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Polycomb proteins assemble to form complexes with im-
portant roles in epigenetic regulation. The Polycomb Re-
pressive Complex 2 (PRC2) modulates the di- and tri-
methylation of lysine 27 on histone H3, each of which are
associated with gene repression. Although three sub-
units, EZH1/2, SUZ12, and EED, form the catalytic core of
PRC2, a wider group of proteins associate with low stoi-
chiometry. This raises the question of whether dynamic
variation of the PRC2 interactome results in alternative
forms of the complex during differentiation. Here we com-
pared the physical interactions of PRC2 in undifferenti-
ated and differentiated states of NTERA2 pluripotent
embryonic carcinoma cells. Label-free quantitative pro-
teomics was used to assess endogenous immunoprecipi-
tation of the EZH2 and SUZ12 subunits of PRC2. A high
stringency data set reflecting the endogenous state of
PRC2 was produced that included all previously reported
core and associated PRC2 components, and several
novel interacting proteins. Comparison of the interac-
tomes obtained in undifferentiated and differentiated cells
revealed candidate proteins that were enriched in com-
plexes isolated from one of the two states. For example,
SALL4 and ZNF281 associate with PRC2 in pluripotent
cells, whereas PCL1 and SMADS3 preferentially associate
with PRC2 in differentiating cells. Analysis of the mRNA
and protein levels of these factors revealed that their
association with PRC2 correlated with their cell state-
specific expression. Taken together, we propose that dy-
namic changes to the PRC2 interactome during differen-
tiation may contribute to directing its activity during cell
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Proteins engage in many types of physical interaction in
order to carry out the various functions of a living cell. These
range from the high affinity interactions typical of protein
complexes that are stable over time, to short-term interac-
tions that occur, for example, between enzymes and sub-
strates or between signaling proteins in regulatory pathways.
Multiprotein complexes assemble and organize the individual
catalytic activities required to carry out a biological process in
a single place or time. Valuable insights into the organization
of protein networks and the biology of the cell have been
achieved by high throughput protein interaction mapping
screens (1). However, dynamic changes in these networks,
over time or in response to a cellular change, are more difficult
to study because they require technologies such as affinity
purification-quantitative mass spectrometry that are difficult
to implement on a large scale. Technical developments in
recent years such as high resolution high mass accuracy
mass spectrometry have significantly increased the power of
quantitative proteomics experiments (2). This factor, com-
bined with software improvements, means that the researcher
can have high confidence that the correct analytes (i.e. tryptic
peptides accurately mapped to parent proteins) are being
identified and accurately quantified.

The Polycomb proteins are a priority for such analysis be-
cause they act within protein assemblies and because they
are biologically and clinically important. Polycomb genes
were originally identified in screens for developmental defects
in Drosophila, and the corresponding proteins form two sep-
arate families of multiprotein complex: PRC1 (Polycomb Re-
pressor Complex 1') and PRC2 (3). Although a number of
discrete PRC1 complexes have been described (all sharing a
heterodimeric PCGF-RING core), the composition of PRC2 is
less clearly understood. PRC2 plays a critical role in many cell
phenotypes such as fate determination and stem cell identity

" The abbreviations used are: PRC, polycomb repressor complex;
FDR, false discovery rate.
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(4). It generates and maintains repressive epigenetic mark on
target genes through methylation of lysine 27 of histone H3
(H3Lys?"me3). However, PRC2 has additional functions, in-
cluding chromatin compaction and the reading of epigenetic
marks (3, 5). The “core” PRC2 complex (i.e. the minimum
showing activity in vitro) contains EZH2 (or its close ortholog
EZH1), SUZ12, EED, and either RBBP4 or RBBP7 (6). The SET
domain of EZH2 catalyzes the di-, and tri-methylation of
H3K27, but this activity is considerably enhanced by the
presence of SUZ12 and EED (7). Additional proteins (e.g.
JARID2, AEBP2, PCL1, PCL2, PCL3) are often present in the
complex, and although not absolutely required in vitro, they
can enhance the function of the complex (8, 9).

PRC2 is therefore a classic example of a multifunctional
protein complex whose activities need to be regulated over
time (e.g. during differentiation or development) and at spe-
cific locations (e.g. at specific genomic domains). Such reg-
ulation may operate at the level of the protein complex itself,
for example via structural changes or changes in catalytic
activity induced by post-translational modification (10). Alter-
natively, regulation may arise from the addition or loss of
interacting partners that modify the activity of the complex, or
that act as recruiting factors to direct the location of the
complex (11). Although protein complexes are often consid-
ered to be stable entities, there is accumulating evidence that
in many cases their composition may vary dynamically (12).
For example, extensive protein interactions changes take
place over the course of the splicing process (13). Similarly,
proteasome activity can be modulated by the presence of
activating subcomplexes or tissue-specific subunit exchange
(14, 15). Other workers compared interactome data with tran-
scriptome data obtained over the yeast cell cycle and pro-
posed that the activity of many protein complexes may be
controlled through regulated expression of individual subunits
(16).

