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Abstract

The fungal kingdom is the source of almost all industrial enzymes in use for lignocellulose 

bioprocessing. We developed a systems-level approach that integrates transcriptomic sequencing, 

proteomics, phenotype, and biochemical studies of relatively unexplored basal fungi. Anaerobic 

gut fungi isolated from herbivores produce a large array of biomass-degrading enzymes that 

synergistically degrade crude, untreated plant biomass and are competitive with optimized 

commercial preparations from Aspergillus and Trichoderma. Compared to these model platforms, 

gut fungal enzymes are unbiased in substrate preference due to a wealth of xylan-degrading 

enzymes. These enzymes are universally catabolite-repressed and are further regulated by a rich 
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landscape of noncoding regulatory RNAs. Additionally, we identified several promising sequence-

divergent enzyme candidates for lignocellulosic bioprocessing.

Lignocellulosic biomass from plant matter is an abundant, renewable starting material for 

biofuel and industrial chemical production (1, 2). Industrial-scale processes require fungal 

enzymes to convert biomass into fermentable sugars. However, to permit enzymatic 

degradation and sugar release (3), lignin must be removed from crude biomass via costly 

pretreatment processes (1). The need for multiple enzyme production processes increases 

this cost further, as genetically modified fungal platforms such as Trichoderma reesei and 

Aspergillus nidulans overproduce limited subsets of enzymes that are unable to 

independently digest even pretreated substrates completely to sugars (table S1) (4). 

Economical chemical production will require a versatile, unbiased platform to produce all of 

the enzymes needed to hydrolyze diverse lignocellulose feedstocks into fermentable sugars 

without pretreatment.

Microbes found in the digestive tract of large herbivores are attractive enzyme platforms for 

lignocellulose processing (5). Among these are Neocallimastigomycota (anaerobic gut 

fungi), the primary colonizers of biomass in ruminants and the earliest-branching 

nonparasitic fungi still living (6). Although Neocallimastigomycota account for ~8% of the 

gut microflora, they degrade up to 50% of the untreated biomass through invasive growth 

and enzyme secretion (7-9). Neocallimastigomycota contain a diverse repertoire of biomass-

degrading enzymes (table S1) that degrade a range of feedstocks with equal efficiency (Fig. 

1), making them rich untapped sources for previously unidentified lignocellulolytic 

enzymes. However, their strict anaerobic lifestyle, complex nutritional requirements, and 

culture recalcitrance have severely hindered early attempts at isolation, exploitation, and 

molecular characterization (10).

We isolated three previously uncharacterized cultures from the feces of different herbivorous 

mammals with varied diets. We used microscopy and ITS1 (internal transcribed spacer 1) 

sequencing (11) to verify that the isolates were distinct species, representing separate genera 

of Neocallimastigomycota (Anaeromyces robustus, Neocallimastix californiae, and 

Piromyces finnis). Each grew on C3 and/or C4 grasses at rates comparable to its growth on 

soluble substrates (Fig. 1A). Anaeromyces had a clear preference for glucose and grew more 

slowly on switch grass (~20% of the glucose growth rate). In contrast, the monocentric 

fungi, Piromyces and Neocallimastix, displayed limited substrate preference, with growth 

rates varying no more than 20% from the mean growth rate across all substrates. Similarly, 

these fungi had slight growth advantages on crude lignocellulose, growing up to 20% faster 

on reed canary grass (Phalaris arundinacea), an invasive species and bioenergy crop (12), 

when compared with glucose.

We collected and purified the biomass-degrading enzymes from fungal supernatants by 

exploiting the ability of many cellulases to bind to cellulose. We then tested the purified 

extracts for hydrolytic activity against several cellulosic substrates and analogs (fig. S1). Gut 

fungal secretions were active against all tested substrates, demonstrating cellulase, β-

glucosidase, and hemicellulase activities comparable to those from engineered preparations 

of Trichoderma and Aspergillus. Neocallimastigomycota, and Piromyces in particular, 
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displayed as much as a 300% increase in xylan-degradation activity when compared with 

commercial Aspergillus enzyme formulations (Fig. 1B). Gut fungi degrade cellulose at 

similar rates, demonstrating little preference for cellulose or hemicellulose (Fig. 1C), in 

agreement with their enzymatic distribution from genomic sequencing (table S1). This 

comprehensive array of biomass-degrading enzymes, and their inherent synergy, broadens 

the range of substrates that can be degraded effectively, making gut fungi better suited than 

later-diverging species to degrade diverse polymers found within crude plant biomass. More 

importantly, it is this synergy, and not enzyme diversity, that is responsible for the superior 

biomass-degradation abilities of Piromyces, making it an intriguing model system for further 

study.

