Skip to main content
. 2016 Nov 7;3(4):046002. doi: 10.1117/1.JMI.3.4.046002

Table 1.

Reported segmentation errors for prostate segmentation algorithms intended for use on T2w ER MRI.

Group Method Dataset size Accuracy Segmentation time
Our group17 Local appearance and shape model (semiautomatic) 42 (test and training) Whole gland:MAD: 2.0±0.5  mmDSC: 82%±4%Recall: 77%±9%Precision: 88%±6%ΔV: 4.6±7.2  cm3 Operator interaction: 28±14  s. (across 10 images and 9 operators) Execution: 85±20  s. (across 42 images, one operator)
Cheng et al.21 Atlas-based (automatic) 100 (training) and 40 (test) Whole gland:TP: 91.2%DSC: 87.6%ΔV: 8.4% NA
Liao et al.18 Multi-atlas-based (automatic) 66 (test) 9 (atlas) Whole gland:MAD: 1.8±0.9  mmDSC: 88%±3% Execution: 2.9 min
Toth and Madabhushi19 Active appearance model (semiautomatic) 108 Whole gland:MAD: 1.5±0.8  mmDSC: 88%±5% Execution: 150 s
Vikal et al.22 Shape model (semiautomatic) 3 Has not reported for whole gland Execution: 23 s
Martin et al.20 Atlas-based (semiautomatic) 1 (reference) 17 (test) Whole gland:MAD: 3.4±2.0  mmRecall: 89%±6%Precision: 78%±12% NA

Note: MAD, mean absolute distance; DSC, Dice similarity coefficient; ΔV, volume difference; TP, true positive.