Here we used a combination of immunoprecipitation and
label-free quantitative mass spectrometry to study the dy-
namic interactome of PRC2 in a cultured cell model of differ-
entiation. NTERA2(NT2) is a pluripotent embryonic carcinoma
cell line derived from a metastatic tumor that can be induced
to develop neuron-like properties upon treatment with retinoic
acid (17). These cells are commonly used in studies of epige-
netic change including regulation by Polycomb complexes
(18-20). We favored immunoprecipitation of both SUZ12
and EZH2 subunits in order to characterize the behavior of
PRC2 in a manner as close to the native state as possible, and
particularly to avoid artifacts arising from exogenous expres-
sion affinity-tagged forms of PRC2 over a time course. Using
this approach, we found that although all core PRC2 subunits
were present in the complex in both cell states, individual
interactors that associated preferentially in either the undiffer-
entiated or differentiated state were observed. Quantitative
RT-PCR and Western blot analyses showed that these as-
sociations correlated with mRNA expression of the corre-

sponding genes. This suggests that binding of accessory
proteins to the parent complex based on their differential
expression is a potential regulatory mechanism controlling
PRC2 activity.

EXPERIMENTAL PROCEDURES

Cell Culture and Differentiation of NTERA2 Cells—NT2/D1 cells
(ATCC, CRL-1973) were cultured were cultured in 92 mm tissue
culture dishes Nunclon (Fisher Scientific) in Dulbecco’s Modified Ea-
gle Medium (DMEM) supplemented with 10% (v/v) Fetal Bovine Se-
rum (Hyclone), 100U/ml penicillin and 100U/ml streptomycin (Gibco).
Cells were passaged by trypsinizing with 0.25% Trypsin-EDTA (Invit-
rogen) and plated at a ratio of 1:6. To induce neuronal differentiation,
10 M all-trans retinoic acid (RA)(Sigma) was added to media once
cells reached a density of ~50%. During the 8-day differentiation time
course, media was changed every 2-3 days. HEK293T cells were
grown in DMEM medium supplemented with 10% (v/v) FBS (Hy-
clone), 100 U ml-1 penicillin, and 100 U ml-1 streptomycin (Gibco).

Isolation of Nuclei—Harvested NT2 cells were washed in PBS and
resuspended in Lysis buffer (25 mm Tris'HCI pH 7.6, 150 mm NaCl, 1%
Nonidet P-40, 1% sodium deoxycholate, 0.1% SDS, 2 pug/ml Apro-
tinin, 1 wg/ml, Leupeptin, 10 mm PMSF). The lysates were incubated
for 15 min on ice and cell membranes disrupted mechanically by
syringing 5 times with 21G narrow gauge needle and sonicating 3 A~
for 2 s at high power. Lysates were incubated on ice for another 15
min and cleared by centrifugation at 14,000 rpm 4 °C 30 min. To
harvest the nuclear fraction, lysates were resuspended in an equal
volume of Nuclear Buffer (20 mm HEPES pH 7.9, 0.2 mm EDTA, 1.5
mm MgCl,, 20% glycerol, 420 mm NaCl, 2 ug/ml Aprotinin, 1 ug/ml
Leupeptin, 10 mm PMSF) and dounced 20 times with tight pestle type
B. Lysates were incubated for 45 min rotating to dissociated chro-
matin-bound proteins and precleared by centrifugation at 14,000 rpm
4°C for 30 min.

