others, and each edge connects two nodes when
individuals share IBD segments with the transparency proportional to the maximum IBD segment size. The software conf-informap
identified two significant clusters (i.e., cluster 1 in blue and cluster 2 in brown). The significant subset of nodes within each cluster
that are clustered together in at least 95% of all bootstrap networks is shown in darker colors. The significant subset of cluster 1 is a
good representation of African Americans. The significant subset of cluster 2 represents a cryptic population structure in European Amer-
icans, likely with Ashkenazi Jewish ancestry.
(B) Principal-component analysis of 6,515 US individuals based on common (MAF R 0.1) and rare (MAF % 0.005) variants. Individuals
were colored as in (A). A small number of individuals with Ashkenazi Jewish ancestry, who are likely with higher admixture contribution
from Europeans and clustered with other European Americans in the IBD networks with larger segment size, are highlighted in black.
(C) Changes in the structure of IBD networks as a function of IBD size categories. Patterns of IBD sharing with different size intervals [0.5,
1.5), [1.5, 2.5), [2.5, 3.5), [3.5, 4.5), andR4.5 cMwere separately shown by the networks. For each network, the node represents a cluster
of individuals identified by conf-infomap, with the size proportional to the number of individuals in this cluster. The pie plot in each
node represents the ancestry composition for individuals from the cluster, with the size proportional to the information flow contrib-
uted by each individual. An edge connects two nodes (clusters) if any individual pairs from these two clusters share IBD segments, with
the transparency proportional to information flow between the clusters.
and other European Americans in the PCA plot based on

rare variants (Figure 6B).
Discussion

In this study, we describe and rigorously evaluate an

approach ExIBD that enables robust inference of IBD in

exome data. Our algorithm leverages two IBD detection

methods that are commonly used for SNP genotyping

array data (i.e., Beagle fastIBD and Beagle IBD). We selected

these two methods because they outperform other array-

based IBD detection methods2 and were established based

on the same haplotype inference model.24 A previous

study empirically measured the IBD detection accuracy

by comparing IBD segments detected in exome data and

in genotyping array data from a same sample set by
1114 The American Journal of Human Genetics 99, 1106–1116, Nove
GERMLINE. Poor accuracy was observed for the exome-

based IBD detection compared to genotyping array-based

detection, leading to the conclusion that accurate IBD

detection in exome-sequencing data is not feasible.7 How-

ever, GERMLINE with a smaller slice size (e.g., 10 or 50

markers) was used in the previous study, and we showed

that the false-positive rate is extremely high for these set-

tings. Through rigorous evaluation, we confirmed that

ExIBD has better performance to detect IBD segments in

exome-sequencing data than GERMLINE does.

Unlike genome-wide IBD detection by genotyping array

data or whole-genome sequencing data, we found that not

all genomic regions can be used to detect IBD segments in

exome-sequencing data. These inaccessible regions are due

to insufficient exon density, and thus, genetic diversity in

exome data. We suggest using the locus-specific FDR to

identify and exclude genomic regions that are refractory
mber 3, 2016



to the exome-based IBD detection. Through rigorous eval-

uation, we estimated the locus-specific FDR along the

genome according to the artificial IBD segments’ center.

We observed that the locus-specific FDRwas similar at adja-

cent loci, when summarized every 0.1 cM. Table S2 listed

the locus-specific FDRs for three major continental popula-

tions (i.e., African, European, and East Asian populations),

which can be used as a general reference for future studies

and was integrated in the ExIBD package. In African popu-

lations, the fraction of genomic regions that can be used to

detect IBD in exome data (FDR < 0.1) increases as a func-

tion of IBD segment size, ranging from 22.5% for 1 cM

IBD segments to 86.3% for IBD segments more than 10

cM. However, the increasing pattern was not observed in

non-African populations. This observation is caused by

the relative impacts of power and false-positive rate on

FDR. The power usually increases as a function of IBD

segment size and may be a deterministic factor of FDR

when the power is large enough. Otherwise, the false-pos-

itive rate may have a large impact on FDR, although it is

usually very small and decreases as a function of IBD

segment size. In addition, although the detection power

and false-positive rate were similar in both European and

East Asian populations, the true rate of larger IBD segments

was too small to be accurately detected in East Asian

(FDRR 0.1). Note, in order to account for haplotype-phase

uncertainty during the IBD detection, we excluded single-

tons in both the evaluation and application processes.

However, we did not filter out more genetic variants ac-

cording to minor allele frequency, because the power of

the exome-based IBD detection was largely influenced by

exon density and genetic diversity in exome-sequencing

data.

We applied our exome-based IBD detection method to

6,515 high-coverage exomes. Although the performance

to detect IBD segments in genotyping array data varies in

different populations, especially for small segments (Table

S1), the difference becomes more apparent when exome-

sequencing data are used. As a result of higher power in Afri-

canpopulationsbut comparable false-positive ratesbetween

African and European populations, the ability to control

FDR in the detection of IBD in exomedata varies across pop-

ulations (Figures 3 and 4). Thus, when interpreting patterns

of IBD sharing amongdifferent populations, caution should

be taken when IBD segments are detected in exome-

sequencing data. For example, the reasonswhyhigher levels

of IBD sharingwere observedwithin African American than

within European American populations are partially due to

the higher IBD detection power in African exomes and the

higher fractionof genome that canbeused todetect IBDseg-

ments in African exomes. In addition, we filtered IBD seg-

ments shared by African Americans according to the FDR

criteria estimated in African exomes; as a result, some false

discoveries in African Americans with European ancestry

may fail to be filtered out. This indicates that the detection

of IBD segments in admixed individuals can be further

improved by integrating local ancestry information.
The American Jou
A study of IBD sharing among European populations

found that even geographically distant individuals share

ubiquitous common ancestry within the past thousands’

years,25 suggesting that IBD is a powerful tool to investi-

gate the genealogical kinship of individuals across the

world, delineate the fine-scale population structure, and

test hypotheses about recent demographic history. In this

study, we leveraged graph theory to interpret IBD net-

works. Cryptic population structure in European Ameri-

cans was identified by a community detection method,

which provides an alternative unsupervised approach to

uncover recent fine-scale population structure. Unlike

other methods, such as Structure26 and Eigenstrat,27 we

can follow the change of population structure along time

through a dynamic IBD network by using IBD segments

with different size intervals. Our study suggests that

IBD networks should be a promising framework. Many

network analysis tools can be applied to study the com-

plex network, which will provide unique insights into

the organizational principals for contemporary human

populations.

In summary, our results enable IBD to be detected in

exome data, allowing new inferences into population his-

tory and the genetic architecture of phenotypic variation

to be made on the increasingly large collections of exomes

that have been generated in humans and other species.
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