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Abstract

Purpose of review—Increasing evidences suggest that purging the latent HIV reservoir in 

virally-suppressed individuals will require both the induction of viral replication from its latent 

state and the elimination of these reactivated HIV infected cells (“Shock and Kill” strategy). 

Boosting potent HIV-specific CD8 T cells is a promising way to achieve an HIV cure.

Recent findings—Recent studies provided the rationale for developing immune interventions to 

increase the numbers, function and location of HIV-specific CD8 T cells to purge HIV reservoirs. 

Multiple approaches are being evaluated including very early suppression of HIV replication in 

acute infection, adoptive cell transfer, therapeutic vaccination or use of immunomodulatory 

molecules. New assays to measure the killing and antiviral function of induced HIV-specific CD8 

T cells have been developed to assess the efficacy of these new approaches. The strategies 

combining HIV reactivation and immunobased therapies to boost HIV-specific CD8 T cells can be 

tested in in vivo and in silico models to accelerate the design of new clinical trials.

Summary—New immunobased strategies are explored to boost HIV-specific CD8 T cells able to 

purge the HIV-infected cells with the ultimate goal of achieving spontaneous control of viral 

replication without antiretroviral treatment.
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Introduction

Despite the success of antiretroviral therapy (ART) in controlling HIV replication, ART does 

not eradicate HIV and does not optimally reconstitute the immune system (1, 2). Novel 

immunobased therapies that would induce the immune-mediated control of HIV replication 

in the absence of ART or the eradication of the HIV reservoir are needed. To date, a single 

case of HIV cure and rare cases of transient remission have been reported (3–8). Other few 

reported cases of long-term remission in individuals controlling viral replication after ART 

interruption, also called “post-treatment controllers”, have been documented (9–13). 
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However for most HIV-infected individuals, HIV viral load rebounds at a median time of 14 

days after treatment interruption from a large number of HIV variants (14–16). Inducing 

HIV expression has been proposed as a strategy to eliminate persistently HIV-infected cells 

that constitute the viral reservoir (17–19). Latency reversing agents (LRAs) with potential 

for viral induction have been identified in in vitro models of HIV latency (20, 21) and are 

discussed in reviews on “shock” strategies in this issue. Despite their ability to induce HIV 

production, LRAs did not induce measurable decrease of the HIV reservoir size in vivo (22–

25). Therefore, purging these latent HIV reservoirs remaining under ART will need in 

addition to the induction of viral expression (Shock), the elimination of these reactivated 

latently-infected cells by either direct cytolytic targeting or by immunotherapeutic 

intervention (Kill) (26). Whereas rapid progress is made on the discovery and 

characterization of new LRAs to reactivate the latent HIV reservoir, the critical issue of how 

to kill the reactivated cells has still to be defined. In this review, the recent advances in using 

HIV-specific CD8 T cells to purge the latent HIV reservoir and achieve viral control after 

ART interruption will be discussed.

The need for efficient HIV-specific CD8 T cells to purge the HIV reservoir

Several observations suggest that HIV-specific CD8 T cells are important for the control of 

HIV replication by killing the productively HIV-infected CD4 T cells including the 

generation and maintenance of viral escape mutations in CD8 T cell epitopes or the superior 

control of viral replication by certain HIV-specific clonotypes restricted by HLA-B57 and 

B27 in elite controllers (27–29). The critical role of CD8 T cells in controlling HIV reservoir 

in virally-suppressed conditions has been demonstrated in the SIV model, where CD8 T cell 

depletion led to a rapid increase in viremia in elite controller macaques (30, 31) but also in 

virally suppressed ART-treated macaques (32). In both cases, the recovery of CD8 T cells 

after depletion was associated with a reduction of viral production. However, HIV-specific 