Immunoprecipitation—Immunoprecipitations (IPs) were performed
on nuclear protein lysates prepared in IP buffer (150 mm NaCl, 50 mm
TRIS pH 8.0, 1 mm EDTA, 1% Nonidet P-40, 1 ug/ml aprotinin, 10
ng/ml leupeptin, 1 mm PMSF). 10 ug of antibody was coupled to 50
wl packed Protein A beads (Sigma P9424) by incubation in 1 ml PBS
(0.1% Tween-20) at 4 °C rotating overnight. Beads were collected by
centrifugation at 1700 X g for 3 min and washed twice in 1 ml 0.2 m
sodium borate pH 9.0. Antibodies were then crosslinked to beads by
incubation in 1 ml 0.2 M sodium borate pH 9.0 (20 mm dimethyl
pimelimidate dihydrochloride) at room temperature rotating for 30
min. The reaction was terminated by washing the beads once in 1 ml
0. 2 m ethanolamine pH 8.0 and incubating for 2 h at room tempera-
ture rotating in 1 ml 0.2 m ethanolamine pH 8.0. Beads were washed
twice in Buffer C100 (20 mm HEPES pH 7.6, 0.2 mm EDTA, 1.5 mm
MgCl,, 100 mm KCI, 0.5% Nonidet P-40, 20% glycerol) and blocked
for 1 h min 4 °C rotating in Buffer C100 with 0.1 mg/ml insulin (Sigma,
19278), 0.2 mg/ml chicken egg albumin (Sigma A5503), 0.1% (v/v) fish
skin gelatin (Sigma G7041). Antibody-crosslinked beads were incu-
bated with nuclear lysates, in the presence of 250 U/ml Benzonase
nuclease, at 4 °C rotating overnight and washed 5 X 5 min in Buffer
C100 with 0.02% Nonidet P-40. After the final wash, beads destined
for immunoblotting were resuspended in 50 ul 2 X SDS sample buffer.
Immunoprecipitated material was eluted by boiling for 5 min with
shaking and associated proteins were separated by SDS-PAGE and
analyzed by immunoblotting. Beads destined for mass spectrometry
analysis were washed once in IP buffer containing 0.02% Nonidet
P-40 followed by one wash in IP buffer with no detergent. Expression
of FLAG-tagged proteins and immunoprecipitation was as described
in Brien and coworkers (5). Briefly, FLAG-tagged proteins were per-
formed using M2 anti-FLAG agarose (Sigma) overnight at 4 °C. Elu-

Molecular & Cellular Proteomics 15.11

3451



Dynamic Protein Interactions of Polycomb Repressive Complex 2

tion was performed at 4 °C using 250 pg/ml of 3X FLAG peptide
(Sigma) in 0.05% (v/v) Nonidet P-40 with horizontal shaking.

In-solution Trypsin Digest and Mass Spectrometry—Proteins were
treated with trypsin as described (21). Peptide samples were intro-
duced into a Q Exactive mass spectrometer (Thermo Scientific),
which was connected to an Ultimate 3000 RSLCnano chromatogra-
phy system (Dionex) coupled to a packed C18 fused silica emitter (75
um 1.D.) Parent ion spectra (MS1) were measured at resolution
70,000, AGC target 3e6. Tandem mass spectra (MS2; up to eight
scans per duty cycle) were obtained at resolution 17,500, AGC target
5e4, collision energy of 25.

Data Analysis—Data were processed using MaxQuant version
1.3.0.547 (2) using the human UniProt database (release 2013_12;
67,911 entries). The following search parameters were used: Fixed
Mod: cysteine carbamidomethylation; Variable Mods: methionine ox-
idation; Trypsin/P digest enzyme; Missed Cleavage: 1; Precursor
mass tolerances 6 ppm; Fragment ion mass tolerances 20 ppm;
Peptide FDR 1%; Protein FDR 1%. “Label-Free Quantitation; LFQ,”
“iBAQ,” and “Match Between Run” settings were selected. Reverse
hits and contaminants that predominantly bound IgG beads (keratins,
ribosomal, splicing proteins) were filtered out and not considered
further. A list of removed contaminants is provided in supplemental
Table S4. Features used to identify all mass spectra are available in
supplemental Table S5. Raw data, including results files and software
needed for viewing spectra is provided via the PRIDE database (22).

Real-time Quantitative PCR— Extracted RNA was used to generate
cDNA by reverse transcriptase PCR using the TagMan Reverse Tran-
scription kit (Applied Biosytems). Relative mRNA expression levels
were determined using the SYBR Green | detection chemistry on
LightCycler 480l Real-Time PCR System (Roche). The ribosomal
constituent RPO was used as normalizing gene. The primers used are
listed in supplemental Table S1.

Western Blotting Analysis—Western blotting: Cells were prepared
in RIPA buffer (25 mm Tris:HCI pH 7.6, 150 mm NaCl, 1% Nonidet
P-40, 1% sodium deoxycholate, 0.1% SDS, 2 ug/ml Aprotinin, 1
ng/ml Leupeptin, 10 mm PMSF). Lysates were incubated for 15 min
on ice and cell membranes disrupted mechanically by syringing 5
times with 23G narrow gauge needle and sonicating 3 X 2 s at high
power. Lysates were incubated on ice for another 15 min and lysates
precleared by centrifugation at 14,000 rpm 4 °C 30 min to remove
cellular debris. Immunoblotting was performed using the antibodies
and conditions listed in supplemental Table S1.

