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Abstract

Drug abuse represents a considerable burden of disease and has enormous economic impacts on 

societies. Over the years, few medications have been developed for clinical use. Their utilization is 

endowed with several limitations, including partial efficacy or significant side effects. On the other 

hand, the successful advancement of these compounds provides an important proof-of-concept for 

the feasibility of drug development programs in addiction. In recent years, a wealth of information 

has been generated on the psychological mechanisms, genetic or epigenetic predisposing factors, 

and neurobiological adaptations induced by drug consumption that interact with each other to 

contribute to disease progression. It is now clear that addiction develops through phases, from 

initial recreational use to excessive consumption and compulsive drug seeking, with a shift from 

positive to negative reinforcement driving motivated behaviors. A greater understanding of these 

mechanisms has opened new vistas in drug development programs. Researchers’ attention has 

been shifted from investigation of classical targets associated with reward to biological substrates 

responsible for negative reinforcement, impulse loss of control and maladaptive mechanisms 

resulting from protracted drug use. From this research, several new biological targets for the 

development of innovative therapies have started to emerge. The present article offers an overview 

of targets currently under scrutiny for the development of new medications for addiction. This 

work is not exhaustive but rather it provides a few examples of how this research has advanced in 

recent years by virtue of studies carried out in our laboratory.
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Introduction

Drug abuse and addiction represent a considerable burden of disease and cost for society 

(Uhl and Grow, 2004). Despite this, effective pharmacotreatments are still lacking, and the 
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few currently available medications suffer from significant limitations, including important 

side effects or restricted efficacy. For instance, drugs that are registered for the treatment of 

heroin addiction, such as methadone and buprenorphine, have reinforcing properties and 

thus can be themselves abused. Whereas the opioid antagonist naltrexone, which is used in 

the clinic for opioid and alcohol addiction appears to have limited efficacy restricted to a 

specific subpopulation of patients (Heilig et al., 2011). One of the factors that has hampered 

the development of effective medication in addiction is the extreme complexity of the 

biological mechanisms responsible for this psychiatric disease in which genetic 

vulnerability, environmental risk factors and their interaction play a determining role (also 

see the chapter of Quednow & Herdener “Human pharmacology for addiction medicine” in 

this volume).

Over the past decades, a wealth of information has been collected that has helped us unravel 

the neurobiological mechanisms responsible for maladaptive behaviors associated with the 

use of addictive drugs. The research in this field has advanced enormously, and the functions 

of several neurotransmitter systems, molecular pathways, and transcriptional and epigenetic 

mechanisms have started to be revealed (Robinson and Berridge, 1993; Shaham and Hope, 

2005; Le Moal and Koob, 2007; Thomas et al., 2008; Robison and Nestler, 2011). This new 

acquired knowledge has allowed for a more accurate dissection of the major facets of 

addiction, which includes drug reward and positive reinforcement, abstinence and negative 

reinforcement, craving, relapse to drug seeking, and impulsivity and compulsivity (Fig. 1).

With few exceptions, all addictive substances engage the mesolimbic dopamine reward 

pathway of the brain. It has been recognized that activation of this catecholaminergic circuit 

is critical for the rewarding and reinforcing properties of these drugs. The pleasurable effect 

experienced following exposure to a drug promotes the recreational use that often terminates 

into abuse and dependence (Gardner, 2000). However the role played by dopamine on 

human addiction is not fully disclosed yet. For example there are little evidences that opioids 

and cannabinoids induce reward and cause addiction through mesolimbic DA mechanisms. 

Additional or alternative processes may be involved in the acquisition of dependence for 

these substances (Nutt et al., 2015).

For a long time researchers in the drug of abuse field have mostly concentrated their 

attention on the study of positive reinforcement mechanisms (Koob et al., 2003); however, 

through the years, research has progressively highlighted other important but initially elusive 

aspects of substance abuse disorder.

For instance, it has been recognized that with protracted exposure to increasing daily doses 

of drugs, the reward or hedonic states associated with their consumption significantly 

decrease and the negative emotional states, such as anhedonia, dysphoria and anxiety, start 

to emerge. After this shift, substance use is no longer so pleasurable, and the drug is mostly 

taken to alleviate the aversive conditions (negative reinforcement) associated with its 

abstinence. At the beginning, drug use is episodic, but it rapidly progresses to a habitual 

consumption and, finally, to a compulsive, uncontrolled use characterized by chronic 

intoxication, followed by abstinence episodes that are usually accompanied by an intense 

and persistent urge for the drug and relapse (Fig. 1). Several factors may contribute to the 
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exacerbation of drug seeking and relapse; among the major ones are stress and 

environmental cues predictive of drug availability or previously associated with the 

pleasurable effect of the drug.

At the neuroanatomical level, the circuits that mediate the rewarding effects of drugs are 

partially different from those mediating drug-seeking and relapse. For instance, drug reward 

is largely controlled by the mesolimbic dopamine system that originates from the ventral 

tegmental area (VTA) and that sends afferents to the nucleus accumbens (Nac) (Koob et al., 

1998). On the contrary, drug-seeking and relapse are mediated by a complex network that 

includes the extended amygdala, hippocampus, dorsal striatum, prefrontal cortical structures 

and insula (Koob and Volkow, 2010). Moreover, several neurotransmitter systems and 

cellular mechanisms have been suggested to modulate the function of these circuitries; 

therefore, their potential involvement in shaping addictive responses has been proposed (Fig. 

2).

As a consequence of these advancements, new or previously unexplored drug targets have 

been proposed and are now under scrutiny for the development of innovative 

pharmacotherapeutic approaches beyond agents acting as drug reward modulators. In the 

present article, we reviewed some of the recent and most promising advancements in the 

identification and validation of these new targets. This work is not intended to be exhaustive 

but will focus on a few specific areas of development over the past decade that have shown 

major promise.

Peroxisome Proliferating Activator Receptors (PPARs)

PPARs are intracellular receptors that function as transcription factors (Issemann and Green, 

1990). Once activated by their ligand, PPARs translocate to the nucleus where they attach 

the retinoid receptor (RXR). The PPAR–RXR complex binds to PPAR response elements in 

DNA to modulate the transcription of different genes.

Three isotypes of PPARs have been identified (PPARα, PPARγ and PPARβ/δ). They are 

differentially distributed in body tissues but all are present in the brain (Woods et al., 2003; 

Moreno et al., 2004; Gofflot et al., 2007; Sarruf et al., 2009). PPARs are involved in insulin 

sensitization (Moller and Berger, 2003), fatty acid homeostasis (Aoyama et al., 1998), 

apoptosis (Roberts et al., 1998), inflammatory response and neuroprotection (Landreth and 

Heneka, 2001; Berger and Moller, 2002; Kapadia et al., 2008).

