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Abstract

Cylindrical homogenous phantoms for magnetic resonance (MR) elastography in biomedical 

research provide one way to validate an imaging systems performance, but the simplified 

geometry and boundary conditions can cloak complexity arising at tissue interfaces. In an effort to 

develop a more realistic gel tissue phantom for MRE, we have constructed a heterogenous gel 

phantom (a sphere centrally embedded in a cylinder). The actuation comes from the phantom 

container, with the mechanical waves propagating toward the center, focusing the energy thus 

allowing for the visualization of high-frequency waves that would otherwise be damped. The 

phantom was imaged and its stiffness determined using a 9.4 T horizontal MRI with a custom 

build piezo-elastic MRE actuator. The phantom was vibrated at three frequencies, 250, 500, and 

750 Hz. The resulting shear wave images were first used to reconstruct material stiffness maps for 

thin (1 mm) axial slices at each frequency, from which the complex shear moduli μ were 

estimated, and then compared with forward modeling using a recently developed theoretical model 

who took μ as inputs. The overall accuracy of the measurement process was assessed by 

comparing theory with experiment for selected values of the shear modulus (real and imaginary 

parts). Close agreement is shown between the experimentally obtained and theoretically predicted 

wave fields.

1. Introduction

Many pathologies can be characterized by the changes they induce in the mechanical 

properties of tissue, e.g. cirrhotic liver is stiffer than healthy liver. This phenomenon has 

been exploited by physicians, since antiquity, to diagnose disease through the technique of 

palpation, wherein the physician manually feels for heterogeneities in a region of a patient's 

body by applying pressure thereupon. The obvious limitations of this are that an abnormally 

stiff or soft region can be missed if it is too deep in the body and that the sense of touch of a 

doctor is highly subjective. Dynamic elastography seeks to answer this need, allowing for 

the non-invasive viscoelastic description of soft tissues by measuring the displacement fields 

from an applied stress [1]. In MR elastography (MRE) [2, 3, 4, 5, 6] a harmonic shear wave 

is introduced into the tissue by an internal or external actuator. The MRE motion-encoding 
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gradients are synchronized with the mechanical actuator. The protons in these oscillating 

magnetic field accrue a phase shift corresponding to their displacement. The phase contrast 

image is analogous to a wave image from which the mechanical properties of the tissue, e.g. 

shear modulus, can be calculated. As with any imaging modality, phantom studies have been 

used to optimize MR elastography.

1.1. Elastography Phantoms

Researchers choose their elastography phantoms’ materials and geometry based on e.g. what 

rheological phenomenon they want to model or what reconstructive algorithm they will use. 

Royston et al [7] and Yaşar et al [8] designed a phantom that is stimulated by vibrating, 

along the central axis, the cylindrical container in which the tissue-mimicking material is 

held, as opposed to Okamoto et al [9] whose actuation came from within the material. The 

incident wave is geometrically focused as it travels toward the radial center, where it finally, 

due to the spatial concentration of the mechanical energy, will increase in amplitude, 

overcoming the attenuation due to viscous damping. That is, the geometric focusing allowed 

the displacement to be discernible deep in the center of the phantom, far from the harmonic 

forced oscillation, even at high frequencies (< 1.6kHz). Yaşar et al [10] and Liu et al [11] 

used these cylindrical phantoms to characterize the viscoelastic model of a silicone rubber 

from the complex shear moduli over a wide range of frequencies showing that fractional 

order models capture best the complicated nature of viscoelastic material. Schwartz et al 

[12] generalized those works in a geometric sense, studying a heterogeneous phantom 

composed of two concentric cylinders of hydrogel. Klatt et al introduced the so-called 

SLIM-MRE, wherein three displacement projections are simultaneously encoded into the 

MR phase signal, using these cylindrical phantoms which had one [13] and three [14] 

spherical hydrogel heterogeneities embedded in a stiffer hydrogel matrix. Yin et al [15] also 

used a cylindrical phantom with a single spherical heterogeneity in their work demonstrating 

the feasibility of combining the data acquisition for diffusion-weighted imaging and MR 

elastography into a single scan, so-called diffusion-MRE, while Yaşar et al [16], with a 

similar phantom, showed how to encode three excitation frequencies at once, each spatial 

encoding direction—read, phase, and slice—being devoted to a single frequency.