Transcripts encoding biomass-degrading enzymes comprise ~2% of the gut fungal 

transcriptomes (data S1 to S3) containing diverse functions classified into distinct 

lignocellulolytic glycosyl hydrolase (GH) and other carbohydrate-active enzyme (CAZyme) 

domains (13) (Fig. 2A). The majority of these transcripts also encode non-catalytic dockerin 

domains thought to mediate self-assembly of an extracellular catalytic complex or 

cellulosome (Fig. 2, B and C) for synergistic degradation of lignocellulose (14). The 

hydrolytic capabilities of gut fungi on crude biomass are well explained by the functional 

expansions of many CAZyme families (table S1 and fig. S3). Neocallimastigomycota are 

rich in hemicellulases (notably GH10) and polysaccharide deacetylases, which allow gut 

fungi to remove hemicellulose and access the energy-rich cellulose core of plant biomass 

(15) in the absence of pretreatment. This process is greatly aided by pectin removal (16) 

with a number of polysaccharide lyases, carbohydrate esterases, and GH88s, allowing the 

anaerobic fungi to readily degrade an array of lignin-rich C3 and C4 bioenergy crops without 

pretreatment (Fig. 1A).

Functional annotations of the transcriptome were validated within Piromyces, Anaeromyces, 

and Neocallimastix via a proteomic survey (data S5 to S7). Proteins secreted from 

Piromyces in the presence of reed canary grass were isolated by cellulose precipitation (Fig. 

2D and fig. S4) and individually mapped by mass spectrometry (MS) (17) to more than 50 

cellulolytic transcripts including 25 GH families enriched in or specific to the anaerobic 

fungal lineage (e.g., GH9, GH45, GH48, GH10, and GH11). Also present was the full 

complement of endoglucanases, exoglucanases, and β-glucosidases needed to fully 

depolymerize cellulose (GH5, GH6, GH9, GH45, and GH48) and hemicellulases (GH10 and 

GH11) (table S2), with many transcripts containing dockerin domains for extracellular 

fungal cellulosome formation.

A pervasive feature of gut fungal transcriptomes is long noncoding antisense transcripts 

(asRNA) (data S1 to S3). At least 11% of the Piromyces transcriptome is noncoding and 

complementary to putative targets involved in a range of catalytic and developmental 

pathways, including biomass degradation (Fig. 2A and fig. S2). asRNA is functionally 

enriched (hypergeometric test) in a number of gene ontology (GO) processes, such as the 

cellulose catabolic process (P = 0.02), ribosome biogenesis (P = 10−11), RNA-dependent 

DNA replication (P = 6 × 10−6), and amino acid transmembrane transport (P = 0.003) (data 

S4). These results infer a role for asRNA regulation in fungal cellulose catabolism and 
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suggest that noncoding asRNAs may be as critical for function in early-branching 

Neocallimastigomycota as they are in higher fungal lineages (18-20).

To assess how the activities of biomass-degrading enzymes are coordinated, we grew 

Piromyces cultures on lignocellulose and perturbed the system with a small pulse of glucose 

to induce catabolite repression, after which we collected RNA samples until the glucose was 

consumed (Fig. 3A). Three hundred seventy-four transcripts showed more than a twofold 

change in expression (P ≤ 0.01), with a third of these transcripts containing cellulolytic 

domains (Fig. 3B). Among these regulated cellulolytic transcripts were all of the MS-

validated proteins expressed under growth on reed canary grass (table S2), with the 

exception of GH45 and XylA. Transcripts associated with biomass degradation were almost 

exclusively repressed in response to glucose, as expected, and reflected activity trends from 

cellulose-isolated secretions (21). Expression levels of these transcripts returned to initial 

baselines once glucose was fully consumed (Fig. 3C and fig. S5). Cluster analysis revealed 

coordinated expression signatures of biomass degradation in the regulatory patterns of these 

transcripts (22).