Endogenous ligands of PPARs are unsaturated fatty acids, such as palmitic, oleic, linoleic 

and arachidonic acid and leukotrienes. Unsaturated fatty acids are also ligands of PPARγ, 

and they also bind to prostaglandins and low density lipoprotein components (Varga et al., 

2011). Over the years, a number of synthetic ligands for PPARs have been developed, and 

some are marketed as drugs for the treatment of metabolic disorders (Schupp and Lazar, 

2010). PPARα ligands, such as gemfibrozil, bezafibrate, clofibrate and fenofibrate, are used 

for the treatments of dyslipidemia, whereas PPARγ agonists, such as pioglitazone and 

rosiglitazone, are used for the therapy of type 2 diabetes.
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Recent evidence supports the role of PPARα and PPARγ in addiction. For instance, PPARα 
and PPARγ are expressed in addiction-related brain areas, such as the lateral hypothalamus 

and the ventral tegmental area (VTA), from which dopamine (DA) release into the NAc can 

be modulated (Moreno et al., 2004; Sarruf et al., 2009; Melis et al., 2010; de Guglielmo et 

al., 2015b). In fact, electrophysiological experiments have shown that the activation of 

PPARα by fibrates decreased the ability of nicotine to enhance the firing rate of VTA DA 

neurons. This effect was accompanied with decreased levels of extracellular DA in the Nac 

(Melis et al., 2010; Panlilio et al., 2012). At the behavioral level, preclinical findings have 

shown that the PPARα agonist clofibrate blocked the acquisition of nicotine intake in rats 

and monkeys. Moreover, this drug reduced nicotine self-administration and prevented 

relapse to nicotine seeking precipitated by cues predictive of its availability or by nicotine 

priming (Panlilio et al., 2012). Similar results were observed with two other PPARα 
agonists, WY14643 and methyl oleoylethanolamide (Mascia et al., 2011). The behavioral 

and neurochemical effects of PPARα agonists were reversed following pretreatment with 

MK886, a selective PPARα antagonist. More recently, the efficacy of PPARα agonists in 

attenuating alcohol consumption and relapse to drug seeking in rodents have also been 

documented (Bilbao et al., 2015; Blednov et al., 2015).

Moreover, gene expression experiments have provided initial evidence of a link between 

PPARγ function and nicotine dependence (Amoruso et al., 2007); however, the most 

convincing data linking PPARγ to addiction came from pharmacological studies on alcohol 

and heroin. In these studies, it has been shown that the activation of PPARγ by chronic 

pioglitazone and rosiglitazone selectively decreased voluntary alcohol consumption in 

rodents (Stopponi et al., 2011). Moreover, pioglitazone markedly attenuated operant ethanol 

self-administration and reinstatement to alcohol seeking elicited by exposure to stress. 

Conversely, pioglitazone was not effective in controlling cue-induced relapse. Of note, when 

pioglitazone was administered in combination with naltrexone, a drug approved for the 

treatment of alcohol addiction in humans, a more robust inhibition of alcohol intake and a 

broader effect on relapse for alcohol resulted than when the two agents were given 

separately (Stopponi et al., 2013). These effects were selective for alcohol because it was 

shown in similar experiments that pioglitazone did not modify operant responding for 

saccharin. Interestingly, pioglitazone was also able to decrease the aversive symptoms 

associated with ethanol withdrawal that have an important clinical significance in alcohol 

relapse prevention (Stopponi et al., 2011).

Studies were also carried out to evaluate the effect of PPARγ agonists on opioid abuse. The 

results revealed that pioglitazone reduced heroin self-administration under both a fixed-ratio 

and progressive-ratio schedule of reinforcement. This effect was accompanied by a 

significant decrease of Nac extracellular DA levels following acute heroin infusion and a 

reduced VTA DA firing rate (de Guglielmo et al., 2015b). The activation of PPARγ was also 

shown to prevent the development of tolerance to the analgesic effects of morphine. 

Together, these findings suggest the possibility of combining PPARγ agonists with opioid 

agents to enhance the anti-addictive efficacy of antagonists (i.e., naltrexone) or to attenuate 

the abuse potential of agonists (i.e., buprenorphine or methadone). The possibility of 

combining PPARγ activators and opioid agonists for the development of analgesic therapies 
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endowed with low abuse liability is also envisioned. In this regard, it is worth mentioning 

that both pioglitazone and rosiglitazone have anti-inflammatory properties and appear to be 

effective in treating neuropathic pain in rodent models (Morgenweck et al., 2013).

CREB and the inhibition of phosphodiesterase (PDE) enzymes

Chronic drug use causes long-term structural and functional modifications in the brain. 

Underlying this process are alterations in the transcription of specific target genes. The 

modified expression will reshape the function of neuronal cells causing the remodeling of 

neurocircuitries formed by those neurons. The cAMP response element binding protein 

(CREB) is an important transcription factor that mediates the action of cAMP. A large body 

of evidence links CREB to the acquisition and the maintenance of dependence to drugs of 

abuse. Few excellent exhaustive reviews have been published that discuss the role of CREB 

in addiction (Carlezon et al., 2005; Robison and Nestler, 2011; Nestler, 2014). Hence, we 

will summarize only a few major findings generated over the past two decades.

One of the first findings was that mice with reduced CREB gene function showed decreased 

symptoms of morphine withdrawal (Maldonado et al., 1996). Consistently, the infusion of 

CREB antisense oligonucleotides in the locus coeruleus attenuated the appearance of 

morphine withdrawal symptoms (Lane-Ladd et al., 1997).

CREB is activated following chronic amphetamine administration in the rat striatum (Cole et 

al., 1995) and cocaine administration in the rat Nac (Carlezon et al., 1998), and it has been 

demonstrated that the rewarding effects of drugs of abuse are related to CREB activity 

within the Nac (Koob et al., 1998). The expression of a dominant-negative mutant CREB in 

this brain region enhanced the rewarding effects of cocaine and morphine, whereas CREB 

overexpression decreased the rewarding properties of both drugs (Carlezon et al., 1998; 

Barrot et al., 2002). Based on this latter evidence, the finding that overexpressing CREB in 

the Nac leads to a higher rate of cocaine self-administration should be interpreted as an 

attempt of the animal to load more drug to achieve reward (Larson et al., 2011). On the other 

hand, both exposure to chronic alcohol or nicotine decreased CREB activity within the Nac, 

which may reflect the classical hypohedonic state associated with protracted exposure to 

drugs of abuse (Misra et al., 2001; Pluzarev and Pandey, 2004).