Spherical heterogeneities were used in [13, 14, 15, 16] because they are affordable, readily 

available and easily embedded in the cylindrical matrix without introducing unwanted 

heterogeneities, e.g. bubbles of air, but they have a clinical relevance as well, e.g. 

osteoarthritis treatment [17]. MRI techniques [18] and in particular MR elastography [19] 

have been used to characterize the growth and development of artificial tissue constructs; so, 

Yin et al [20] investigated the potential of using the complex shear modulus obtained in 

MRE as a biomarker for alginate beads, embedding three spheres in their cylindrical 

phantoms.

1.2. Objective

Since the cylindrical phantom with embedded spherical heterogeneities plays an important 

role in the research and development of MR elastography, it is vital that it be carefully 

rigorously mathematically modeled, elucidating its mechanical behavior. Therefore, in a 

two-part study (of which this is the 2nd), we set out to model analytically, and conduct a 

Schwartz et al. Page 2

Phys Med Biol. Author manuscript; available in PMC 2017 September 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



theoretical and experimental study of, the scattering and diffraction of axially-symmetric, 

radially-converging, cylindrical waves by a viscoelastic sphere. In an earlier companion 

work, Schwartz et al [21] present the entire, first-principle derivation, solution, and numeric 

examples of the problem of a sphere embedded with welded contact in an oscillating infinite 

circular cylinder. In this experimental study we describe the mathematical theory (briefly), 

phantom construction, image acquisition, and parameter estimation techniques. We compare 

experimental and theoretical results and consider future research directions.

2. Theory

We mathematically model the phantom as an infinitely long circular cylindrical tube that is 

filled with a viscoelastic solid, referred to as medium 1. A spherical viscoelastic solid, 

medium 2, is embedded in the center of medium 1, i.e the center of the sphere lies on the 

axis of the cylindrical tube. We define the spherical heterogeneity and surrounding region, 

respectively, by spherical (r, θ, ϕ) and cylindrical coordinates (ρ, z, ϕ), shown in figure 1. 

The ẑ axis is aligned with the axis of the tube and contains the center of the spherical 

inclusion. The two media have different shear stiffnesses. The rigid tube harmonically 

oscillates along the cylindrical ẑ axis and we assume that medium 1 is in welded contact 

with both boundaries. The displacement of the two media satisfy the vector Helmholtz 

equation,

(1)

where

(2a)

(2b)

The constants λi and μi are the Lame constants, and γi is the density of the material. Here 

the index i is 1 or 2 to denote the medium. Throughout this analysis we suppress the 

harmonic time dependence, eiwt. Due to the axial symmetry of our system, we may neglect 

all components and dependencies of the azimuthal direction, ϕ. The assumption of intimate 

contact between medium 1 and the boundaries means we will enforce equality of 

displacement at the tube wall and equality of displacement and stress at the spherical radius. 

Mathematically the conditions at ρ = b are given as

(3a)
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(3b)

where G is the amplitude of the forced oscillations and Bw(z) is the boxcar function [22]. 

Here u1ρ and u1z are, respectively, the magnitudes of the ρ and z components of the 

displacement vector, , in the cylindrical coordinates. At r = a, we have

(4a)

(4b)

(4c)

(4d)

where u1r and u1θ are, respectively, the magnitudes of the r and θ components  in spherical 

coordinates and σ1rr and σ1rθ are the magnitudes of the rr and rθ components of the stress 

tensor. We identify three wave fields in our system, the incident, scattered, and refracted 

fields. The incident field is a cylindrical wave that travels from the inner radius of the tube, 

converging radially toward the center. The scattered and refracted fields are spherical waves 

that respectively reflect off and are transmitted through the spherical inclusion. Each wave 

field can be defined in terms of its longitudinal, , and vertically-polarized transverse 

components, , given as

(5)

(6)

where each potential function, Φ and X, solves the scalar Helmholtz equation,

(5)
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and the vector, ê, depends on the coordinate system [23]. In cylindrical coordinates ê = ẑ, 

and in spherical coordinates ê = rr ̂ [24]. The axially symmetric nature of our problem means 

the wave fields have no horizontally-polarized transverse component. We may now define 

the magnitudes of the cylindrical (cyl) displacement and spherical (sph) displacements and 

stresses in terms of the scalar potential functions. They are given, in terms of the scalar 

potential functions, as [24]

(6a)

(6b)

(6c)

(6d)

with the stress components given in terms of the displacements,

(7a)

(7b)

3. Methods

3.1. Phantom Preparation

For a general frame of reference, magnitude MR images of the two phantoms used in this 

study are shown in figure 2. The slight curvature on the bottom of the coronal images of 

both phantoms are imaging artifacts due to heterogeneities in the main magnetic field of the 

MRI scanner. The phantoms are actually flat in those regions.