Experimental Design and Statistical Rationale—In each of the two
IP experiments (-RA, +RA), three biological replicates were com-
pared. This was the case for both EZH2 and SUZ12 experiments, i.e.
SUZ12-RA, SUZ12+RA, EZH2-RA, EZH2+RA. The Perseus program
(http://coxdocs.org/doku.php?id=perseus:start) was used to carry
out statistics. Briefly, the LFQ values were transformed (log2) and
missing values imputed to a normal distribution (width = 0.3; shift =
1.8), and a two-tailed t test applied with correction for multiple testing
(Benjamini). Volcano plots were constructed using the permutation-
based approach of Tucher and coworkers (23), to implement an FDR
of 0.05 as described in (24).

RESULTS

A Physical Interaction Screen for PRC2 Under Endogenous
Conditions—We first optimized a protocol for immunoprecipi-
tation of the EZH2 and SUZ12 components of PRC2 from
nuclear lysates. The proteins were trypsinized on the beads,
and following clean-up, the resulting peptides were analyzed
using Orbitrap mass spectrometry (Fig. 1A). We reasoned that
the set of proteins that interact with both subunits (but not
with an IgG control) would represent a high quality interac-

tome whose composition we could compare between undif-
ferentiated and differentiated NT2 cells. In this model of dif-
ferentiation, the levels of pluripotency factors such as OCT4
and NANOG drop significantly upon addition of retinoic acid
(in agreement with other reports), (20) whereas differentiation
factors such as HOXD9 increased in expression (Fig. 1B, 1C).
These protein level observations strongly correlate with
mRNA levels measured for the corresponding genes (Fig. 1D).
The levels of core PRC2 components EZH2, SUZ12 and EED
were maintained throughout the 8-day experiment. Because
the activity and genomic location of PRC2 varies over the NT2
differentiation cycle (18), we wondered if we could identify
factors that bound PRC2 differentially in retinoic acid-treated
and -untreated cells. Such dynamic interactors are of interest
because they could potentially facilitate localization of PRC2
at particular genomic loci or influence its epigenetic activity.

The PRC2 Interactome in Undifferentiated NT2 Cells—All
“core” (EZH2, SUZ12, EED, RBBP4/7) and “associated”
(AEBP2, JARID2, PCL1, PCL2, PCL3) PRC2 proteins, as de-
scribed by Vizan and coworkers (8), were successfully immu-
noprecipitated and identified by LCMS with no detectable
background in IgG immunoprecipitated material apart from
modest levels of RBBP4 (Fig. 2A, supplemental Table S2, S3).
Volcano plots were used to assess replicate IP experiments
(three independent experiments) by plotting the enrichment of
each detected protein (relative to an irrelevant antibody con-
trol) against the significance of that fold enrichment (t test p
value). False Discovery Rate (FDR) statistics can be imposed
on these results to estimate the levels of false positive assign-
ments (here 0.05). Although there is a background of proteins
enriched in the IgG control purification, in total, 366 candidate
EZH2-interacting proteins, and 191 candidate SUZ12-inter-
acting proteins, passed the FDR cut-offs. In order to increase
the stringency further, we focused only on proteins that were
reliably detected in both IP experiments, generating a total of
136 proteins (supplemental Table S2).

For both EZH2 and SUZ12 immunoprecipitations, the cog-
nate proteins were among the most significant scoring (i.e.
top right quadrant of the volcano plots; Fig. 2B), whereas all
core PRC2 components and associated PRC2 interactors
were within the high stringency boundary. These include
AEBP2 and JARID2 and two incompletely characterized pro-
teins (C100rf12 and C170rf96) that were reported as PRC2
interactors recently (25). Three other PRC2- associated pro-
teins (referred to as Polycomb-like or PCL proteins) have been
described: PCL1-3 (also known as PHF1, MTF2, and PHF19
respectively). These three proteins have been proposed to
associate with core PRC2 in a mutually exclusive manner. All
three scored as significant in the EZH2 immunoprecipitation,
but only PCL3 met the high stringency FDR criteria for the
SUZ12 immunoprecipitation, perhaps indicating that the
PCL3-PRC2 association is stronger than that for PCL1 or
PCL2, or alternatively, reflecting some steric effect of the
antibody. Other factors found to interact in with both PRC2
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observed in panel C.

subunits include SALL4, recently shown to recruit Polycomb
complexes to the Sox2 and Sox17 loci in embryonic lineages,
ZNF281, a transcription factor forming part of a pluripotency
network that includes SOX2, OCT4, and NANOG, and GCFC1
(GC-rich sequence DNA-binding factor 1) (26, 27).

