Skip to main content
. Author manuscript; available in PMC: 2016 Nov 7.
Published in final edited form as: Proc SIAM Int Conf Data Min. 2016 May;2016:810–818. doi: 10.1137/1.9781611974348.91

Algorithm 1.

Learn the LDS model in gLDS.

INPUT:
    • Initialization A(0), C(0), Z(0).
    • Hyper-parameters, γ, λ, β and α.
    • A collection of MTS sequences Y1, ⋯, YN.
PROCEDURE:
  1: // Optimize A, C and Z
  2: repeat
  3:   Update A by solving eq.(3.7).
  4:   Update C by solving eq.(3.8).
  5:   for m: 1 → N do
  6:     Update z1m by solving eq.(3.10).
  7:     for t: 2 → Tm − 1 do
  8:       Update ztm by solving eq.(3.11).
  9:     end for
10:     Update zTmm by solving eq.(3.12).
11:   end for
12: until Convergence
13: // Optimize Q̂, R̂, ξ̂, Ψ̂
14: Compute Q̂, R̂, ξ̂, Ψ̂ using eqs.(3.133.16).
OUTPUT:
    • Learned LDS parameters: Ω̂ = {Â, Ĉ, Q̂, R̂, ξ̂, Ψ̂}.