3.1.1. Homogenous Phantom—The phantom matrix was made from a mixture of 

agarose (SeaKem LE Agarose, Lonza, Rockland, ME) 0.75% by weight, and food grade 
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gelatin (Knox Original Unflavored Gelatine, Kraft Foods Group Inc., Northfield, IL), 4% by 

weight, in water. The solution was heated until clarification occured at 90 °C. The molten 

gel was poured into a cylindrical container made of an acetyl resin (Delrin, DSM 

Engineering Plastic Products, Inc., Reading, PA), and allowed to solidify at room 

temperature for 12 hours before being scanned.

3.1.2. Heterogenous Phantom—The heterogeneous phantom is identical to the 

homogeneous phantom save for the addition of a 1.7 cm diameter soft spherical inclusion. 

The procedure for making the surrounding agarose/gelatin gel (medium 1) is the same as 

presented above. The spherical inclusion (medium 2) was formed from dehydrated beads 

(Rainbow Water Beads, Greenville, SC) by immersion in distilled water for 8 hours. They 

are composed of a liquid crystalline polymer that absorbs water to form spherical beads of a 

hydrated gel. An individual bead was embedded in the center of the agarose/gelatin gel in 

the cylindrical container and allowed to gel at room temperature for 12 hours prior to the 

start of scanning.

3.2. Experimental Setup

MR elastography experiments were performed at 9.4 T using a horizontal bore Agilent 

small-animal MR scanner (310/ASR, Agilent Technologies, Santa Clara, CA). A 39 mm 

diameter quadrature RF coil was used inside a 60 mm diameter gradient coil with a 

maximum gradient of 1000 G/m. The gel-filled container was placed horizontally inside the 

center of the RF coil. the container was attached to a pre-loaded piezo-actuator (p-840.1, 

PhysikInstrumente (PI) GmbH & Co. KG, Germany), which generates the transverse 

vibration motion. All phantoms were scanned at the excitation frequencies of 250, 500, and 

750 Hz. This experimental setup establishes concentric wave patterns within the gel.

3.3. Data Acquisition

A customized spin-echo (SE) based MR elastography sequence with a sinusoidal motion-

sensitizing gradient (MSG) was used for data acquisition, obtaining one central axial slice 

and one central coronal slice. The acquisition parameters were as follows: repetition time 

(TR) = 1 s, echo time (TE) = 28 ms, field of view (FOV) = 4 cm × 4 cm, matrix size = 128 × 

128, slice thickness = 1 mm, MSG = 30 G/cm. In order to keep the same SNR at different 

frequencies, the number of MSG cycles varied with the actuation frequency from 2 to 6 to 

accommodate constant TR/TE imaging parameters. For example, we used 2 MSG cycles at 

250 Hz, 4 MSG cycles at 500 Hz, and 6 MSG cycles at 750 Hz, which all lead to an MSG 

duration of 8 ms. In all scans, the MSG was applied along the principle direction of 

vibration in our experimental setup. Phase difference images were made from two 

acquisitions by inverting the polarity of the MSG. Four time steps were acquired per 

actuation cycle.

3.4. Data Processing

The raw phase images were unwrapped if wrapping artifacts were present, and Fourier 

transformed along the time axis over four time steps. The resulting complex wave images for 

each driving frequency were spatially filtered for noise reduction using a Gaussian filter. The 

filter kernel size is 128 × 128, and the cutoff frequency for this high-pass filter is 160 Hz. 
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The wavelengths, li, were estimated using a 2D local frequency estimation (LFE) algorithm 

applied to the wave images [25]. The shear stiffness maps were calculated from the 

following relation [26]

(8)

We assume γi to be the same as water, i.e. 1000 kg/m3. At each frequency, the shear stiffness 

values were spatially averaged over regions of interest (ROIs) prescribed by the boundaries 

of the spherical inclusion visible in the MR elastography magnitude image or, in the case of 

the cylindrical phantom, by selection the region over the entire sample. The mechanical 

inputs for the theoretical forward modeling were estimated from the experimental results. 