CD8 T cell mediated control of HIV replication is not sufficient to purge the HIV reservoir 

and prevent viral load rebound after ART interruption. Several parameters contribute to the 

lack of viral reservoir clearance by HIV-specific CD8 T cells. Prior to ART, many studies 

have shown that HIV-specific CD8 T cells are dysfunctional and have characterized the 

mechanisms of this dysfunction (33–36). After ART initiation, these defects are not fully 

restored and the remaining number of HIV-specific CD8 T cells is extremely low due to the 

sharp decrease of antigen load and continues to decay over time (37–42). Additionally, viral 

escape in epitopes targeted by CD8 T cells emerging rapidly early in infection as well as 

viral mechanisms interfering with the presentation of viral antigens prevent CD8 T cells to 

recognize efficiently HIV-infected cells. Lastly, the compartmentalization of HIV-infected 

cells in B cell follicles hardly accessible to HIV-specific CD8 T cells adds another barrier to 

efficient killing of these cells (31, 43, 44). The low frequency of HIV-specific CD8 T cells, 

their partial dysfunction and their location outside of HIV reservoir sanctuaries may account 

for the failure of previous eradication strategies that have been implemented in HIV-infected 

individuals who have been receiving ART for years.

Recent studies suggested that HIV-specific CD8 T cell could play an important role in 

purging HIV reservoirs. Shan and colleagues reported that after in vitro expansion of HIV-

specific CD8 T cells from ART-treated subjects, these cells were able to eliminate 
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reactivated HIV-infected CD4 T cells in an in vitro model of latency (45). Hansen and 

colleagues developed a new RhesusCMV vaccine that induced high frequencies of potent 

SIV-specific CD8 T cells leading to viral control and complete elimination of SIV reservoirs 

in half of the vaccinated macaques (46, 47). The high frequencies of SIV-specific CD8 T 

cells induced by this therapeutic vaccine were directed against broad non-classical epitopes 

restricted by HLA-E suggesting that immunobased strategies boosting HIV-specific CD8 T 

cells need to induce more efficient responses than the ones occurring in natural infection (48, 

49). CD8 T cell responses restricted by HLA-E have been documented in infectious 

diseases, cancer and autoimmunity but have been mostly characterized as regulatory 

responses (50–52). Whether HIV-specific CD8 T cells responses against HLA-E restricted 

epitopes will be defined as important in controlling HIV replication and can be induced in 

human is still unknown but is under investigation. These studies provided the rationale for 

new therapeutic strategies that combine agents that reactivate latently-infected CD4 T cells 

with immune interventions that increase the numbers, function and location of HIV-specific 

CD8 T cells to clear HIV reservoirs in individuals on ART, with the ultimate goal of 

achieving spontaneous control of viral replication without treatment (53).

Strategies to boost HIV-specific CD8 T cell responses in ART-treated 

subjects

Different approaches are currently tested to boost HIV-specific CD8 T cells in ART-treated 

individuals and are described below.

1- Initiating ART in acute infection

Although the latent HIV reservoir is seeded very early in infection (54, 55), initiating ART 

as early as possible can limit the size of the viral reservoir and could also preserve the 

quality of HIV-specific responses (56–63). Whether a preserved immunity could lead to the 

control of viral replication after treatment cessation remains largely unknown but two studies 

initiated ART in primary infection and assessed the viral rebound after ART discontinuation. 

In the SPARTAC study, treatment initiation within 6 months of infection resulted in a delay 

in viral rebound after ART cessation (64, 65). Hurst and colleagues reported recently that 

immune checkpoint blockers PD-1, Tim-3 and Lag-3 measured prior to ART initiation 

strongly predicted time to viral rebound after ART cessation (66). In the VISCONTI cohort, 

treatment was initiated within the first 3 months of infection and kept for a median of 7 

years before ART cessation; fourteen post-treatment controllers were observed in that cohort 

(11). These two studies suggest that timely ART initiation may pave the way for a better 

viral control after ART cessation but the mechanism of viral control in post-treatment 

controller still needs to be identified (67). Early in infection, HIV-specific CD8 T cells can 

contribute to control viremia (68–71) but become rapidly dysfunctional after peak viremia 

due to sustained hyperactivation and change in their metabolism (72). Therefore, initiating 

ART in the earliest stage of acute infection before peak viremia is reached might be 

necessary to achieve HIV remission due to initiating ART early in infection. This will be 

answered in ongoing or planned clinical studies.
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2- Adoptive transfer of ex vivo expanded HIV-specific CD8 T cells