To our knowledge neither ZNF281 nor GCFC1 have been
linked to Polycomb biology before. We used the iBAQ scoring
system to compare the stoichiometry of the immunoprecipi-
tated PRC2 components. This metric generates an estimate
of relative protein abundance that corrects for differences in
molecular mass and for some experimental MS detection
biases (28). Core members of PRC2 were found to comprise
the majority of molar content (>90%) present in both SUZ12
and EZH2 immunoprecipitations (Fig. 2C), further suggesting
that the data we acquired represents a reasonable biochem-
ical description of the PRC2 complex as it exists in NT2 cells.

The PRC2 Interactome in Differentiating NT2 Cells—An
identical experimental approach was also applied to NT2 cells
that had been differentiated following treatment with retinoic
acid. Again, the cognate immunoprecipitated proteins (EZH2
and SUZ12) scored highly, with nearly all core PRC2 proteins
scoring above the 0.05 FDR threshold when immunoprecipi-
tated by either subunit (Fig. 3). The exception was JARID2,
which was detected in the SUZ12 immunoprecipitation with
an insignificant score (but with a significant score in the EZH2
immunoprecipitation). Some other proteins that scored highly
in the undifferentiated NT2 experiment, such as SALL4 and
ZNF281, were detected with insignificant scores in the dif-
ferentiated cell experiment (Fig. 3). Conversely, the tran-
scription factor SMADS, although detected with insignifi-
cant score in the undifferentiated cells, scored highly in the
differentiated cells for both EZH2 and SUZ12 immunopre-
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Fic. 2. A physical interaction screen of PRC2 interactors in undifferentiated NT2 cells. A, Spectral counts (the frequency of identification
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algorithm (scaled to the Bait) to plot relative stoichiometry data for core and previously-described PRC2 components, as well as for candidate

PRC?2 interactors identified in this study.

cipitations (Fig. 2B, 3). Intracellular signaling via the SMAD
pathway has been linked in several studies to Polycomb
regulation of differentiation, but to our knowledge this is the
first report of a physical interaction of an Smad protein with
the PRC2 complex (29, 30).

By combining the overlap between the sets of EZH2- and
SUZ12-interacting proteins in differentiating NT2 cells, a set

of 89 proteins was produced, a slightly smaller number than
the combined PRC2 “interactome” for undifferentiated cells.
This suggests that in both cells states the core PRC2 complex
remains relatively intact, and interacts with a similar number of
accessory proteins, despite the extensive epigenetic activity
and profound phenotype changes that occur during differen-
tiation. Because the cohort of PRC2-bound genes changes
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substantially following differentiation of NT2 cells, such pro-
teins could conceivably facilitate the change in activity (18).
We next attempted to identify such dynamically interacting
proteins.

Dynamic PRC2 Interactors Enriched in Alternative Cell
States—These two lists (the PRC2 interactome in undifferen-
tiated and in differentiated cells) were compared in order to
identify candidate proteins that may interact with PRC2 pref-
erentially in either cell state. To facilitate this, we plotted on a
single chart the t test scores obtained in each cell state for
each protein immunoprecipitated by EZH2 or SUZ12 (Fig. 4A).
Proteins mapping to the bottom of the plot are enriched in
undifferentiated cells, those at the top in differentiated cells,
whereas stably interacting proteins map along the diagonal.
As noted above, the stable complement includes all core and
most PRC2-associated components (EZH2, SUZ12, EED,
RBBP7, AEBP2, PCL2, c100rf12, EZH1). This list of stable
interactors also includes GCFC1, the factor newly identified
as a candidate PRC2 interactor in this study.

Proteins favoring interactions with PRC2 in undifferentiated
cells included JARID2, c170rf96, SALL4 and ZNF281,
whereas those favoring interactions in differentiated cells in-
cluded PCL1 and SMADS. Reassuringly, these observations
were consistent across both IP experiments (i.e. were found
when either EZH2 and SUZ12 antibodies were used). This
prompted us to rank the PRC2 interactors according to their
preference for either cell state (Fig. 4B). We used the iBAQ
scores of interacting proteins, normalized to that of the im-
munoprecipitated protein (i.e. either EZH2 or SUZ12) to cal-
culate the enrichments and adjust for potential differing effi-
ciencies of either IP. Factors strongly favoring interaction with
PRC2 with in undifferentiated NT2 cells (bottom of Fig. 4B,
blue shading) include NANOG, SALL4, JARID2, and ZNF281,
whereas factors strongly favoring interaction in differentiated
cells include PCL1 and SMADS (top of Fig. 4B, red shading).