The storage modulus, , was obtained from the LFE while the loss modulus, , was 

determined by trial-and-error comparisons of theoretical and experimental images, manually 

adjusting the value to optimize the fit of the normalized displacement. The complex shear 

moduli used as inputs for the forward modeling to create the theoretical wave fields are 

summarized in Table 1. The agreement between the experimentally obtained wave fields, 

, and those theoretically predicted, , is assessed both qualitatively, by visual 

comparison of the axial and coronal views of the wave fields as well as their linear profiles, 

and quantitatively, by calculating from the line profiles the root mean square error, RMSE, 

given here as

(9)

where n = 128 for all profile comparisons. All theoretical calculations were done on the 

computational software, Mathematica (Version 9, Wolfram Research, Inc., Champaign, IL). 

With our Mathematica code it took approximately 2 hours to render a 250 Hz wave field 

using a desktop computer running Windows 7 Ultimate–the processor was an 

Intel®Core™i5-2500K central processing unit at 3.30 GHz, with 7.71 usable GB of 

installed memory, and a 64-bit operating system–while a 750 Hz image took over 8 hours. 

For comparison, the normalized analytic linear profiles were taken out of the experimental 

MR elastography wave image and the corresponding simulated wave image.

4. Results

We compare the experimental and theoretical displacement wave fields at three excitations 

frequencies, 250, 500, and 750 Hz. We're limited to this range because too low of a 

frequency would yield wavelengths bigger then the phantom diameter and too high of a 

frequency would make the solution's computation time untenable. It is related to the degree 

of truncation N which is informed by the number of wavelengths within the field of view 

and is proportional to , where λ is the shear wavelength. For the homogenous phantom, 

figure 3 shows the analytic and experimental normalized displacements as seen in in the 

coronal plane through the center of the cylinder and through the axial plane at the level of 

Schwartz et al. Page 7

Phys Med Biol. Author manuscript; available in PMC 2017 September 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the dashed lines in the coronal images. Figure 4 has the analogous results for the 

heterogeneous phantom. In figure 5 the theoretical displacements along the dashed lines in 

axial images are superimposed on the experimental displacements. The RSME for each of 

the phantoms at every frequency is summarized in table 2. They serve as a benchmark of 

model agreement for future studies. Figure 6 shows the elastorams of the homogenous (top) 

and heterogenous (bottom) phantoms calculated from the experimentally obtained axial 

wave images in figure 3 and figure 4, respectively. These spatial distributions of the storage 

modulus are given in units of kPa.

5. Discussion

The point of these two papers (the present one and it's companion Ref. [21]) is that by 

analytically modeling this heterogeneous body we broaden the theoretical framework 

through which it is understood, which could allow to identify the impact of the shortcomings 

of conventional reconstruction algorithms, e.g. LFE which fails to account for mode 

conversions. In LFE the shear modulus is estimated from the apparent wave length (see Eq.

(8)) without distinguishing what wave fields are responsible for it. At an interface between 

two elastic media an elastic wave will undergo a mode conversion, e.g. when an incident 

transverse wave hits a boundary between two solids of differing stiffnesses, some of that 

energy will be scattered back from the boundary and some will refract through into the other 

medium. If the incident angle of the wave is not normal to the boundary, then both the 

scattered and refracted fields will have both transverse and longitudinal components and be 

the shape of the scatterer. LFE assumes that at each pixel the traveling wave is a plane wave. 

It is important to know what impact those assumptions have on parameter estimation.

In the coronal view of the simple cylinder phantom (figure 3) we see that the vertically 

polarized waves wave fronts are not parallel as the closed form analytic solution predicts 

they should be. This is more pronounced at the lower frequency, 250 Hz, than at 500 and 

750 Hz. However, as the frequency goes up, the edge effects play a larger role, i.e. the waves 

become distorted at the top and bottom of the cylinder. That highlights the key shortcoming 

of this model: assuming an infinitely long cylinder. This limits the predictive use of our 

model to the central region, clearly shown by the agreement found in the axial view (figure 

3) and the linear profiles (figure 5). Even in that region, though, there is not perfect 

consensus between theory and experiment. This is probably due to errors in estimation of the 

material's shear moduli, which are the inputs for the forward problem. Still, though, it is the 

outer part of both phantoms, i.e. outside the central region, where the theory and experiment 

fall out of agreement. It is true for both the homogenous and heterogenous phantoms.