To a large extent, evidence linking CREB function to drug abuse has been generated using 

mice with genetic modifications causing reduction in its expression or by manipulating the 

levels of this transcription factor in selected brain areas via viral mediated technologies 

(Carlezon et al., 1998; Barrot et al., 2002). These molecular approaches have provided 

advanced knowledge of the role of CREB in drug abuse; however, it is much harder to 

develop compounds that directly target this transcription factor as a clinical remedy for 

addiction.

An alternative possibility to modulate CREB is via protein kinase A (PKA)-mediated 

mechanisms. PKA is an enzyme located upstream of CREB that is responsible for its 

activation in dopamine receptor-containing neurons in mesolimbic circuitries (Greengard, 
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2001). A fine-tuning of PKA activity in these areas can be achieved by the regulation of 

phosphodiesterase (PDE) enzymes.

PDEs are enzymes that hydrolyze adenosine and guanosine cyclic nucleotides (cAMP and 

cGMP), the second messengers involved in a variety of physiological processes, which are 

responsible for PKA phosphorylation and whose activity has also been linked to addiction. 

For example, adaptive changes of the cAMP signaling within the mesocorticolimbic system 

occur following cocaine exposure and appear to play a role in the progression to dependence 

(Self et al., 1998; Lu et al., 2003).

Eleven members of the PDE family have been identified, and they differ in their specificity 

toward cAMP and cGMP, their kinetics, their intracellular localization, their expression in 

different brain nuclei, and their distinct roles in the regulation of CNS functions (Bender and 

Beavo, 2006).

Experience has demonstrated that PDEs represent suitable targets for pharmacological 

manipulation, and there are successful stories of PDE inhibitors being developed in the 

clinic. For instance, PDE5 selective blockers, such as sildenafil, vardenafil, and tadalafil, are 

used for erectile dysfunction and pulmonary hypertension (Montani et al., 2009; Chen et al., 

2015), whereas compounds that preferentially target PDE4, such as rolipram, have been 

developed for the treatment of asthma and chronic obstructive pulmonary disease (Spina, 

2004). In the CNS, the eleven PDE isoforms are all expressed (Bender and Beavo, 2006), but 

with respect to drugs of abuse, particularly attractive are PDE4, PDE7 and PDE10 because 

they are widely expressed in brain areas that are responsible for the regulation of motivated 

behavior, reward, learning and memory. Evidence linking the activity of these isoforms to 

drug abuse has started to emerge (Fujishige et al., 1999; Loughney et al., 1999; Soderling et 

al., 1999) (Miro et al., 2001; Reyes-Irisarri et al., 2005).

PDE4

PDE4 consists of four variants, PDE4 A, B, C, D, that are characterized by a “low Km” and 

cAMP-specific activity (Bender and Beavo, 2006). All four members are widely expressed 

in the brain with the highest levels in the basal ganglia, where the most expressed is PDE4B, 

the anterior cortex, the hippocampus and the hypothalamus, where all four variants have 

been found (Johansson et al., 2012).

Converging evidence reveals that the manipulation of PDE4 could result in a future of 

promising approaches for the treatment of opioid, alcohol and psychostimulant abuse. Initial 

findings showed that the inhibition of this PDE attenuated morphine tolerance and prevented 

the physical symptoms of morphine withdrawal in mice and rats (Itoh et al., 1998; Nunez et 

al., 2009). The PDE4 inhibitor, rolipram, has also been shown to be able to block relapse to 

heroin seeking induced by cues predictive of drug availability and by heroin priming in the 

rat (Lai et al., 2014). Rolipram also prevented the acquisition of morphine-induced 

Conditioned Place Preference (CPP) in mice (Thompson et al., 2004). This CPP result was 

later replicated in another study in which it was demonstrated that the VTA is an important 

brain site of action for the effect of rolipram on opioid reward.
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Substantial evidence also links PDE4 activity to cocaine. For instance, it was shown that 

rolipram was able to prevent the acquisition of cocaine-induced locomotor sensitization 

(Janes et al., 2009), whereas the activation of the cAMP cascade by both rolipram and Ro 

20-1724, another PDE4 inhibitor, was capable to block the acquistion of cocaine self-

administration (Knapp et al., 1999).

Finally, rolipram showed efficacy in reducing alcohol self-administration and intake in the 

rat (Wen et al., 2012). One potential limitation in the development of PDE4 inhibitors are 

side effects associated with their use in particular, vomiting and nausea, which are caused by 

inhibition of this enzyme in the nucleus of the solitary tract. These side effects appear to be 

predominantly associated with the inhibition of PDE4D (Lipworth, 2005). Hence, space for 

the development of selective PDE4 A, B, C inhibitors exists. New generations of brain 

penetrating PDE4 are under development, and their potential use for CNS disorders, 

including drug dependence, is envisioned.

PDE10A

In in vitro studies, PDE10A is responsible for the hydrolysis of both cAMP and cGMP; less 

is known in vivo. In the CNS, PDE10A shows the highest signal in the striatum, but 

substantial levels have also been identified in the hippocampus, thalamus and cerebellum 

(Fujishige et al., 1999; Loughney et al., 1999; Soderling et al., 1999). Due its large 

expression in striatal medium spiny neurons, a role for PDE10A in the modulation of basal 

ganglia function has been proposed (Wilson and Brandon, 2015). Several studies have 

demonstrated the preclinical efficacy of PDE10A inhibitors in models of Parkinson’s and 

psychosis (Chappie et al., 2009; Garcia et al., 2014). These findings have promoted 

aggressive drug development programs on this target, and few compounds are now under 

clinical development for the treatment of these disorders (Chappie et al., 2009; Garcia et al., 

2014). However, an alternative medical indication is addiction because their efficacy in 

animal models of drug abuse have recently been demonstrated.

For instance, it has been found that MP-10, a highly selective PDE10Ai blocked the 

acquisition of morphine CPP and facilitated extinction. Conversely, PDE10Ai did not 

prevent the expression of morphine CPP (Mu et al., 2014). A similar effect was observed 

with cocaine. Papaverine, which acts as a PDE10Ai, had no significant effect on the 

expression of cocaine-induced CPP (Liddie et al., 2012). Recently, it was also shown that 

MP-10 was able to reduce alcohol self-administration in rats with or without a history of 

exposure to stress. Moreover, MP-10 reduced alcohol operant responding in rats genetically 

selected for high alcohol preference and in alcohol-dependent rats. Brain microinjection 

experiments with MP-10 revealed that this effect was mediated by the dorsolateral striatum. 

