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Introduction
Atherosclerosis is a chronic inflammatory cardiovascular dis-

ease in which plaque forms in the blood vessel and may progress 
to impede blood flow.1 Rupture of an atherosclerotic plaque with 
associated thrombosis may cause an acute blockage that can pre-
cipitate a stroke, heart attack, and even death. Multiple factors can 
increase the risk of atherosclerosis, including a family history of 
the disease, high blood levels of low-density lipoprotein choles-
terol (LDL-C) or triglycerides, low levels of high density lipopro-
tein cholesterol (HDL-C), hypertension, smoking, gender, race, 
diabetes, obesity, a high-fat diet, and a sedentary lifestyle.1,2 Each 
of these risk factors may contribute to alterations in endothelial 
cells that can promote an inflammatory response.3 For example, 
LDL-C can be trapped by proteoglycans in the subendothelial 
space and oxidized. The oxidized LDL-C is then recognized by 
macrophages, which accumulate the lipid and become foam cells. 
These foam cells release cytokines and chemokines that attract 
more monocytes and trigger smooth muscle cell (SMC) prolif-
eration, causing the lesion to progress. An inflamed plaque can 
become unstable due to thinning of the fibrous cap, making the 
lesion susceptible to rupture, which in turn can cause an acute 
thrombosis and occlusion of the vessel and/or embolism, with 
occlusion of smaller vessels downstream.4 When the endothelium 
is exposed to steady laminar shear stress, however, it undergoes 
cellular responses that release homeostatic factors such as nitric 
oxide and vasoprotective microRNAs that make it resistant to ath-
erosclerosis. 

One arena of research activity in cardiovascular medicine in-
volves the design and development of multifunctional devices to 
target, diagnose, and treat atherosclerosis. In this review, we dis-
cuss the potential of targeting the inflammatory endothelium with 
shear stress-inducible microRNAs to reverse atherosclerosis and 
vascular complications associated with metabolic syndrome. 

Endothelial Dysfunction and Atherosclerosis
Endothelial cells (ECs) produce several bioactive substances, in-

cluding nitric oxide (NO), prostaglandins, reactive oxygen species, 
and vasoactive peptides such as angiotensin II. Imbalance of these 
factors promotes vasoconstriction, inflammatory cell adhesion and 
migration, platelet aggregation, and vascular SMC proliferation 
that eventually lead to atherogenesis. Metabolic alterations associ-
ated with diabetes (e.g., hyperglycemia, dyslipidemia, and insulin 
resistance) impair EC function by initiating processes that lead to 
plaque formation and worsen the outcome of atherosclerosis-relat-
ed cardiovascular events. 

Atherosclerosis is a chronic and progressive inflammatory 
disease of the arterial wall that is mostly symptomatic when 
it affects the carotid arteries, coronary arteries, or aortoiliac 
and infrainguinal arteries.5 The atherosclerotic plaque contains 
varying degrees of lipid, extracellular matrix, calcification, and 
cell debris as well as immune cells and vascular SMCs. These 
lesions typically form in the intima of large- and medium-sized 
arteries.6 Accumulating evidence suggests that endothelial in-
flammation plays a major role in the growth and progression of 
atherosclerosis.7 Inflamed ECs express adhesion molecules that 
mediate recruitment of immune cells, such as monocytes and 
lymphocytes, to promote the initiation and evolution of athero-
ma.8 At advanced stages of atherosclerosis, endothelial inflam-
mation could also destabilize the plaque.9,10 Vulnerable plaques 
are prone to rupture, resulting in thrombosis and acute cardio-
vascular events.11 To date, pharmacotherapies to prevent the 
progression of atherosclerosis have been largely directed toward 
management of risk factors, e.g., lowering LDL-C levels. While 
this approach has been effective, cardiovascular disease remains 
a major public health problem. Therefore, it is of great impor-
tance to develop new technologies and therapeutic approaches 
that can dramatically hinder or even reverse the progression of 
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atherosclerosis to further reduce cardiovascular morbidity and 
mortality.

Shear Stress and Atherosclerosis
Blood vessels are constantly subjected to hemodynamic 

forces, including cyclic stretch, hydrostatic pressure, and fluid 
shear stress. Vascular ECs, the monolayer directly in contact 
with blood flow, are constantly exposed to the tractive force of 
fluid flow, which is termed shear stress. Steady laminar shear 
stress, which typically occurs in the thoracic or abdominal aor-
ta, causes ECs to release autocrine and paracrine factors that 
regulate inflammatory responses, thrombosis/homeostasis, 
vascular remodeling, and vascular SMC phenotype.20-22 Howev-
er, atherosclerotic plaque tends to form in arterial branches and 
curvatures where there is disturbed blood flow (e.g., recircula-
tion eddies, flow separation and reattachment, and reciprocating 
flow).23-27 Activated endothelium recruits circulating monocytes 
that eventually differentiate into macrophages and accumulate 
in the lesion, suggesting that EC dysfunction initiates athero-
sclerosis.12-15 In fact, several endothelial surface molecules and 
receptors have been shown to participate in the initiation of in-
flammation and plaque progression.16-19 