As with the simple cylinder, in the case of the sphere embedded in a cylinder we find good 

agreement between the predicted wave field of the analytic solution and the experimentally 

obtained one, in the axially and radially central region. Again, the axial images and line 

profiles show this phenomenon (figure 4 and figure 5, respectively). Boumdary effects likely 

play a role in distorting the wave from the ideal, but in the heterogenous phantom there are 

two opportunities for miss characterizing the shear moduli inputs, namely the embedding gel 

and the spherical heterogeneity. Adjusting, for instance, , when solving the forward 
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problem to better match the experimental data will change the entire linear profile as the 

displacement of each region depends on the shear moduli of both regions [21].

Let us now consider some of the major limitations of this study. We assume the cylinder to 

be infinitely long but it is possible to model the cylinder as being finite in length using the 

methods employed by Kubenko and Savin [28]. We also assumed axial symmetry which, by 

inspection of figure 2, it's clear we didn't quite attain. Olsson [29] gives an analytic 

procedure, accounting for azimuthal dependence, that is applicable here. Finally, most of the 

discrepancy between theory and experiment is probably due to the inverse modeling 

estimates of the μ. An avenue for parameter estimation worth considering is the new method 

of O'Neill et al [30] that applies ordinary least squares regression and the Levenberg-

Marquardt algorithm to linear, stationary, partial differential equations, with which both real 

and imaginary components of the μ can be estimated from the complex displacement data.

Future work will include formulating the mathematics so that we may use this phantom for 

inverse modeling, thus allowing us to investigate the behavior of a wider range of 

viscoelastic materials. Also, given the recent interest in the fractional calculus in the context 

of bioengineering [31], we will generalize the calculus operations in Eq.(1), i.e. replacing ∇ 
with ∇α, where 0 < α < 1 is the order of differentiation [32].
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Figure 1. 
The cylindrical medium, medium 1, is referred to a cylindrical coordinate system, r and z, 

with the z axis coinciding with the axis of medium 1. The spherical coordinates, r and θ, are 

assigned to the center of the spherical inclusion, medium 2.
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Figure 2. 
Magnetic resonance magnitude images of the homogenous (top) and heterogenous (bottom) 

phantoms. The left column is the axial plane through the center while the right column is the 

coronal plane, also through the center.
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Figure 3. 
Displacement wave fields from the homogenous plantom. The top, middle, and bottom rows 

correspond to excitation frequencies of 250, 500, and 750 Hz, respectively. The left and right 

pairs of columns are the axial and coronal views, each of which comprises the theoretical 

(left) and experimental (right) results. The color bar on the right is the normalized 

displacement.
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Figure 4. 
Displacement wave fields from the heterogeneous phantom. The top, middle, and bottom 

rows correspond to excitation frequencies of 250, 500, and 750 Hz, respectively. The left and 

right pairs of columns are the axial and coronal views, each of which comprises the 

theoretical (left) and experimental (right) results. The color bar on the right is the normalized 

displacement.
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Figure 5. 
Comparison of the theoretical simulation and experimental displacements along the dotted 

white line indicated in figure ?? and figure ??.
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Figure 6. 
Elastograms calculated using LFE from the experimentally obtained wave field through the 

axial plane from the homogenous (top) and heterogeneous (bottom) phantoms. From left to 

right the excitation frequencies are 250, 500, and 750 Hz. The color bar is storage modulus, 

, and is in units of kPa.
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Table 1

Complex moduli (kPa) used in the forward modeling.

Frequency ℜ𝔢μ1 𝔍𝔪μ1 ℜ𝔢μ2 𝔍𝔪μ2
250 5.8 0.5 1.9 0.4

500 7.6 0.8 1.94 0.4

750 7.9 1.0 1.99 0.5
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Table 2

Root mean squared error calculated from the line profiles in figure 5.

Frequency Homogenous Heterogenous

250 0.1012 0.1219

500 0.1452 0.1679

750 0.1385 0.0943
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