Hierarchical cluster analysis revealed that glucose-regulated genes performing a common 

function grouped into 21 distinct clusters or regulons (Fig. 3B). Owing to the functional 

enrichment of these regulons, divergent transcripts of unknown function that co-regulate 

with biomass-degrading transcripts may be previously unidentified biomass-degrading 

enzymes for biotechnology. We identified 17 such candidates from Piromyces (table S4). 

Biomass-degrading regulons were either hemicellulose- and pectin-degrading and rapidly 

repressed within 40 min or contained a broad array of biomass-degrading enzymes that 

responded more slowly at 3.5 hours (Fig. 3B and data S8). The faster regulatory response of 

hemicellulases is conserved in higher fungi (23, 24) and thought to be an adaptation to 

lignocellulose structure. Hemicellulose and pectin surround cellulose; thus, cellulases act 

only after the hemicellulases and pectinases remove this outer coating. Given a common 

regulatory input, coordinating this expression leads to quicker regulation of hemicellulases 

and pectinases than of cellulases, in agreement with observation. Candidate mediators of this 

response include conserved orthologs of the fungal master carbon regulator (CreABC); 

xylose-sensitive transcription factors (Xlr-1 and XlnR); and other conserved cellulolytic 

activators such as ACE1-2, ClbR, and Clr1-2 (table S5). In contrast, up-regulated clusters 

contained an array of metabolic and housekeeping genes consistent with logarithmic growth, 

along with protein expression genes (such as those encoding chaperonins and ribosomal 

RNA processing proteins) that probably mediated the cellular response to the sugar pulse 

(data S8).

To better understand the regulation of key biomass-degrading enzymes, we analyzed 

expression as a function of substrate. Piromyces showed substantial remodeling of the 

transcriptome as the carbon source was varied (~10% of all transcripts), reflecting changes 

in the biomass-degrading machinery and internal processes of gut fungal cultures (fig. S6 

and data S9). Among these transcripts were 194 of the differentially regulated transcripts 

from the glucose perturbation experiment described above. Overall, a twofold change in the 

expression of biomass-degrading enzymes occurred during the switch from glucose to 

complex reed canary grass. This trend was mirrored in the activity of cellulose-precipitated 
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secretions (Fig. 4A). Discernible changes in the composition of the biomass-degradation 

machinery also accompanied variations in expression level (fig. S7).

Gene set enrichment analysis (25) of the transcriptomes confirmed that the number and 

functional diversity of CAZyme domains increased as a function of substrate complexity 

(Fig. 4B), with insoluble substrates [filter paper, Avicel (Sigma-Aldrich), and reed canary 

grass] inducing fungal cellulosomes for enhanced degradation. Nonhemicellulosic substrates 

(cellobiose, filter paper, and Avicel) up-regulated unneeded hemicellulases such as GH10, 

suggesting a common regulatory network for diverse enzymes. Nonetheless, the additional 

enzymes necessary to degrade crude reed canary grass are independently regulated. Our 

analyses also revealed shifts between enzyme types for similar reactions (e.g., GH5 to GH9 

as a β-glucosidase) as a function of substrate, demonstrating a highly tailored catabolic 

response.

Among the gene sets we tested were clusters identified in the glucose perturbation 

experiment (Fig. 4B). Protein expression clusters (Fig. 3B) regulated by glucose were 

enriched on insoluble substrates, reaffirming their role in mediating expression of 

lignocellulolytic enzymes. Another regulon encoding diverse hemicellulases and a handful 

of cellulases (cluster 2: hemicellulases) was central to all growth phenotypes other than 

glucose. This enzyme prevalence, even on non-polymeric carbohydrates, suggests that 

enzymes play an integral role in the recognition of insoluble substrates (26): In the absence 

of glucose, these enzymes are expressed at low levels to partially solubilize available 

cellulosic materials that can be recognized to trigger a more specific catabolic response. 

Consistent with this hypothesis is the sixfold up-regulation (P ~ 0.02, negative binomial test) 

of the conserved transcription factor XlnR on reed canary grass and Avicel to better 

recognize solubilized sugars and induce fungal xylan degradation. This response is further 

regulated by asRNA targeting CAZyme domains, as evidenced by their functional 

enrichment on Avicel [P = 0.003, false discovery rate (FDR) = 0.03] and reed canary grass 

cultures (P ~ 0, FDR = 0.003). An independent analysis using a hypergeometric statistical 

test confirms that antisense transcripts targeting CAZyme domains (cellulose catabolic 

process GO annotation) are functionally enriched among the regulated transcripts (P ≈ 0.01) 

(data S10). Identities of the expressed asRNA, however, are substrate-specific to modify the 

catabolic response through a number of mechanisms (27) to conserve cellular resources 

(table S6).