Of note, the inhibition of PDE10A also decreased saccharin self-administration, suggesting a 

rather general involvement of this enzyme in the modulation of reward-related behaviors 

(Logrip et al., 2014). Consistent with this view, it was also shown that MP-10 impaired 

mouse performance when trained to achieve highly appetitive stimuli probably by affecting 

incentive salience attribution as suggested by authors (Piccart et al., 2013).
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PDE7

Another PDE member of potential interest in addiction is PDE7. Like PDE4, PDE7 is highly 

selective for cAMP, especially at low levels of substrate. PDE7 consists of two variants, 

PDE7A and PDE7B, which are differentially distributed in the brain. PDE7A is highly 

represented in the substantia nigra, VTA, habenula and hippocampus, whereas the highest 

expression of PDE7B has been identified in the striatum, Nac and olfactory tubercles (Miro 

et al., 2001; Reyes-Irisarri et al., 2005). Importantly, approximately 70% of PDE7B-positive 

neurons in the dorsal striatum, Nac and olfactory tubercles are DA receptor-containing 

GABAergic neurons, which suggests an important role of this enzyme in the regulation of 

basal ganglion DA function (Reyes-Irisarri et al., 2005). Recently, the first evidence linking 

PDE7 to addiction was reported (Ciccocioppo et al., 2014b). In this work, it has been 

documented that the inhibition of PDE7 reduced nicotine self-administration under fixed- 

and progressive-ratio contingencies, whereas no effects on FR-1 food self-administration 

were observed. Enzyme inhibition also attenuated the cue- and stress-induced reinstatement 

of nicotine seeking. Based on the results of brain microinjection experiments, it was 

suggested that the effect of PDE7 inhibitors may be linked to their ability to modulate the 

mesolimbic DA system; thus, it is tempting to speculate that in addition to PDE4 and 

PDE10, PDE7 may also represent an interesting novel target for drug development in 

addiction.

Stress-related Neuropeptides

The modulation of appetitive behavior via direct or indirect manipulation of the mesolimbic 

DA system is the largest explored approach for the development of drug abuse treatments. 

The drug targets described above offer new possibilities to modulate positive reinforcement 

via the regulation of mesolimbic activity, which may be responsible, at least in part, for their 

promising efficacy in drug abuse. An alternative way to reduce the detrimental effects of 

drugs and to facilitate recovery from addiction is by acting on stress mechanisms and 

negative reinforcement.

In fact, protracted exposure to drugs leads to maladaptive alterations in physiological stress 

mechanisms and triggers negative reinforcement. These events represent two main 

landmarks of the transition from recreational drug use to abuse and dependence (Koob et al., 

1998; Schank et al., 2012). Once dependence is established, addicts tend to perseverate in 

the use of drugs to attenuate negative emotional states (i.e., anxiety, depression, anhedonia) 

and distress caused by drug abstinence (Koob, 2008). A large, and rather heterogeneous, 

family of neuropeptides has been shown to play a primary role as stress modulators, and a 

strong link with addiction has been documented for a few of them (Schank et al., 2012).

Corticotropin-Releasing Factor

A prototypical example of one of the neuropeptides involved in the modulation of the stress 

mechanism, negative reinforcement and addiction is the corticotropin-releasing factor 

(CRF), also known as corticotropin-releasing hormone. This stress-related neuropeptide 

drives both the peripheral and the central stress-response by binding to its cognate G-
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coupled receptors CRF1 and CRF2 (Bale and Vale, 2004). CRF initiates the neuroendocrine 

stress response by activating the hypothalamic-pituitary-adrenal (HPA) axis. In addition to 

this neuroendocrine role, CRF modulates the emotional aspects of the stress response by 

acting on receptors distributed in extrahypothalamic regions and that are responsible for 

mediating negative mood and distress (Primus et al., 1997; Sanchez et al., 1999; Van Pett et 

al., 2000).

As briefly mentioned above, addiction is characterized by three major domains, also 

conceptualized as a three-stage cycle in which the initial recreational use of drugs is 

followed by dependence and a withdrawal/negative effect, which is then followed by 

preoccupation/urge and, therefore, relapse to uncontrolled drug use (Koob and Volkow, 

2010). CRF is known to play a role in all three stages, but it is the primary actor in the 

regulation of the withdrawal/negative effect stage (Zorrilla et al., 2014), which is largely 

mediated by CRF1 receptors located in the extended amygdala, as has been demonstrated for 

alcohol (Hansson et al., 2007; Merlo Pich et al., 1995; Zorrilla et al., 2001; Olive et al., 

2002; Funk et al., 2006; Roberto et al., 2010), nicotine (George et al., 2007), cocaine 

(Richter and Weiss, 1999), opioids (Weiss et al., 2001) and cannabinoids (Rodriguez de 

Fonseca et al., 1997).

Preclinical studies have provided strong evidence supporting the potential usefulness of 

CRF1 receptor antagonists in treating addiction. CRF antagonists reduced elevated alcohol 

withdrawal-induced anxiety in dependent rats (Knapp et al., 2004; Breese et al., 2005; 

Gehlert et al., 2007; Sommer et al., 2008) and the anxiogenic-like response induced by 

cocaine, nicotine, cannabinoids, opiates, and benzodiazepines (Rodriguez de Fonseca et al., 

1997; Basso et al., 1999; Tucci et al., 2003; George et al., 2007; Skelton et al., 2007; Park et 

al., 2013). CRF1 antagonists were also able to decrease the self-administration of alcohol 

(Sabino et al., 2006; Chu et al., 2007; Funk et al., 2007; Gehlert et al., 2007; Gilpin et al., 

2008; Richardson et al., 2008), cocaine (Specio et al., 2008), nicotine (George et al., 2007), 

and heroin (Greenwell et al., 2009) in rats and mice. Most importantly, CRF1 antagonists 

have been shown to possess a marked ability to prevent relapse to drug seeking elicited by 

stress and to prolong drug abstinence in laboratory animals. Moreover, human genetic 

studies have suggested that CRF1R gene polymorphisms are associated with binge drinking 

and excessive drinking in humans (Treutlein et al., 2006). Together, these findings support 

the hypothesis that genetic variation at the CRF1R locus may represent an important element 

for the evolution of alcohol dependence, and according to the promising perspective 

highlighted by preclinical studies, there is hope that CRF1R antagonists may be efficacious 

in treating drug addiction. To date, none of the clinically tested CRF1R antagonists have 

passed to phase III for lack of efficacy, adverse side effects or because Phase II clinical trials 

are stil ongoing (Zorrilla et al., 2013; Kwako et al., 2015); however, a CRF1 antagonist, 

GSK561679, is now being tested in phase II (ClinicalTrials.gov Identifier: NCT01187511). 

It will be exciting to know the results of this ongoing investigation.