Early studies in the SIV model described adoptive transfer of CD8 T cells in acute and 

chronic untreated infection with limited impact on viral replication (73–75). However the 

impact of adoptive SIV-specific CD8 T cell transfer on the SIV reservoir under suppressed 

viremia before treatment interruption remains to be tested. Recently, Sung and colleagues 

demonstrated that ex vivo expanded CD8 T cells derived from ART-treated HIV-infected 

individuals controlled the autologous viral reservoir better than bulk CD8 T cells, supporting 

the use of adoptive CD8 T cell transfer for purging the HIV reservoir in vivo 76). Emerging 

findings from adoptive CD8 T cell transfer approaches tested in cancer both in mouse 

studies and clinical trials show promising results and indicate that intrinsic properties related 

to the differentiation state of the adoptively transferred CD8 T cells are crucial for the 

success of these approaches (77). Chapuis and colleagues demonstrated that HIV-specific 

CD8 T cells expanded in vitro from the central memory pool of ART-treated individuals 

were detected more than 84 days in vivo after re-injection (78). However, the mechanisms 

that underlie successful adoptive CD8 T cell transfer in HIV-infected ART-treated 

individuals remain unknown and the most effective T cell populations to kill HIV reservoir 

cells in vivo have yet to be identified.

3- Therapeutic vaccines

Over the last decade, many T cell based vaccine regimen have been tested to boost CD8 T 

cell responses (reviewed in (79)). Live attenuated vectors have been favored as they induce 

robust CD8 T cell responses but other vaccination strategies using peptides, proteins, or 

dendritic cells have been tested in HIV-infected individuals on ART. These therapeutic 

vaccines tested showed limited success in delaying viral rebound after cessation of ART but 

lessons can be learned from these therapeutic vaccination studies (reviewed in (80)) and new 

therapeutic vaccines show promising results (reviewed in (81)). One of the reasons for the 

limited success of therapeutic vaccines tested in clinical trials so far might be that these 

interventions have been designed following classical vaccine regimen for inducing memory 

T cells. The boosting of HIV-specific CD8 T cells through therapeutic vaccination should 

aim at inducing numerous, potent, broad effector CD8 T cells (82). Defining the correlates 

of vaccine efficacy for achieving HIV remission after treatment interruption would help 

guiding the development of successful therapeutic vaccines.

4- Immunomodulators

Immunomodulation strategies aim at potentiating HIV-specific CD8 T cells either 

endogenous or induced by vaccines to kill reactivated HIV-infected cells. Some of the 

strategies currently tested ex vivo and in clinical trials to reactivate HIV from latently-

infected CD4 T cells target signaling pathways associated with T cell activation and 

homeostasis, including PKC activators, as Bryostatin or Ingenol, and cytokines, as IL-7 (83, 

84). Besides their effect on the latent HIV reservoir, these molecules could also influence 

differentially the activation and function of HIV-specific CD8 T cell responses stimulated 

contemporaneously. Vaccine adjuvants can also play a dual role of reactivating the latent 

reservoir and enhancing vaccine responses. Agonist molecules targeting TLR7 and TLR9 

have been shown to reactivate the HIV reservoir (85, 86). Finally, the success of monoclonal 
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antibodies targeting immune checkpoint blockers in cancer treatment could be transposed to 

HIV eradication. A recent clinical trial blocking the PD-1/PD-L1 pathway in ART-

suppressed individuals suggested that this treatment could revert the immune exhaustion of 

HIV-specific CD8 T cells while enhancing HIV expression in CD4 T cells (87).

Although some of these different strategies explored to boost HIV-specific CD8 T cells 

would not be applicable to all HIV-infected individuals, they are critical in defining the 

characteristics of efficient HIV-specific CD8 T cells that could control viral rebound after 

ART cessation and will guide the development of novel therapeutic approaches.