Overall, our results show that anaerobic gut fungi tailor their hydrolytic response to 

lignocellulose, implying a coordination in catalysis between all expressed enzymes that may 

inform industrial hydrolysis strategies. The clear transcriptional signatures of these biomass-

degrading enzymes provide a route to identify hundreds of sequence-divergent enzyme 

candidates with commercial potential from anaerobic microbial communities (28).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Anaerobic fungi degrade crude biomass
(A) Relative growth of gut fungal isolates on crystalline cellulose and crude C3 and C4 

bioenergy crops (see table S3 for specific growth rates). (B) Relative xylan activity of 

cellulose-precipitated gut fungal secretions and commercial Trichoderma [Celluclast 

(Sigma-Aldrich)] and Aspergillus [Viscozyme (Sigma-Aldrich)]. (C) Relative 

hemicellulose:cellulose [xylan versus carboxymethylcellulose (CMC)] activity of cellulose-

precipitated gut fungal secretions and commercial preparations. For all panels, data represent 

mean ± SEM (error bars) of more than three samples.
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Fig. 2. Anaerobic fungi contain a wealth of biomass-degrading machinery
(A) Distribution of cellulolytic carbohydrate-active enzyme (CAZy) transcripts and their 

regulatory antisense transcripts in Piromyces. CAZymes are shown in bold, whereas 

antisense transcripts are indicated in parentheses and plotted in a lighter shade. In the key, 

“Other” refers to pectinases and accessory enzymes that separate cellulose and 

hemicellulose from other cell wall constituents. PD, polysaccharide deacetylase (acetylxylan 

esterase); CE, carbohydrate esterase (excluding pectinesterases); RL, rhamnogalacturonate 

lyase. (B) Proposed model for an extracellular catalytic complex for cellulose degradation. 

(C) CAZyme composition of the putative extracellular complex. Each square represents a 

single enzyme that encodes a CAZyme fused to at least one dockerin domain. (D) Identity of 

predominant secreted gut fungal CAZymes in the cellulose-precipitated fraction. Bands were 

excised and mapped to the transcriptome by tandem MS (fig. S4).
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Fig. 3. Anaerobic fungal biomass-degrading machinery is catabolically repressed
(A) Glucose consumption in fungal cultures. Exponential cultures of Piromyces were pulsed 

with 5 mg of glucose, and mRNA and secretome samples were collected during glucose 

depletion (yellow region). Blue diamonds, accumulated pressure; brown triangles, glucose 

concentration. Error bars indicate SEM. (B) Cluster analysis of genes strongly regulated by 

glucose. Transcript abundance data were compared to uninduced samples at time t = 0 to 

calculate the log2 fold change in expression.Transcripts with large, significant regulation are 

displayed (P ≤ 0.01, negative binomial distribution, ≥twofold change). Clusters were 

manually annotated based on the most common protein domains and/or BLAST (Basic 

Local Alignment Search Tool) hits. (C) Relative expression [fragments per kilobase of 

transcript per million mapped reads (FPKM)] of biomass-degrading enzymes (table S1) and 

their corresponding activity (cellulosome fraction) on CMC (21). Data represent the mean ± 

SEM (error bars) of at least two replicates.
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Fig. 4. Anaerobic fungi degrade complex substrates with increasingly diverse enzymes
(A) Relative expression (FPKM) of biomass-degrading enzymes (table S1) and their activity 

(cellulosome fraction) on CMC. Data represent the mean ± SEM (error bars) of at least two 

replicates. (B) Normalized enrichment scores of positively enriched specified gene sets 

relative to growth on glucose. Gene sets containing genes that are expressed more highly in a 

given substrate are indicated (FDR ≤ 10%; Kolmogorov-Smirnov distribution). Enrichment 

scores are directly proportional to expression level. Gene sets shown in bold were analyzed 

in aggregate and in subsets (unbolded sets below). asRNA, antisense RNA that targets CAZy 

domains (Fig. 2A); Cellulosome, dockerin tagged transcripts. Numbers in the “Glucose 

responsive” subset indicate clusters.
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