Low, reciprocating, and oscillatory shear stress induces a num-
ber of atherogenic genes in ECs. These include adhesion molecules, 
chemokines, oxidative enzymes, vasoconstrictors, and other genes 
involved in SMC proliferation and migration, extracellular matrix 
remodeling, lipid synthesis, and inflammation—all of which lead 
to the development of atherosclerotic lesions. These changes are 
accompanied by a decrease in antioxidant enzymes or molecules, 
such as heme oxygenase 1, glutathione, NO, prostacyclin, and 
growth-arrest hormones.28-30 Conversely, laminar and pulsatile 
flow produce an opposing effect on gene regulation in ECs and 
SMCs.31-33

MicroRNA and Shear Stress 
MicroRNAs are highly conserved, non-coding RNAs that 

regulate gene expression post-transcriptionally by binding to the 
sequence located in the 3’-untranslated region of the target gene 
mRNA, thus inhibiting protein translation and reducing mRNA 
stability. The emerging role of microRNAs has been implicated in 
coronary heart disease, heart failure, atherosclerosis, and hyper-
tension. Notably, several microRNAs have been identified as being 
regulated by shear stress, including miR-92a, miR-21, miR-663, 
miR-19, miR-126, and the miR-143/145 cluster.34-40 However, the 
effect of shear stress on microRNA expression and function in the 
vasculature during the development of atherosclerotic plaques is 
poorly understood. 

MicroRNA arrays have given us significant insight in identify-
ing some of the important microRNAs that are altered under lam-
inar shear stress conditions. We have further confirmed a decrease 
of miR-146a and miR-181b in the aortic arch of type 2 diabetic db/
db mice, although these microRNAs were upregulated after tread-
mill exercise. Both microRNAs were also upregulated by laminar 
flow in mouse aortic ECs. These data prompted us to further ex-
plore the contribution of microRNAs in mediating the atheropro-
tective effect of shear stress. One of the challenges, however, is that 
RNA molecules are unstable in circulation and cellular microenvi-
ronments in vivo. Overexpression of microRNAs by viral vectors 
leads to unwanted genomic integration of viral DNA. Therefore, it 
is necessary to develop a robust and stable delivery system, such 
as a nanoparticle platform, that can enable efficient delivery of 
functional microRNAs. 

Nanotechnology in Targeted Drug Delivery
Nanotechnology has played a significant role in the develop-

ment of therapeutic interventions.41,42 MicroRNAs are synthetic 
nucleic acids that are vulnerable to degradation by plasma and 
tissue nucleases. Their negative charge under physiological con-
ditions also prohibits effective cell entry. Consequently, multiple 
forms of nanovectors have been developed to deliver nucleic ac-
id-based therapeutics, including microRNAs.43,44 The multistage 
vector (MSV) platform was designed to overcome sequential bio-
logical barriers for drug delivery.45 It is one of the most powerful 
delivery vehicles within this group. We have applied MSVs to 
effectively deliver small interfering RNA (siRNA) and microRNA 
into primary and metastatic tumors and demonstrated potent 
inhibition of gene expression and subsequent inhibition of tumor 
growth.46-48 We recently identified a thioaptamer that binds specifi-
cally to E-selectin (ESTA) with a high affinity and conjugated ESTA 
onto the surface of a MSV to generate a delivery system that spe-
cifically targets the inflamed vasculature.49 The feasibility of this 
ESTA-MSV delivery system has been successfully tested in mouse 
xenograft models of metastatic breast cancer and leukemia and has 
demonstrated drug enrichment in the disease lesions.49,50 

Treating Atherosclerosis through Targeted Delivery of 
MicroRNAs to Inflamed Vasculature 

In a recent study, we used an ESTA-MSV to deliver miR-146a 
and miR-181b for the treatment of atherosclerosis, taking advan-
tage of overexpressed E-selectin levels in the inflamed endothe-
lium.51 These two shear force-regulated microRNAs function by 
suppressing CCL2 expression, which eliminates the chemokine 
essential for recruiting monocytes to the inflammatory vasculature. 
The miR-146a- and miR-181b-loaded microparticles bind the over-
expressed endothelial surface protein E-selectin at the disease le-
sion and release the cargo on site. The nanoformulated microRNAs 
are then internalized by the endothelial cells, where they exert 
their biological functions (Figure 1). 

In our study, microRNAs were packaged into polyethylene 
glycol-polyethyleneimine (PEG-PEI) polyplex nanoparticles and 
loaded into the 45- to 80-nm nanopores of ESTA-MSV micropar-
ticles. We treated high-fat diet-challenged ApoE knockout mice 
with PEG-PEI/microRNA in their free nanoparticle forms or in 
ESTA-MSV and examined plaque formation. In the groups treat-
ed with PEG/PEI/miRNAs, there was a moderate decrease of 
plaque size compared to the vehicle-treated group; however, both 
microRNAs packaged in ESTA-MSV microparticles significantly 
decreased the plaque size (Figure 2).51 This result demonstrates the 
power of targeted delivery of therapeutics to the disease lesion for 
effective treatment. 

Conclusion
Recent advances in science and technology have provided us 

with unprecedented opportunities to develop novel treatments for 
cardiovascular diseases. Our research has demonstrated the power 
of disease lesion-targeted delivery of therapeutic microRNAs. This 
approach may be applicable to any disease with an inflammatory 
vasculature. 

Key Points: 
• The inflammatory vasculature in atherosclerotic lesions 

displays a unique expression pattern of surface proteins.
• The overexpressed vascular endothelial surface protein 

E-selectin serves as a docking site for targeted delivery of 
therapeutics.
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• Enrichment of shear stress-inducible microRNAs prevents 
the formation of vulnerable atherosclerotic lesions.
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