Assays to measure the number, location and killing capacity of HIV-specific 

CD8 T cells

The different approaches currently tested to boost HIV-specific CD8 T cells in ART-treated 

individuals described above will require specific assessments of the CD8 T cells induced: 

their number; but also their ability to persist in vivo; the location of these cells in particular 

in sanctuary sites of viral persistence; and their capacity to kill reactivated latently-infected 

CD4 T cells.

1- Quantify the numbers and maintenance of HIV-specific CD8 T cells during immune 
intervention and ART interruption

The frequencies of HIV-specific CD8 T cells are very low in the peripheral blood of ART-

treated individuals and are difficult to detect using standard assays such as ELISPOT or ex 
vivo ICS. Furthermore, the repeated sampling of subjects undergoing immune intervention 

and analytical treatment interruption limits the number of cells available to analyze these 

low frequencies. The same limitations exist for the measurement of HIV reservoir under 

ART and have led to the development of ultrasensitive methods for viral detection. Similarly, 

ultrasensitive methods to detect HIV-specific CD8 T cells accurately under ART should be 

developed and validated.

2- Assess the location of HIV-specific CD8 T cells

Immunohistochemistry allows the visualization of T cell localization in tissues. The 

detection of CD8 T cells in paraffin embedded tissues is not optimal yet but will be 

necessary to localize the CD8 T cells in mucosal tissues or secondary lymphoid organs. The 

detection of HIV-specific CD8 T cells in tissues can be done by in situ tetramer staining 

(88), a powerful but difficult method that might not be widely available in many laboratories 

and requires the staining of tissues from individuals having HLA alleles matching available 

tetramers. Alternatively, defining markers on HIV-specific CD8 T cells that are 

representative of the CD8 cells location in specific tissues and can be measured on 

dissociated tissues by flow cytometry would facilitate the assessment of HIV-specific CD8 T 

cell localization in tissues.

3- Measure the killing capacity of HIV-specific CD8 T cells

The cytolytic activity is the major function of CD8 T cells required for the elimination of 

HIV-infected cells but is still rarely evaluated, as assays used for this purpose are 
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cumbersome, cell consuming and have been difficult to standardize. Accurate measurement 

of this function is of paramount importance when characterizing effector functions of CD8 T 

cells, as no reliable predictors of effective cell-mediated cytotoxicity have been described yet 

(89, 90). Using a new assay to quantify the intrinsic killing capacity of HIV-specific CD8 T 

cells, we have observed that HIV-specific CD8 T cells in primary infection exhibit a 

significantly higher cytotoxic capacity than HIV-specific CD8 T cells in chronic infection 

(72, 91, 92). A new assay measuring the antiviral activity of CD8 T cells has been recently 

developed using in vitro infected CD4 T cells co-cultured with CD8 T cells (45, 93–95). 

Using this assay, Yang et al. demonstrated a significant association between CD8 T cell viral 

inhibition activity in vitro and the rate of CD4 T cell loss in early HIV-1 infection as well as 

the rate of CD4 T cell decline in chronically infected individuals (96). Whether this viral 

inhibition is mediated by direct cytolytic activity of CD8 T cells is still unknown and other 

assays that can recapitulate the killing of primary latently-infected CD4 T cells from ART-

treated individuals by HIV-specific CD8 T cells need to be developed.

New assays requiring limited PBMCs that measure small frequencies of HIV-specific CD8 T 

cells while assessing their quality, location and ability to kill HIV-infected cells would be an 

important platform to test the immune intervention strategies for HIV reservoir eradication 

in ART-treated individuals.

In vivo and in silico models to test therapeutic immune interventions

New immune interventions will be tested in clinical trials in the coming years using 

combination strategies to reactivate HIV reservoir and boost HIV-specific CD8 T cells in 

order to eradicate HIV. In designing these new therapies combining multiple components, it 

will be critical to understand the effect of the drugs used for HIV reactivation on HIV-

specific CD8 T cells and to determine the timing of administration of these therapies. 