Notably, the core PRC2 components are positioned in the
mid-range of this ranking system, reflecting their stable par-
ticipation within PRC2 throughout the differentiation program.
When the list of PRC2-interacting proteins favoring the undif-
ferentiated state were analyzed for Gene Ontology annotation
enrichment, the terms “transcription factor import into nu-
cleus” and “cell cycle” were found to occur most frequently
(Fig. 4C); a similar analysis of those favoring the differentiated
state yielded terms such as “nucleoplasm” and “DNA-de-
pendent ATPase activity.” Meanwhile, the most enriched
annotation category among proteins in the mid-range repre-
senting both cell states reflect PRC2 itself (“PcG protein com-
plex,” “ESC/E(Z) complex”) and methyltransferase activities in
general (“histone methyltransferase complex”).

We sought to validate some of these results by coimmuno-
precipitation (Fig. 4D). As expected, the core PRC2 members
EZH2 and SUZ12 could be reciprocally coimmunoprecipi-
tated in both cell states. The apparent loss of JARID2 from the
complex in differentiated NT2 cells was confirmed, as was the
association with SALL4 and ZNF281. The association with
GCFC1 was maintained through the differentiation cycle. Im-
portantly, reciprocal experiments using antibodies to JARID2
and SALL4 broadly confirmed these results. The exception
was that some residual EZH2 signal was observed in JARID2
immunoprecipitations from differentiated cells. However, no
such staining was observed when SUZ12 was used to probe
the JARID2 precipitate (Fig. 4D). This might indicate that EZH2
can bind JARID2 independently of the PRC2 complex, al-
though additional biophysical experiments would be needed
to confirm this. Interestingly, this “exception” was also ob-
served in the label-free LCMS experiments (Fig. 4A), arguing
that proteomics technologies, if applied carefully, are a reli-
able and sensitive measure of protein abundance that accu-
rately reflects traditional biochemical approaches. Several ad-
ditional experiments were attempted but unfortunately had to
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a negative control.

be abandoned due to poor antibody performance in coimmu-
noprecipitation experiments (e.g. SMAD3, GCFC1, ZNF281).
The ranked set of dynamic PRC2 interacting proteins is there-
fore a valuable resource, but individual candidate interactors
will require further study to understand their precise role in
Polycomb biology.

Dynamic PRC2 Interactions in NT2 Cells Can be Explained
by Differential Gene Expression—The simplest explanation for
why a protein might interact with another protein in a specific
cell state is that it is only present in the cell in one or other
state. We therefore looked for evidence that proteins scored
as dynamically interacting with PRC2 in our NT2 model were

in fact differentially expressed in retinoic acid treated or un-
treated cells. We compared our data with transcriptome data
obtained from retinoic acid treated NT2 cells (31).

This analysis found broad correlation between the fold-
change observed for mRNAs and their corresponding pro-
teins following RA treatment (Spearman’s Rank Correlation,
r = 0.33; Fig. 5A). Specifically, the core PRC2 members were
present in PRC2 in both cell states and displayed good
mRNA-protein correlation. In fact, most proteins that our in-
teractome analysis found to favor either of the cell states also
showed mRNA-protein correlation for the relevant state. In
particular, JARID2 and ZNF281 show high expression of both
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correspond to their expression in the relevant cell state.

mRNA and protein for undifferentiated cells, whereas PCL1
and SMADS show similar patterns for differentiated cells. In
contrast, a number of candidate PRC2 interactors found in
our screen to favor interaction in differentiating cells did show
large mRNA increases in differentiated cells compared with
the levels of the cognate protein. These include AHNAK (a
neuroblast differentiation-associated protein), AHDC1 (a pro-
tein linked to mental retardation), and TSPYL2 (a transcription
protein linked to neuronal synapse function), and MYL6 (a
myosin light chain protein). Although they passed the high
stringency statistical analysis, these proteins will require in-
dependent confirmation as PRC2 interactions in order to rule
out nonspecific binding because of high level expression. No
mRNA data was available for GCFC1, PCL3, AEBP2, SALL4,
NANOG, or c170rf96.

In order to confirm our observations for a selection of the
candidate dynamically interacting proteins, we measured
mRNA levels in undifferentiated and differentiated NT2 cells

using RT-PCR. This analysis found that mRNAs for Jarid2,
Sall4, and Znf281 were significantly decreased upon differen-
tiation, whereas mRNAs for Pc/1 and Smad3 were signifi-
cantly increased (Fig 5B). These observations directly corre-
late to the differential PRC2 interactions of the corresponding
proteins in the same cell states.