N/OFQ-NOP

A large body of evidence supports the possibility that Nociceptin/orphanin FQ receptor 
(NOP) agonists represent a promising approach to treat addiction, especially alcoholism.
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Nociceptin/orphanin FQ (N/OFQ), the endogenous ligand of NOP receptors, is a 17-amino 

acid neuropeptide that is structurally related to the opioid peptide dynorphin A (Meunier et 

al., 1995; Reinscheid et al., 1995; Nothacker et al., 1996). Despite its structural homology 

with opioid peptides, N/OFQ does not bind to mu, delta and kappa opioid receptors (MOP, 

DOP, KOP respectively), nor do opioid peptides activate the NOP receptor (Reinscheid et 

al., 1996). Functional studies have demonstrated that N/OFQ possesses anti-opioid and anti-

CRF properties because the activation of NOP attenuates the rewarding effects of morphine 

and prevents the anorectic, anxiogenic and stress-like effects of CRF (Ciccocioppo et al., 

2000; Ciccocioppo et al., 2001). Consistent with the anti-opioid nature of N/OFQ, it has 

been shown that the activation of NOP receptors blunts the reinforcing and motivational 

effects of alcohol across a range of behavioral measures, including alcohol intake 

(Ciccocioppo et al., 1999), CPP (Kuzmin et al., 2003) and relapse to alcohol seeking 

triggered by alcohol-associated cues (Ciccocioppo et al., 2004). In agreement with its anti-

CRF properties it has also been shown that N/OFQ administration prevents the foot-shock 

stress-induced reinstatement of alcohol seeking in the rat (Martin-Fardon et al., 2000). This 

property of N/OFQ to attenuate both forms of relapse is particularly noteworthy because it 

has been previously shown that blockade of the MOP opioid receptor by naltrexone blocks 

alcohol self-administration and cues but not stress-induced relapse (Le et al., 1999; Le et al., 

2000; Liu and Weiss, 2002), whereas CRF1 antagonism prevents relapse associated with 

stress but is unable to attenuate alcohol seeking elicited by conditioning factors (Le et al., 

1999; Le et al., 2000; Liu and Weiss, 2002).

Recent data have shown that the inhibition of drinking by a newly developed NOP agonist, 

namely MT1677, is highly pronounced following chronic administration, whereas drug 

effects appeared to be absent or very low following an acute injection. These data have been 

obtained in genetically selected alcohol-preferring Marchigian Sardiniam (msP) rats, an 

animal model of pathological drinking in which most of the published studies supporting a 

role of the NOP system in alcohol abuse have been carried out (Ciccocioppo et al., 1999; 

Ciccocioppo et al., 2004; Economidou et al., 2006; Economidou et al., 2011; Ciccocioppo et 

al., 2014a). In contrast with these findings, it was shown that NOP agonists did not attenuate 

drinking in heterogeneous Wistar rats, from which msP rats originate (Ciccocioppo et al., 

2006; Economidou et al., 2008). On the other hand, if heterogeneous Wistar rats are 

subjected to a history of alcohol intoxication, NOP agonists appear to gain efficacy (de 

Guglielmo et al., 2015a). Studies using in situ hybridization showed that compared to Wistar 

rats, msP have an upregulation of the N/OFQ system, with major differences occurring in the 

CeA, BNST, VTA and some cortical structures (Economidou et al., 2008).

Noteworthy, enhanced NOP and N/OFQ levels have been documented also in the CeA and 

BNST of heterogeneous Wistar rats following a history of alcohol intoxication (Aujla et al., 

2013). These findings prompt an intriguing hypothesis that in apparent contrast with the 

current view of a role of NOP agonists in addiction, suggests that enhanced NOP function 

may represent a vulnerable factor for the development of alcohol abuse and that the 

documented efficacy of NOP agonists may be related to their ability to desensitize the 

system. This hypothesis is supported by the following evidence: 1) NOP receptors are 

subjected to a very rapid desensitization following exposure to agonists (Spampinato et al., 

2007) and 2) NOP agonists are efficacious after protracted administration and under 
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circumstances in which the receptor system is hyperfunctioning (Ciccocioppo et al., 2014a). 

If this hypothesis is proven to be true, we should expect that not only NOP agonists but also 

NOP antagonists to reduce alcohol drinking. In addition, different from what is observed 

with agonists, the antagonists should also be efficacious following acute administration.

Recently, 11C-NOP-1A, a new radioligand for the nociceptin/orphanin FQ peptide (NOP) 

receptor with high affinity (Ki, 0.15 nM) and adequate lipophilicity (measured logD, 3.4) for 

PET brain imaging, has been developed (Pike et al., 2011). Using this ligand, it will be 

possible to obtain some information on whether genetic predisposition to alcoholism or 

protracted exposure to alcohol is associated with the upregulation of NOP receptor levels in 

rodents and humans. This study will help further clarify the potential of NOP as a treatment 

target for alcoholism and possibly other forms of addiction, opening new vistas for drug 

development programs on this peptidergic system.

Non-peptide, orally available and brain penetrant NOP receptor agonists and antagonists 

have been developed, and seem to have acceptable safety and tolerability. Some of these 

compounds are in relatively advanced stages of development, and a hypothesis concerning 

their efficacy in alcohol addiction can be tested in clinical trials (Witkin et al., 2014).

Compared to alcohol, less is known about the role of the N/OFQ system in the abuse of 

other drugs. A few studies have shown that N/OFQ blocked CCP elicited by morphine 

(Murphy et al., 1999; Ciccocioppo et al., 2000), whereas microdialysis data demonstrated 

that N/OFQ reduced morphine-induced dopamine release in the Nac (Di Giannuario and 

Pieretti, 2000). On the other hand, when N/OFQ was tested on operant heroin self-

administration, no effects of the peptide were reported (Walker et al., 1998). Of note, CPP is 

highly influenced by mesolimbic DA transmission DA whereas heroin-self-administration is 

largely independent from DA. This could explain why NOP agonists, even though able to 

blunt Nac DA levels and morphine CPP does not affect operant responsing for heroin 

(Gerrits and Van Ree, 1996; Sanchis-Segura and Spanagel, 2006; Tzschentke, 2007) NOP 

activation was shown to be effective also in preventing cocaine- and amphetamine-induced 

CPP (Kotlinska et al., 2002; Zhao et al., 2003); moreover, mice with constitutive deletion of 

NOP receptors were more sensitive to the effects of cocaine in a CPP paradigm (Marquez et 

al., 2008; Sakoori and Murphy, 2008).