Indeed, current LRAs have been shown to inhibit HIV-specific CD8 T cell responses in vitro 
97), so the timing of administration of these LRAs and vaccine regimen needs to be 

carefully chosen to avoid these deleterious effects on CD8 T cells. In vivo effects of the 

different combinations of LRAs and immunobased interventions will be difficult to predict 

and calls for models to anticipate the outcome and accelerate the testing of combination 

strategies. In the recent years, the antiretroviral regimens have been optimized in SIV-

infected macaques and allow for viral suppression (see review on “animal models for 

eradication strategies” in this issue). Therefore, the non-human primate model can be used 

for testing of new vaccine regimen or immune intervention and drug combinations. This 

model also allows for a deeper examination of HIV reservoirs and HIV-specific CD8 T cells 

in tissues that would not be accessible in human.

In addition, mathematical modeling is essential to inform novel combination strategies. In 
silico models have provided accurate and useful information on viral dynamics (98–101) and 

have already been used to model post-treatment control. A recent study modeled the 

dynamics between viral reactivation and control by the immune response after ART 

interruption and predicted the time to relapse in individuals treated in primary infection 

(102). Smith and colleagues used in vivo, in vitro and in silico data to model the control of 

viral rebound by CD8 T cells post-transplantation in an HIV autologous elite controller that 
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underwent stem cell transplantation (103). In another study, based on previous clinical trial 

with analytical treatment interruption, Pinkevych and colleagues estimated the rate of 

successful reactivation after ART cessation to be once every 3.6 days (104). For the immune 

response to HIV, even though data are available on the in vivo killing rate of infected cells 

by CD8 T cells (105), few in silico models are available to predict the number and nature of 

CD8 T cells required for HIV remission. However, a recent study modeled the timing of 

LRA administration and suggested that reactivation of the latent reservoir could be more 

effective at start of ART rather than on long term ART, when HIV-specific CD8 T cells are 

still present in high numbers (106). The use of combination strategies will introduce more 

variables and increase considerably the complexity of these models. Data from clinical trials 

including analytical treatment interruption will help building and refining the mathematical 

models of post-treatment control, which will then guide the next trials. This iterative process 

should accelerate the pace of testing successful immune interventions to eradicate HIV.

Conclusion

Despite major advances in defining the mechanisms of HIV latency and its reactivation 

using different strategies (107, 108), the “Kill” part of the “Shock and Kill” strategy has to 

be defined in the clinical setting. Evidences from the RhCMV vaccine and in vitro data show 

that superior HIV-specific CD8 T cells need to be induced by immune intervention in order 

to eradicate HIV infected cells. Several strategies are tested to boost these responses but 

whether HIV-specific CD8 T cells need to be boosted numerically and/or qualitatively and to 

which extent are still open questions. Numerous trials will be performed in the next few 

years and new assays measuring the quality and effector function of the HIV-specific CD8 T 

cells induced will be important to evaluate these interventions. In vivo and in silico models 

for testing novel combination strategies aiming at reactivating the HIV reservoir and 

boosting HIV-specific CD8 T cells will accelerate the pace of human clinical trials. In all 

these immunobased strategies, timing of intervention might play an important role in the 

outcome and should be carefully assessed. It is possible that potent immune interventions to 

boost HIV-specific CD8 T cells would also induce HIV reactivation and would be sufficient 

to eliminate HIV reservoirs (109, 110). In that case, a “Purge” strategy aiming at the 

elimination of HIV-infected cells by boosting HIV-specific CD8 T cell killing could lead to 

HIV eradication. Finally, defining immunological predictors of post-treatment control will 

be critical to guide the development of immune-based therapies to achieve HIV remission 

after ART cessation.
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Key points

Recent studies provide the rational to develop strategies to boost HIV-

specific CD8 T cells to achieve an HIV cure.

Boosting HIV-specific CD8 T cells could be achieved by early ART 

initiation, adoptive cell transfer, therapeutic vaccination and 

immunoregulatory interventions.

New immunological assays to assess the number, quality and effector 

functions of HIV-specific CD8 T cells should be used to assess immune-

based therapies.

In vivo and in silico models can guide the development of combinations 

strategies to boost HIV-specific CD8 T cells in combination with 

intervention to reactivate the latent HIV reservoir.
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