The presence of mMRNA does not prove that the cognate
protein is expressed, nor that it is stable in the cell even if it is
successfully translated. We therefore assessed the levels of
JARID2, SALL4, ZNF281, PCL1, SMADS3, PCL2, GCFC1, and
histone H3 protein over the NT2 differentiation cycle using
Western blot (Fig. 5C). This experiment found that the levels of
mRNA and protein were indeed correlated. The data suggest
that these proteins associate with PRC2 based on their ex-
pression in NT2 cells in a particular cell state, rather than
alternative potential regulatory mechanisms such as differen-
tial localization, altered affinity for PRC2 based on PTMs, or
the presence of co-factors such as ncRNAs (32, 33). In sup-
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port of this, we exogenously expressed FLAG-tagged PCL3
(as well as PCL1 and PCL2) in HEK293 cells, where it is not
endogenously expressed (5). Coimmunoprecipitation experi-
ments confirmed that the PCL3 copurified with EZH2 (but not
the PRC1 component BMI1) if FLAG tag was used for IP of
PCL3. This suggests that the presence of the differentially
interacting protein is sufficient to trigger the interaction with
PRC2, at least for the case of PCL3 (Fig. 5D).

Although these factors certainly do play a role in PcG biol-
ogy, our work here suggests that differential expression of
Polycomb-interacting factors is a potentially important mode
of regulation for this key epigenetic complex.

DISCUSSION

It is unsurprising that the complicated task of regulating the
expression of hundreds of genes during development might
require a suite of related protein complexes, each specializing
or refining a general biochemical function. For PRC1 in mam-
mals, this appears to be at least partly explained by the
presence of multiple paralogs of each subunit. For PRC2, the
situation is less clear, with generally only a single gene pres-
ent for core PRC2 subunits. The exceptions to this are EZH2,
where a nonessential close paralog (EZH1) is mainly ex-
pressed in adult tissue, and EED, where alternate splice vari-
ants can display different phenotypes (11, 34).

The presence of multiple PRC2-associated proteins has
therefore led to the proposal that different PRC2-related com-
plexes exist, and that these alternate forms modulate the
central catalytic activity by: (a) localizing it to particular
genomic loci via targeting factors; and/or (b) recruiting addi-
tional epigenetic activities to the complex (e.g. readers of
histone marks or chromatin remodelling activities) (35). Al-
though pioneering work on the composition of the PRC2
complex has been carried out in Drosophila and mouse em-
bryonic stem cells (36-38), few studies have attempted to
directly compare the physical interactions of PRC2 subunits in
different states. Here we carried out such a study and found
that, although the majority of reported PRC2 proteins appear
to form stable associations with the complex throughout the
NT2 differentiation cycle, a smaller number of proteins were
found to associate with the complex preferentially in one cell
state or the other (Fig. 5E). These dynamically interacting
proteins include two that are generally considered to be bone
fide PRC2 components (JARID2, PCL1), as well as several
whose functional relationship to PRC2 is less clear (e.g.
ZNF281, SALL4).

We found that JARID2 favored interaction with PRC2 in
undifferentiated NT2 cells. JARID2 contains a JmjC domain
that normally encodes a demethylase activity, but that ap-
pears to be inactive in this case (39). Different outcomes
arising from loss of Jarid2 have been reported suggesting that
the specific biochemical activity of JARID2 might be altered
depending on cell context (40, 41). Furthermore, in mice, the
phenotype expressed by disruption of Jarid2 is milder and

more pleiotropic than that observed for the genes of core
PRC2 subunits, suggesting that JARID2 is at least partly
dispensable for PRC2 activity (42). Another protein found to
favor interaction with PRC2 in undifferentiated NT2 cells is
SALLA4, a zinc finger transcription factor that is essential for ES
cell formation (43). It is a regulator of the PRC1 protein BMI1
in hematopoietic cells (44, 45). To our knowledge, our data is
the first report of a physical interaction between SALL4 and a
PRC2 protein. However, SALL4 was one of a group of neu-
ronal stem cell regulators identified in a network topology
analysis of transcriptome data that link it to PRC2. Other
genes identified within this network included Ezh2, Suzi12,
Jarid2, pcl2, and Sox2 (46).