Hypocretins/Orexins

Hypocretin-1/Orexin A and Hypocretin-2/Orexin B (Hcrt-1/OxA; Hcrt-2/OxB) are 

neuropeptides produced in the lateral, dorsomedial and perifornical hypothalamus (de Lecea 

et al., 1998; Sakurai et al., 1998) by neurons projecting throughout the brain (Peyron et al., 

1998). Both Hcrt-1/OxA and Hcrt-2/OxB bind to their cognate receptors orexin-1 (OX1) and 

orexin-2 (OX2), which are extensively expressed in the central nervous system due to the 

wide projections of Hcrt/Ox neurons (Trivedi et al., 1998). OX1 and OX2 seem to have 

differential roles with respect to drug addiction. OX1 has been implicated in the modulation 

of morphine, cocaine, nicotine, and alcohol seeking (Boutrel et al., 2005; Harris et al., 2005; 

Borgland et al., 2006; Lawrence et al., 2006; Pasumarthi et al., 2006; Harris et al., 2007; 

Dayas et al., 2008; Hollander et al., 2008; Richards et al., 2008; Cannella et al., 2009a; 
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Moorman and Aston-Jones, 2009; Kallupi et al., 2010; Plaza-Zabala et al., 2010; Jupp et al., 

2011; Plaza-Zabala et al., 2012; Ubaldi et al., 2015), whereas OX2 seems to have a less 

important role. Yet, it was recently documented that OX2 antagonism selectively reduced 

alcohol self-administration in respect to sucrose while showing no effect on cue-induced 

reinstatement (Brown et al., 2013).

The modulation of the drug-seeking response mediated by OX1 appeared to be mainly 

linked to the modulation of VTA-mediated mechanisms (Mahler et al., 2013). However, 

besides the VTA, other areas reach of Hcrt-1/OxA terminals, such as the prelimbic and 

orbitofrontal cortices, have been implicated in cue-induced alcohol seeking (Jupp et al., 

2011). An OX1 antagonist also blocked stress-induced reinstatement (Winsky-Sommerer et 

al., 2004; Boutrel et al., 2005; Richards et al., 2008), but this effect was independent of the 

VTA (Wang et al., 2009). A possible target for Hcrt-1/OxA in stress-induced reinstatement 

may be the extended amygdala, which is composed of the central amygdala (CeA) and the 

bed nucleus of the stria terminalis (BNST), where Hcrt-1/OxA neurons send afferent 

projections (Peyron et al., 1998; Schmitt et al., 2012). In addition, Hcrt-1/Ox-A may also 

modulate stress-induced reinstatement via the paraventricular hypothalamic nucleus (PVN) 

as it is highly innervated by orexin fibers. Indeed, the Hcrt-1/Ox-A-induced activation of 

approximately 96% and 45% of CRF-containing neurons in the PVN and the CeA, 

respectively (Sakamoto et al., 2004), which increases CRF and vasopressin expression in the 

PVN and activates the HPA axis (Al-Barazanji et al., 2001).

Several orexin receptor antagonists are under development; they can be divided into three 

classes: 1) dual orexin receptor antagonist (DORA); 2) OX1 selective receptor antagonist (1-

SORA) and 3) OX2 selective receptor antagonist (2-SORA). The most promising approach 

for addiction treatment is with 1-SORA because a wealth of preclinical data has shown that 

the inhibition of Ox1 attenuates the motivation for most drugs of abuse while being devoid 

of side effects, such as sleepiness and alteration of vigilance, two effects typically mediated 

by Ox2; however, nonselective antagonists may also have some space in addiction medicine. 

For example, they could have potential in cocaine abuse because the antagonism of Ox1 

appears to play a primary role in attenuating the motivation for this addictive agent, whereas 

blockade of Ox2 may lead to some sedative effects that in the case of psychostimulants 

abuse, are tolerable if not advantageous. Instead, it is less likely that DORA could be used 

for the treatment of addictive drugs, such as alcohol or opioids. In fact, in this case, blockade 

of Ox2 may enhance the risk of excessive inhibition of CNS function by potentiating the 

depressant properties of the addictive agents. Few orexin antagonists have been tested in the 

clinic, and recently, the US FDA approved suvorexant, the first dual antagonist registered for 

the treatment of primary insomnia (Boss and Roch, 2015). Another DORA, almorexant, was 

also tested in the clinic, but its use was stopped due to tolerability issues (Boss and Roch, 

2015). Selective Ox2 antagonists are also entering into clinical investigation for sleep 

disorders, and for some of them, phase I studies have already been successfully completed 

(Boss and Roch, 2015). On the other hand, less advanced is the development of selective 

Ox1 blockers; However, a number of molecules are rapidly making their way through 

preclinical stages, and soon, some of them could be available for their first clinical trials. 

Based on preclinical evidence, addiction is one of the major disease areas toward which 

these compounds could be oriented.
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Neuropeptide S

The Neuropeptide S (NPS) is a 20 amino-acid peptide identified as the endogenous ligand 

for the deorphanized G-protein-coupled receptor 154 (GPCR 154), which is currently named 

the NPS receptor (NPSR). NPS is produced exclusively in three brainstem regions, the peri-

locus coeruleus (LC) area, the principal sensory trigeminal nucleus, and the lateral 

parabrachial nucleus. Conversely, the NPSR is widely distributed throughout the brain. The 

most peculiar feature of NPS is its paradoxical physio-pharmacological profile as it is a pro-

stress neuropeptide endowed with anxiolytic-like properties (Xu et al., 2004; Xu et al., 2007; 

Cannella et al., 2013).

The central administration of NPS reduced alcohol drinking and self-administration 

selectively in alcohol-preferring P rats with respect to non-preferring NP controls (Badia-

Elder et al., 2008; Cannella et al., 2009a; Cannella et al., 2009b). Additionally, an effect that 

was associated with the anxiolytic effects of NPS in excessive alcohol drinking in P rats is 

associated to alcohol's ability to relieve them from anxiety (Ciccocioppo et al., 2006; Badia-

Elder et al., 2008). Recently, it has been shown that the NPSR antagonist can decrease 

alcohol self-administration in non-preferring rats (Thorsell et al., 2013), which suggest that 

this system may have differential effects in alcohol-preferring subjects with respect to non-

preferring ones. NPSR antagonists have also been shown to blunt cocaine self-

administration (Schmoutz et al., 2012) and some consequences of alcohol and morphine 

intoxication and withdrawal (Ruggeri et al., 2010; Ghazal et al., 2013). For instance, NPSR 

mRNA was increased in post-dependent rats, in which the anxiolytic-like effects of NPS 

were more pronounced (Ruggeri et al., 2010; Ghazal et al., 2013). This finding may suggest 

that increased NPSR expression may be a neuroadaptation aimed to cope with withdrawal 

syndrome. Several studies have linked the pro-arousal and pro-stress effects of NPS with the 

reinstatement of drug seeking. It has been demonstrated that NPS, given ICV or into the 

lateral hypothalamus (LH), potentiated the reinstatement of ethanol seeking induced by 

environmental stimuli previously paired with ethanol and cocaine availability. The effect of 