Among the proteins found to favor interaction with PRC2 in
undifferentiated NT2 cells, c170rf96 has been reported to
co-purify with JARID2 and PCL2 in embryonic stem cells but
not in HEK293 cells (47, 48). C170rf96 contains no recogniz-
able domains and appears to be unstructured. It was recently
shown to have affinity for CpG islands, and loss of the gene
affects H3K27me3 levels, SUZ12 binding, and gene repres-
sion (but also, interestingly, RNA polymerase |l activity) in
mouse ES cells (49). Thus, this incompletely characterized
gene appears to play both PRC2-dependent and PRC2-inde-
pendent roles in stem cell biology. ZNF281 is another rela-
tively unstudied zinc finger transcription factor involved in the
regulation of the embryonic stem cell state, and was recently
found to be linked to the DNA damage response (50). In
contrast, several proteins favor interaction with PRC2 in dif-
ferentiating NT2 cells. Interestingly, these included PCL1, one
of the three PCL paralogs in mammalian cells. Notably, a role
for PCL1 was recently demonstrated in quiescent cells (9).
This contrasted with PCL2 and PCLS3, which favor proliferat-
ing cells. In general, no obvious pattern can be discerned
among the sets of proteins favoring interaction with PRC2 in
either cell state. In some cases, the set of “undifferentiated
interactors” were linked to ES cell biology (SALL4, JARID2),
whereas some of the ‘differentiated interactors’ have well
known functions in differentiation (SMADS3). Furthermore,
many dynamic interactors have DNA-binding function or are
confirmed transcription factors, consistent with possible roles
as recruiters of PRC2 to specific loci.

The study of dynamic protein interactions is technically
challenging and relatively few systematic studies have been
reported in any system (51). Very recently, a study of the
dynamic interactions of PRC2 and PRC1 was carried out in
mouse embryonic stem cells that were differentiated into
neural progenitor cells (NPCs) (52). Although our study em-
ploys direct immunoprecipitation and Kloet and coworkers
used a Bacterial Artificial Chromosome insertion strategy, in
general the identities and stoichiometry of the PRC2 interact-
ing proteins reported are very similar. In fact, many of the
proteins found to be dynamically interacting overlapped in
both studies (PHF3, MTF2, C170rf96, JAIRID2). The major
difference between the studies was that Kloet and coworkers
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found that the overall levels of PRC2 core components (EZH2,
SUZ12, EED) dropped significantly upon differentiation into
NPCs, whereas we did not observe a similar reduction upon
differentiation of human NT2 cells. The two experimental
models are very different however, and the different observa-
tion presumably highlights the diverse behavior of Polycomb
regulation in different cellular contexts.

In this work, we identified context-dependent interactors of
PRC2 and show that they strongly correlate with expression
of the interacting proteins in the relevant cell context. This
observation broadly agrees with other workers who have pro-
posed that protein complexes may be at least partly regulated
by expression of component parts (16). All generally accepted
members of PRC2 were detected, but some at low levels (e.g.
PCL3 was only detected by a single peptide on one replicate
of the SUZ12 IP experiment). Additional upstream separation
of protein or peptide, for example in gel digest or online cation
exchange, might improve sensitivity. Alternatively, the strin-
gency of the washing conditions could be adjusted by varying
salt of detergent concentrations, or a cross-linking approach
employed.

Our work also highlights the limitations of such studies.
First, by interrogating individual subunits, information about
the composition of variant complexes is lost. Here, we at-
tempted to partly overcome this by investigating two inde-
pendent subunits of PRC2 and using quantitative mass spec-
trometry, but it is not clear how many different forms of PRC2
are present in the nucleus at a given time. For example,
relatively small amounts of EZH1 were found by us in replicate
EZH2 and SUZ12 immunoprecipitation experiments, even
though it is unclear why EZH1 would be present in a complex
that already contains EZH2. Other authors have similarly re-
ported a direct interaction between EZH1 and EZH2 (53),
whereas others have presented evidence against this (54).
Use of techniques such as gel filtration failed to resolve these
issues (data not shown). In future, a combination of physical
interaction maps and biophysical methods (e.g. thermal shift
assay) may be needed to obtain a more fine-grained view of
the PRC2 interactome. Second, current studies generally do
not link the composition of the complexes directly to their
function. Large-scale chromatin immunoprecipitation se-
quencing experiments (ChlPseq: to determine which loci the
PRC2 interactors are binding to) and methyltransferase as-
says (to measure the functional consequence of loss of indi-
vidual subunits) can be used to address this. These are very
challenging experiments however, the former requiring high
quality antibody reagents that are not always available,
whereas the latter require purification of PRC2 variants whose
composition is known with certainly, again very difficult to
achieve in practice. Lastly, the contribution of other regulatory
mechanisms needs to be assessed, in particular the role of
PTM-induced structural change to dynamic PRC2 activity, or
the presence of ncRNAs. Nevertheless, our work extends our
understanding of PRC2 biology by showing that a core com-

plex is maintained throughout an experimentally induced cell
state change, whereas individual proteins favor interaction
during one or other state.
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