NPS was specific and was not observed following re-exposure to cues predictive of non-

rewarding solutions (Cannella et al., 2009a; Kallupi et al., 2010). The permissive role of 

NPS on ethanol and cocaine seeking was mediated by the Hcrt-1/Ox-A system because 

peripheral administration of the OX1 receptor antagonist SB334867 completely blocked it 

(Cannella et al., 2009a; Kallupi et al., 2010). Further investigation demonstrated that NPS 

activates Hcrt-1/Ox-A neurons that project from the LH to the BNST and PVN, two areas 

classically involved in the modulation of the stress response; selective inhibition of Ox1 

receptors in these two areas completely abolished drug-seeking elicited by NPS (Ubaldi et 

al., 2015). Together, these findings suggest that the enhancement of the seeking response by 

NPS is mediated by pro-stress and pro-arousal mechanisms linked to the activation of the 

Ox1 system (Smith et al., 2006). NPSR antagonists represent a possible new way to develop 

relapse prevention treatment that may represent an alternative to Hcrt-1/Ox-A antagonists. 

Research linking the NPS system to addiction in humans is still at its infancy; however, 

interesting findings are starting to emerge. For instance, it is now known that in humans, 

NPSR is present in two isoforms deriving from a A>T single nucleotide polymorphism, 

resulting in an Asn107Ile exchange, which confers ten-fold higher potency to the 
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NPSR107Ile isoform (Reinscheid et al., 2005). This isoform of NPSR is associated with 

impulsivity, stress-sensitivity and alcohol use disorder (Laas et al., 2014; Laas et al., 2015), 

which is in line with preclinical data indicating that overfunction of the system may be 

linked to enhanced relapse propensity (Cannella et al., 2009a; Paneda et al., 2009; Kallupi et 

al., 2010).

NK1 Receptor

The neurokinin1 receptor (NK1R) is a member of the tachykinin receptor family that 

preferentially binds the tachykinin Substance P (Pennefather et al., 2004). It is well known 

that the activation of NK1 by Substance P (SP) regulates the stress response and induces 

anxiety-like behavior and that NK1R antagonists have anxiolytic-like properties (Santarelli 

et al., 2001; Ebner and Singewald, 2006; Ebner et al., 2008). The PVN receives substance P 

innervation, and NK1R stimulation activates the HPA axis, enhancing corticosterone release 

and the expression of CRF1R (Kawano and Masuko, 1992; Hamke et al., 2006; Mello et al., 

2007; Womack and Barrett-Jolley, 2007; Womack et al., 2007; Ebner et al., 2008). On the 

other hand, it was also reported that NK antagonist administration can increase 

adrenocorticotropic hormone (ACTH) release and CRF expression (Jessop et al., 2000) and 

that SP can suppress ACTH release (Jones et al., 1978)r. These effects of NK1R antagonists, 

however, occur in unstressed animals, and therefore, they suggest a tonic suppression of 

HPA axis activity by SP/NK1R. Thus, it is envisioned that under resting conditions, SP 

tonically inhibits HPA axis activity, but in stressful conditions, SP activates HPA. In humans, 

it seems more likely that the inhibitory effect of an NK1R antagonist on the HPA axis 

predominates as basal cortisol levels are not influenced but the stress-induced release of both 

ACTH and cortisol is blocked (George et al., 2008). Other than the stress response, NK1R 

also mediates catecholamine signaling in the mesolimbic, mesocortical, and nigrostriatal 

pathways. NK1R is expressed throughout the striatum, in dendrites of cholinergic 

interneurons (Pickel et al., 2000; Commons and Serock, 2009), whereas D1 medium spiny 

neurons in the Nac express SP and feed back to the substantia nigra (Le Moine and Bloch, 

1995; Whitty et al., 1995; Futami et al., 1998). The stimulation of NK1R in the substantia 

nigra or VTA induces dopaminergic firing (Barnes et al., 1990; West and Michael, 1991) and 

conditioned place preference (Boix et al., 1995; Nikolaus et al., 1999). The role of SP/NK1R 

in addiction has been tested on opioid, cocaine and alcohol. NK1R knockout mice did not 

develop CPP for morphine and displayed reduced psychomotor sensitization and morphine 

self-administration (Murtra et al., 2000; Ripley et al., 2002), Moreover, the selective 

inactivation of NK1R in the amygdala attenuated morphine consumption (Gadd et al., 2003). 

These findings suggest the potential of NK1R antagonism on opioid addiction, but initial 

human studies point to the opposite direction as the NK1R antagonist aprepitant potentiated 

the subjective and physiologic responses in opioid abusers (Walsh et al., 2013). NK1R have 

also been tested against psychostimulants, but the results are rather inconclusive. In fact, 

although they suppress cocaine-induced locomotion (Kraft et al., 2001), receptor blockade 

neither prevents cocaine self-administration nor attenuates cocaine-induced CPP (Murtra et 

al., 2000; Ripley et al., 2002; Gadd et al., 2003). Controversial effects have also been 

reported in the case of reinstatement experiments showing that NK1R agonism facilitated 

the reinstatement of cocaine seeking, but receptor antagonists did not block cocaine-priming 
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induced reinstatement (Placenza et al., 2004; Placenza et al., 2005). The data obtained with 

alcohol are more promising.

For instance, it was shown that NK1R knockout mice did not develop alcohol CPP, 

consumed less alcohol in a two-bottle choice paradigm and did not escalate alcohol 

consumption following repeated cycles of deprivation (George et al., 2008; Thorsell et al., 

2010). Moreover, NK1R antagonism reduced the stress-induced reinstatement of alcohol 

seeking (Schank et al., 2011). Yet, the operant alcohol self-administration and cue-induced 

reinstatement of alcohol seeking were not affected by treatments (Schank et al., 2011) 

(Steensland et al., 2010).

Initial human data are in line with preclinical findings as antagonists decreased alcohol 

craving in alcohol-dependent subjects in unprovoked conditions, under social stressors and 

upon exposure to alcohol-associated cues. In addition, an NK1R antagonist also decreased 

cortisol release induced by stress and cues (George et al., 2008).

Conclusion and Future Directions

Drug addiction is a serious disabling condition that has a dramatic impact on our societies 

and public health systems. The processes involved in the development of addiction are 

complex and involve interactions of several neurotransmitter systems, cell signaling and 

transcription mechanisms. Following chronic exposure to drugs of abuse, the brain is 

subjected to profound functional alterations to which genetic and environmental 

determinants also contribute. Despite the severity of the disorder and the dramatic impact it 

has on our lives, only few medications have been approved for addiction treatment. At 

present, only a minority of patients can benefit from the use of these medications, whereas 

the majority of addicts still remain poorly treated. To improve the impact of 

pharmacotherapy in addiction, it is critical to develop more efficacious and safer drugs. Over 

the past decade, a number of new mechanisms involved in the regulation of drug abuse and 

in the transition to addiction have been identified (Table 1), thus allowing the possibility to 

develop new pharmacological strategies. Here, we discussed a few of these potential new 

approaches that offer hope to obtaining useful medications in the near future. This review is 

not exhaustive as several other drug targets are under exploration; therefore, there is hope 

that many more therapeutic options will be available in the clinic in the near future.
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Figure 1. 
Schematic representation of the addiction cycle characterized by initial recreational drug 

use, followed by drug dose escalation, intoxication and episodic withdrawal and terminating 

in drug seeking and relapse. Drug targets for these different domains are depicted.
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Figure 2. 
Schematic representation of the hypothetical brain sites of action and neuronal substrates for 

new targets in addiction.
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Table 1

List of novel pharmacological targets explored for development of innovative treatments in addiction.

Target Pharmacological Tool Drug of
Abuse

Experimental
Procedure

Key
Finding Reference

PPARγ

Pioglitazone,
Rosiglitazone Alcohol SA, stress-induced

reinstatement reduce (Stopponi et al., 2011)

Pioglitazone Heroin SA reduce (de Guglielmo et al., 2015)

15-deoxy-delta(12,14)-
prostaglandin J(2),

Ciglitazone
Nicotine PPARγ gene expression increase (Amoruso et al., 2007)

Pioglitazone Morphine tolerance reduce (de Guglielmo et al., 2015)

PPARα

Fenofibrate, Tesaglitazar,
Bezafibrate Alcohol SA reduce (Blednov et al., 2015)

Clofibrate, WY14643,
methyl

oleoylethanolamide
Nicotine SA, cue-, priming-

induced reinstatement reduce (Panlilio et al., 2012)
(Mascia et al., 2011)

PDE4

Rolipram Alcohol SA reduce (Wen et al., 2012)

Rolipram Morphine
withdrawal,
tolerance,

CPP
reduce

(Itoh et al., 1998)
(Nunez et al., 2009)

(Thompson et al., 2004)

Rolipram Cocaine
CPP,

locomotor sensitisation,
SA

reduce
(Thompson et al., 2004)

(Janes et al., 2009)
(Knapp et al., 1999)

PDE10A

MP-10 Alcohol SA reduce (Logrip et al., 2014)

MP-10 Morphine CPP reduce (Mu et al., 2014)

Papaverine Cocaine CPP reduce (Liddie et al., 2012)

CREB

KO mice, antisense
oligonucleotide Morphine Withdrawal reduce (Maldonado et al., 1996)

(Lane-Ladd et al., 1997)

Over-expression

Cocaine

SA

increase

(Carlezon et al., 1998)
(Barrot et al., 2002)
(Larson et al., 2011)
(Bilbao et al., 2014)

Dominant-negative
CREB variant

CPP
Priming-induced

reinstatement

CRF1R

CRA1000
MTIP
MPZP

LWH-63
Antalarmin
KO mice

D-Phe-CRF(12-41)

Alcohol withdrawal, SA reduce

(Knapp et al., 2004)
(Gehlert et al., 2007)
(Sommer et al., 2008)
(Sabino et al., 2006)

(Chu et al., 2007)
(Funk et al., 2007)
(Gilpin et al., 2008)

(Richardson et al., 2008)

D-phe CRF(12-41)
Antalarmin

MPZP
Cocaine Withdrawal, SA reduce (Basso et al., 1999)

(Specio et al., 2008)

alpha-helical CRF(9-41)
MPZP Nicotine Withdrawal, SA reduce (Tucci et al., 2003)

(George et al., 2007)

MPZP
MJL-1-109-2

R121919
Heroin Withdrawal, SA reduce (Park et al., 2013)

(Greenwell et al., 2009)

NOP

N/OFQ Ro
64-6198 Alcohol CPP, SA,

withdrawal reduce

(Ciccocioppo et al., 1999)
(Kuzmin et al., 2003)

(Ciccocioppo et al., 2004)
(Martin-Fardon et al., 2000)
(Economidou et al., 2011)

N/OFQ Morphine CPP reduce (Ciccocioppo et al., 2000)
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Target Pharmacological Tool Drug of
Abuse

Experimental
Procedure

Key
Finding Reference

(Murphy et al., 1999)

N/OFQ Cocaine
Amphetamine CPP reduce (Kotlinska et al., 2002)

(Zhao et al., 2003)

OX1

SB-334867 Alcohol cue-, stress-induced
reinstatement reduce (Lawrence et al., 2006)

(Richards et al., 2008)

SB-334867 Cocaine cue-, stress-induced
reinstatement reduce (Smith et al., 2009)

(Boutrel et al., 2005)

SB-334867 Morphine cue-induced
reinstatement reduce (Harris et al., 2005)

NPSR

NPS Alcohol

SA no effect

(Cannella et al., 2009)
(Ruggeri et al., 2010)

cue-induced
reinstatement increase

withdrawal reduce

NPS Morphine CPP reduce (Li et al., 2009)

NPS
SHA 68

NPSR-QA1
Cocaine

SA, CPP no effect
(Kallupi et al., 2010)
(Kallupi et al., 2013)

(Cannella et al., 2013)SHA 68
NPSR-QA1

[D-Cys(tBu)5 ]NPS

cue-induced
reinstatement reduce

NK1R

KO mice, L822429 Alcohol SA, CPP, stress-induced
reinstatement reduce

(George et al., 2008)
(Thorsell et al., 2010)
(Schank et al., 2011)

KO mice Morphine SA, CPP reduce (Murtra et al., 2000)
(Ripley et al., 2002)

KO mice Cocaine SA, CPP, locomotor
sensitisation no effect (Ripley et al., 2002)

Abbreviations: Peroxisome proliferating activator receptors gamma (PPARγ), peroxisome proliferating activator receptors alpha 
(PPARα), cAMP response element-binding protein (CREB), phosphodiesterase 4 (PDE4), phosphodiesterase 10A (PDE10A), 
corticotropin-releasing factor receptor 1 (CRF1R), nociceptin opioid receptor (NOP), hypocretin-1/orexin A receptor (Ox1), neuropeptide 
S receptor (NPSR), neurokinin 1 receptor (NK1R), operant self-administration (SA), conditioned place preference (CPP).
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